Proteomics characteristics of rice leaves in response to environmental factors
Proteomics characteristics of rice leaves in response to environmental factors
Sining KANG1, Sixue CHEN2, Shaojun DAI1()
1. Key Laboratory of Forestry Tree Genetics Improvement and Biotechnology, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; 2. Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
Rice is an important food crop worldwide. Its productivity has been influenced by various abiotic and biotic factors including temperature, drought, salt, microbe, ozone, hormone and glyphosate. The responses of plants to stress are regulated by multiple signaling pathways, and the mechanisms of leaf growth and development in response to stress remain unclear to date. Recently, proteomics studies have provided new evidence for better understanding the mechanisms. The proteins in response to different stress conditions are mainly involved in photosynthesis, signal transduction, transcription, protein synthesis and destination, defense response, cytoskeleton, energy, cell wall and other metabolism. In addition, some stress type-specific proteins have been identified, such as small heat shock proteins under temperature stress, S-like RNase homolog and actin depolymerizing factor under drought stress, ascorbate peroxidase and lipid peroxidation under salt stress, probenazole-inducible protein and rice pathogenesis-related proteins under blast fungus. Many of the proteins including ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO), molecular chaperones, antioxidases and S-adenosylmethionine synthetase play very important roles in leaves. This paper reviews the proteomic characterization of rice leaves in response to various environmental factors.
Corresponding Author(s):
DAI Shaojun,Email:daishaojun@hotmail.com
引用本文:
. Proteomics characteristics of rice leaves in response to environmental factors[J]. Frontiers in Biology, 2010, 5(3): 246-254.
Sining KANG, Sixue CHEN, Shaojun DAI. Proteomics characteristics of rice leaves in response to environmental factors. Front Biol, 2010, 5(3): 246-254.
Abbasi F M, Komatsu S (2004). A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics , 4: 2072–2081 doi: 10.1002/pmic.200300741
2
Agrawal G K, Jwa N, Rakwal R (2002a). A pathogen-induced novel rice (Oryza sativa L.) gene encodes a putative protein homologous to type II glutathione S-transferases. Plant Sci , 163: 1153–1160 doi: 10.1016/S0168-9452(02)00331-X
3
Agrawal G K, Rakwal R, Yonekura M, Kubo A, Saji H (2002b). Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics , 2: 947–959 doi: 10.1002/1615-9861(200208)2:8<947::AID-PROT947>3.0.CO;2-J
4
Ahsan N, Lee D G, Kim K H, Alam I, Lee S H, Lee K Won, Lee H, Lee B H (2010). Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry. Chemosphere , 78: 224–231 doi: 10.1016/j.chemosphere.2009.11.004
5
Ahsan N, Lee D G, Lee K W, Alam I, Lee S H, Bahk J D, Lee B H (2008). Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiol Biochem , 46: 1062–1070 doi: 10.1016/j.plaphy.2008.07.002
6
Bokhari S A, Wan X, Yang Y, Zhou L, Tang W, Liu J (2007). Proteomic response of rice seedling leaves to elevated CO2 levels. J Proteome Res , 6: 4624–4633 doi: 10.1021/pr070524z
7
Borden K L, Freemont P S (1996). The RING finger domain: a recent example of a sequence-structure family. Curr Opin Struct Biol , 6: 395–401 doi: 10.1016/S0959-440X(96)80060-1
8
