Heat shock proteins: Molecules with assorted functions
Heat shock proteins: Molecules with assorted functions
Surajit SARKAR1,2(email.png), M. Dhruba SINGH1, Renu YADAV1, K. P. ARUNKUMAR2, Geoffrey W. PITTMAN2
1. 1. Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi-110021, India; 2. 2. Division of Biology, MC156-29, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
Heat shock proteins (Hsps) or molecular chaperones, are highly conserved protein families present in all studied organisms. Following cellular stress, the intracellular concentration of Hsps generally increases several folds. Hsps undergo ATP-driven conformational changes to stabilize unfolded proteins or unfold them for translocation across membranes or mark them for degradation. They are broadly classified in several families according to their molecular weights and functional properties. Extensive studies during the past few decades suggest that Hsps play a vital role in both normal cellular homeostasis and stress response. Hsps have been reported to interact with numerous substrates and are involved in many biological functions such as cellular communication, immune response, protein transport, apoptosis, cell cycle regulation, gametogenesis and aging. The present review attempts to provide a brief overview of various Hsps and summarizes their involvement in diverse biological activities.
. Heat shock proteins: Molecules with assorted functions[J]. Frontiers in Biology, 2011, 6(4): 312-327.
Surajit SARKAR, M. Dhruba SINGH, Renu YADAV, K. P. ARUNKUMAR, Geoffrey W. PITTMAN. Heat shock proteins: Molecules with assorted functions. Front Biol, 2011, 6(4): 312-327.
Stress response, thermotolerance, protein folding (stress induced)
Hsp100, Hsp90, Hsp70, Hsp60, sHsps
Protein folding (newly synthesized), maintenance of protein homeostasis, microfilament stabilization, maintenance of cytoskeletal components, cellular communication, apoptosis, epithelial remodeling, tumorigenesis
Hsp90, Hsc70, Hsp60, sHsp
Aging and longevity
Hsp90, Hsc70, Hsp60, sHsps
Immune response, development of autoimmune disorders
Hsp90, Hsp60, sHsps
Modifier of PolyQ induced phenotypes/ neurodegeneration
Hsp70, Hsc70, Hsp60, sHsps
Fertility, gametogenesis
Hsp90, Hsp60
microRNA processing
Hsp90, Hsc70
Tab.1
Fig.1
1
Adams M D, Celniker S E, Holt R A, Evans C A, Gocayne J D, Amanatides P G, Scherer S E, Li P W, Hoskins R A, Galle R F, George R A, Lewis S E, Richards S, Ashburner M, Henderson S N, Sutton G G, Wortman J R, Yandell M D, Zhang Q, Chen L X, Brandon R C, Rogers Y H, Blazej R G, Champe M, Pfeiffer B D, Wan K H, Doyle C, Baxter E G, Helt G, Nelson C R, Gabor G L, Abril J F, Agbayani A, An H J, Andrews-Pfannkoch C, Baldwin D, Ballew R M, Basu A, Baxendale J, Bayraktaroglu L, Beasley E M, Beeson K Y, Benos P V, Berman B P, Bhandari D, Bolshakov S, Borkova D, Botchan M R, Bouck J, Brokstein P, Brottier P, Burtis K C, Busam D A, Butler H, Cadieu E, Center A, Chandra I, Cherry J M, Cawley S, Dahlke C, Davenport L B, Davies P, de Pablos B, Delcher A, Deng Z, Mays A D, Dew I, Dietz S M, Dodson K, Doup L E, Downes M, Dugan-Rocha S, Dunkov B C, Dunn P, Durbin K J, Evangelista C C, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian A E, Garg N S, Gelbart W M, Glasser K, Glodek A, Gong F, Gorrell J H, Gu Z, Guan P, Harris M, Harris N L, Harvey D, Heiman T J, Hernandez J R, Houck J, Hostin D, Houston K A, Howland T J, Wei M H, Ibegwam C, Jalali M, Kalush F, Karpen G H, Ke Z, Kennison J A, Ketchum K A, Kimmel B E, Kodira C D, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky A A, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh T C, McLeod M P, McPherson D, Merkulov G, Milshina N V, Mobarry C, Morris J, Moshrefi A, Mount S M, Moy M, Murphy B, Murphy L, Muzny D M, Nelson D L, Nelson D R, Nelson K A, Nixon K, Nusskern