Borsani O, Diaz P, Agius M F, Valpuesta V, Monza J (2001). Water stress generates an oxidative stress through the induction of a specific Cu/Zn superoxide dismutase in Lotus corniculatus leaves. Plant Sci , 161: 757–763
9
Chaoui A, Mazhoudi S, Ghorbal M H, Ferjani E E (1997). Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci , 127: 139–147 doi: 10.1016/S0168-9452(97)00115-5
10
Cho K, Shibato J, Agrawal G K, Jung Y H, Kubo A, Jwa N S, Tamogami S, Satoh K, Kikuchi S, Higashi T, Kimura S, Saji H, Tanaka Y, Iwahashi H, Masuo Y, Rakwal R (2008). Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. J Proteome Res , 7: 2980–2998 doi: 10.1021/pr800128q
11
Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J (2005). A proteomic analysis of cold stress responses in rice seedlings. Proteomics , 5: 3162–3172 doi: 10.1002/pmic.200401148
12
Dai S, Li L, Chen T, Chong K, Xue Y, Wang T (2006). Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth. Proteomics , 6: 2504–2529 doi: 10.1002/pmic.200401351
13
Desimone M, Henke A, Wagner E (1996). Oxidative stress induces partial degradation of the large subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase in isolated chloroplasts of barley. Plant Physiol , 111: 789–796
14
Dooki A D, Mayer-Posner F J, Askari H, Zaiee A A, Salekdeh G H (2006). Proteomic responses of rice young panicles to salinity. Proteomics , 6: 6498–6507 doi: 10.1002/pmic.200600367
15
Edwards R, Dixon D P (2005). Plant glutathione transferases. Methods Enzymol , 401: 169–186 doi: 10.1016/S0076-6879(05)01011-6
16
Edwards R, Dixon D P, Walbot V (2000). Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci , 5: 193–198 doi: 10.1016/S1360-1385(00)01601-0
17
Feng Y W, Komatsu S, Furukawa T, Koshiba T, Kohno Y (2008). Proteome analysis of proteins responsive to ambient and elevated ozone in rice seedlings. Agri Eco Environ , 125: 255–265 doi: 10.1016/j.agee.2008.01.018
18
Ge C, Wang Z, Wan Di, Ding Y, Wang Y, Shang Q, Luo S (2009). Proteomic study for responses to cadmium stress in rice seedlings. Rice Science , 16: 33–44 doi: 10.1016/S1672-6308(08)60054-2
19
Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002). A draft sequence of rice genome (Oryza sativa L. ssp. japonica). Science , 296: 92–100 doi: 10.1126/science.1068275
20
Hajduch M, Rakwal R, Agrawal G K, Yonekura M, Pretova A (2001). High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice (Oryza sativa L.) leaves: Drastic reductions/fragmentation of ribulose-1,5-bisphosphate carboxylase/oxygenase and induction of stressrelated proteins. Electrophoresis , 22: 2824–2831 doi: 10.1002/1522-2683(200108)22:13<2824::AID-ELPS2824>3.0.CO;2-C
21
Han F, Chen H, Li X J, Yang M F, Liu G S, Shen S H (2009). A comparative proteomic analysis of rice seedlings under various high-temperature stresses. Biochim Biophys Acta , 1794: 1625–1634
22
Hashimoto M, Komatsu S (2007). Proteomics analysis of rice seedlings during cold stress. Proteomics , 7:1293–1302 doi: 10.1002/pmic.200600921
23
He H, Li J (2008). Proteomic analysis of phosphoproteins regulated by abscisic acid in rice leaves. Biochem Biophys Res Commun , 371: 883–888 doi: 10.1016/j.bbrc.2008.05.001
24
Kachroo P, Lee K H, Schwerdel C, Bailey J E, Chattoo B B (1997). Analysis of host-induced response in the rice blast fungus Magnaporthe grisea using two-dimensional polyacrylamide gel electrophoresis. Electrophoresis , 18: 163–169 doi: 10.1002/elps.1150180129
25
Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert H (2001). Gene expression profiles during the initial phase of salt stress in rice. Plant Cell , 13: 889–905
26
Ke Y, Han G, He H, Li J (2009). Differential regulation of proteins and phosphoproteins in rice under drought stress. Biochem Biophys Res Commun , 379: 133–138 doi: 10.1016/j.bbrc.2008.12.067
27
Kim D W (2005). A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis , 26: 4521–4539 doi: 10.1002/elps.200500334
28
Kim H J, Song E J, Lee K J (2002). Proteomic analysis of protein phosphorylations in heat shock response and thermotolerance. J Biol Chem , 277: 21193–23207
29
Kim S T, Kim S G, Hwang D H, Kang S Y, Kim H J, Lee B H, Lee J J, Kang K Y (2004). Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics , 4: 3569–3578 doi: 10.1002/pmic.200400999
30
Koller A, Washburn M P, Lange B M, Andon N L, Deciu C, Haynes P A, Hays L, Schieltz D, Ulaszek R, Wei J, Wolters D, Yates J R (2002). Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci , 99: 11969–11974 doi: 10.1073/pnas.172183199
31
Konishi H, Ishiguro K, Komatsu S (2001). A proteomics approach towards understanding blast fungus infection of rice grown under different levels of nitrogen fertilization. Proteomics , 1: 1162–1171 doi: 10.1002/1615-9861(200109)1:9<1162::AID-PROT1162>3.0.CO;2-S
32
Konishi H, Komatsu S (2003). A proteomics approach to investigating promotive effects of brassinolide on lamina inclination and root growth in rice seedlings. Biol Pharm Bull , 26: 401–408 doi: 10.1248/bpb.26.401
33
Lee D G, Ahsan N, Lee S H, Kang K Y, Bahk J D, Lee I J, Lee B H (2007a). A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics , 7: 3369–3383 doi: 10.1002/pmic.200700266
34
Lee D G, Ahsan N, Lee S H, Kang K Y, Lee J J, Lee B H (2007b). An approach to identify cold-induced low-abundant proteins in rice leaf. C R Biol , 330: 215–225 doi: 10.1016/j.crvi.2007.01.001
35
Lee K, Bae D W, Kim S H, Han H J, Liu X, Park H C, Lim C O, Lee S Y, Chung W S (2010). Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physiol , 167: 161–168 doi: 10.1016/j.jplph.2009.09.006
36
Lin Y Z, Chen H Y, Kao R, Chang S P, Chang S J, Lai E M (2008). Proteomic analysis of rice defense response induced by probenazole. Phytochemistry , 69: 715–728 doi: 10.1016/j.phytochem.2007.09.005
37
Lutts S, Kinet J M, Bouharmont J (1996). Ethylene production by leaves of rice Oryza sativa L. in relation to salinity tolerance and exogenous putrescine application. Plant Science , 116: 15–25 doi: 10.1016/0168-9452(96)04379-8
38
Mahmood T, Kakishima M, Komatsu S (2007). Proteomic analysis of jasmonic acid-regulated proteins in rice leaf blades. Protein Pep Lett , 14: 311–319 doi: 10.2174/092986607780363961
39
Maksymiec W (1997). Effect of copper on cellular processes in higher plants. Photosynthetica , 34: 321–342 doi: 10.1023/A:1006818815528
40
Mittler R, Zilinskas B A (1994). Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J , 5: 397–405 doi: 10.1111/j.1365-313X.1994.00397.x
41
Nozu Y, Tsugita A, Kamijo K (2006). Proteomic analysis of rice leaf, stem, and root tissues during growth course. Proteomics , 6: 3665–3670 doi: 10.1002/pmic.200600043
42
Osmond C B, Grace S C (1995). Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis? J Exp Bot , 46: 1351–1362
43
Parker R, Flowers T J, Moore A L, Harpham N V (2006). An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot , 57: 1109–1118 doi: 10.1093/jxb/erj134
44
Portis A R Jr (2003). Rubisco activase-Rubisco’s catalytic chaperone. Photosynth Res , 75: 11–27 doi: 10.1023/A:1022458108678
45
Rakwal R, Komatsu S (2004). Abscisic acid promoted changes in the protein profiles of rice seedling by proteome analysis. Mol Biol Rep , 31: 217–230 doi: 10.1007/s11033-005-2710-0