D R, Pacleb J M, Palazzolo M, Pittman G S, Pan S, Pollard J, Puri V, Reese M G, Reinert K, Remington K, Saunders R D, Scheeler F, Shen H, Shue B C, Sidén-Kiamos I, Simpson M, Skupski M P, Smith T, Spier E, Spradling A C, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang A H, Wang X, Wang Z Y, Wassarman D A, Weinstock G M, Weissenbach J, Williams S M, WoodageT K C, Worley D, Wu S, Yang Q A, Yao J, Ye R F, Yeh J S, Zaveri M, Zhan G, Zhang Q, Zhao L, Zheng X H, Zheng F N, Zhong W, Zhong X, Zhou S, Zhu X, Smith H O, Gibbs R A, Myers E W, Rubin G M, Venter J C, (2000). The genome sequence of Drosophila melanogaster. Science , 287(5461): 2185–2195 doi: 10.1126/science.287.5461.2185 pmid:10731132
2
Ambrosio L, Schedl P (1984). Gene expression during Drosophila melanogaster oogenesis: analysis by in situ hybridization to tissue sections. Dev Biol , 105(1): 80–92 doi: 10.1016/0012-1606(84)90263-X pmid:6432608
3
Arrigo A P, Tanguay R M (1991). Expression of heat shock proteins during development in Drosophila. Results Probl Cell Differ , 17: 106–119 pmid:1803417
4
Arya R, Lakhotia S C (2008). Hsp60D is essential for caspase-mediated induced apoptosis in Drosophila melanogaster. Cell Stress Chaperones , 13(4): 509–526 doi: 10.1007/s12192-008-0051-3 pmid:18506601
5
Arya R, Mallik M, Lakhotia S C (2007). Heat shock genes-integrating cell survival and death. J Biosci , 32(3): 595–610 doi: 10.1007/s12038-007-0059-3 pmid:17536179
6
Asquith K L, Baleato R M, McLaughlin E A, Nixon B, Aitken R J (2004). Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition. J Cell Sci , 117(Pt 16): 3645–3657 doi: 10.1242/jcs.01214 pmid:15252132
7
Baena-López L A, Alonso J, Rodriguez J, Santarén J F (2008). The expression of heat shock protein HSP60A reveals a dynamic mitochondrial pattern in Drosophila melanogaster embryos. J Proteome Res , 7(7): 2780–2788 doi: 10.1021/pr800006x pmid:18549261
8
Betrán E, Thornton K, Long M (2002). Retroposed new genes out of the X in Drosophila. Genome Res , 12(12): 1854–1859 doi: 10.1101/gr.6049 pmid:12466289
9
Boilard M, Reyes-Moreno C, Lachance C, Massicotte L, Bailey J L, Sirard M A, Leclerc P (2004). Localization of the chaperone proteins GRP78 and HSP60 on the luminal surface of bovine oviduct epithelial cells and their association with spermatozoa. Biol Reprod , 71(6): 1879–1889 doi: 10.1095/biolreprod.103.026849 pmid:15286042
10
Bond U, Schlesinger M J (1985). Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Mol Cell Biol , 5(5): 949–956 pmid:2987683
11
B?sl B, Grimminger V, Walter S (2005). Substrate binding to the molecular chaperone Hsp104 and its regulation by nucleotides. J Biol Chem , 280(46): 38170–38176 doi: 10.1074/jbc.M506149200 pmid:16135516
Burmester T, Mink M, Pál M, Lászlóffy Z, Lepesant J, Maróy P (2000). Genetic and molecular analysis in the 70CD region of the third chromosome of Drosophila melanogaster. Gene , 246(1–2): 157–167 doi: 10.1016/S0378-1119(00)00066-4 pmid:10767537
14
Burns R G, Surridge C D (1994). Functional role of a consensus peptide which is common to alpha-, beta-, and gamma-tubulin, to actin and centractin, to phytochrome A, and to the TCP1 alpha chaperonin protein. FEBS Lett , 347(2–3): 105–111 doi: 10.1016/0014-5793(94)00522-2 pmid:8033985
15
Candido E P (2002). The small heat shock proteins of the nematode Caenorhabditis elegans: structure, regulation and biology. Prog Mol Subcell Biol , 28: 61–78 pmid:11908066
Carbajal M E, Valet J P, Charest P M, Tanguay R M (1990). Purification of Drosophila hsp 83 and immunoelectron microscopic localization. Eur J Cell Biol , 52(1): 147–156 pmid:2201544
18
Cavanagh A C (1996). Identification of early pregnancy factor as chaperonin 10: implications for understanding its role. Rev Reprod , 1(1): 28–32 doi: 10.1530/ror.0.0010028 pmid:9414435
19