46
Salekdeh G H, Siopongco J, Wade L J, Ghareyazie B, Bennett J (2002). A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crops Research , 2: 1131–1145
47
Scafaro A P, Haynes P A, Atwell B J (2010). Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice. J Exp Bot , 61: 191–202 doi: 10.1093/jxb/erp294
48
Shen S, Jing Y, Kuang T (2003). Proteomics approach to identify wound-response related proteins from rice leaf sheath. Proteomics , 3: 527–535 doi: 10.1002/pmic.200390066
49
Shen S, Matsubae M, Takao T, Tanaka N, Komatsu S (2002). A proteomic analysis of leaf sheaths from rice. J Biochem , 132: 613–620
50
Soranzo N, Sari Gorla M, Mizzi L, De Toma G, Frova C (2004). Organisation and struc- tural evolution of the rice glutathione S- transferase gene family. Mol Genet Genomics , 271: 511–521 doi: 10.1007/s00438-004-1006-8
51
Tanaka N, Konishi H, Khan M M, Komatsu S (2004). Proteome analysis of rice tissues by two-dimensional electrophoresis: an approach to the investigation of gibberellin regulated proteins. Mol Genet Genomics , 270: 485–496 doi: 10.1007/s00438-003-0929-9
52
Thomashow M F (2001). So what’s new in the field of plant cold acclimation? Plant Physiol , 125: 89–93 doi: 10.1104/pp.125.1.89
53
Tsunezuka H, Fujiwara M, Kawasaki T, Shimamoto K (2005). Proteome analysis of programmed cell death and defense signaling using the rice lesion mimic mutant cdr2. Mol Plant Microbe Interact , 18: 52–59 doi: 10.1094/MPMI-18-0052
54
Yan S, Tang Z, Su W, Sun W (2005). Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics , 5: 235–244 doi: 10.1002/pmic.200400853
55
Yan S P, Zhang Q Y, Tang Z C, Su W A, Sun W N (2006). Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics , 5: 484–496 doi: 10.1074/mcp.M500251-MCP200
56
Yang P, Chen H, Liang Y, Shen S (2007a). Proteomic analysis of de-etiolated rice seedlings upon exposure to light. Proteomics , 7: 2459–2468 doi: 10.1002/pmic.200600215
57
Yang P, Li X, Wang X, Chen H, Chen F, Shen S (2007b). Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics , 7: 3358–3368 doi: 10.1002/pmic.200700207
58
Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science , 296: 79–92 doi: 10.1126/science.1068037
59
Yu C L, Yan S P, Wang C C, Hu H T, Sun W N, Yan C Q, Chen J P, Yang L (2008). Pathogenesis-related proteins in somatic hybrid rice induced by bacterial blight. Phytochemistry , 69: 1989–1996 doi: 10.1016/j.phytochem.2008.04.006
60
Yuzo N, Akira T, Kenichi K (2006). Proteomic analysis of rice leaf, stem and root tissues during growth course. Proteomics , 6: 3665–3670 doi: 10.1002/pmic.200600043
61
Zang X, Komatsu S (2007). A proteomics approach for identifying osmotic-stress-related proteins in rice. Phytochemistry , 68: 426–437 doi: 10.1016/j.phytochem.2006.11.005
62
Zhao C, Wang J, Cao M, Zhao K, Shao J, Lei T, Yin J, Hill G G, Xu N, Liu S (2005). Proteomic changes in rice leaves during development of field-grown rice plants. Proteomics , 5: 961–972 doi: 10.1002/pmic.200401131
63
Zhao X C, Schaller G E (2004). Effect of salt and osmotic stress upon expression of the ethylene receptor ETR1 in Arabidopsis thaliana. FEBS Letters , 562: 189–192 doi: 10.1016/S0014-5793(04)00238-8
64
Zhong B, Karibe H, Komatsu S, Ichimura H, Nagamura Y, Sasaki T, Hirano H (1997). Screening of rice (Oryza sativa) genes from a cDNA based on the sequence data-file of proteins separated by two-dimensional electrophoresis. Breeding Sci , 47: 245–251