Chan H Y, Warrick J M, Andriola I, Merry D, Bonini N M (2002). Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila. Hum Mol Genet , 11(23): 2895–2904 doi: 10.1093/hmg/11.23.2895 pmid:12393801
20
Chandrasekhar G N, Tilly K, Woolford C, Hendrix R, Georgopoulos C (1986). Purification and properties of the groES morphogenetic protein of Escherichia coli. J Biol Chem , 261(26): 12414–12419 pmid:3017973
21
Chen X, Sullivan D S, Huffaker T C (1994). Two yeast genes with similarity to TCP-1 are required for microtubule and actin function in vivo. Proc Natl Acad Sci USA , 91(19): 9111–9115 doi: 10.1073/pnas.91.19.9111 pmid:7916460
22
Chun J N, Choi B, Lee K W, Lee D J, Kang D H, Lee J Y, Song I S, Kim H I, Lee S H, Kim H S, Lee N K, Lee S Y, Lee K J, Kim J, Kang S W, Linden R (2010). Cytosolic Hsp60 is involved in the NF-kappaB-dependent survival of cancer cells via IKK regulation. PLoS ONE , 5(3): e9422 doi: 10.1371/journal.pone.0009422 pmid:20351780
23
Clarke A K (1996). Variation on a theme: Combined molecular chaperone and proteolysis functions in Clp/Hsp100 proteins. J Biosci , 21(2): 161–177 doi: 10.1007/BF02703106
24
Creutz C E, Liou A, Snyder S L, Brownawell A, Willison K (1994). Identification of the major chromaffin granule-binding protein, chromobindin A, as the cytosolic chaperonin CCT (chaperonin containing TCP-1). J Biol Chem , 269(51): 32035–32038 pmid:7798195
25
Csermely P (1997). Proteins, RNAs and chaperones in enzyme evolution: a folding perspective. Trends Biochem Sci , 22(5): 147–149 doi: 10.1016/S0968-0004(97)01026-8 pmid:9175467
26
Csermely P, Kahn C R (1991). The 90-kDa heat shock protein (hsp-90) possesses an ATP binding site and autophosphorylating activity. J Biol Chem , 266(8): 4943–4950 pmid:2002041
27
Csermely P, Kajtár J, Hollósi M, Oikarinen J, Somogyi J (1994). The 90 kDa heat shock protein (hsp90) induces the condensation of the chromatin structure. Biochem Biophys Res Commun , 202(3): 1657–1663 doi: 10.1006/bbrc.1994.2124 pmid:8060353
28
Csermely P, Schnaider T, Soti C, Prohaszka Z, Nadai G (1998). The 90 kDa molecular chaperone family: Structure, function and clinical applications. A comprehensive review. J Phar Ther , 79(2): 129–168 doi: 10.1016/S0163-7258(98)00013-8
29
Cutforth T, Rubin G M (1994). Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila. Cell , 77(7): 1027–1036 doi: 10.1016/0092-8674(94)90442-1 pmid:8020093
30
Czar M J, Owens-Grillo J K, Dittmar K D, Hutchison K A, Zacharek A M, Leach K L, Deibel M R Jr, Pratt W B (1994). Characterization of the protein-protein interactions determining the heat shock protein (hsp90.hsp70.hsp56) heterocomplex. J Biol Chem , 269(15): 11155–11161 pmid:8157642
31
de Graeff-Meeder E R, Voorhorst M, van Eden W, Schuurman H J, Huber J, Barkley D, Maini R N, Kuis W, Rijkers G T, Zegers B J (1990). Antibodies to the mycobacterial 65-kD heat-shock protein are reactive with synovial tissue of adjuvant arthritic rats and patients with rheumatoid arthritis and osteoarthritis. Am J Pathol , 137(5): 1013–1017 pmid:1700613
Ellis R J (2005). Chaperomics: in vivo GroEL function defined. Curr Biol , 15(17): 661–663 doi: 10.1016/j.cub.2005.08.025 pmid:15823539
36
Eskes R, Desagher S, Antonsson B, Martinou J C (2000). Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol , 20(3): 929–935 doi: 10.1128/MCB.20.3.929-935.2000 pmid:10629050
37
Feder M E, Hofmann G E (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol , 61(1): 243–282 doi: 10.1146/annurev.physiol.61.1.243 pmid:10099689
38
Feldman D E, Frydman J (2000). Protein folding in vivo: the importance of molecular chaperones. Curr Opin Struct Biol , 10(1): 26–33 doi: 10.1016/S0959-440X(99)00044-5 pmid:10679467
39
Feltham J L, Gierasch L M (2000). GroEL-substrate interactions: molding the fold, or folding the mold? Cell , 100(2): 193–196 doi: 10.1016/S0092-8674(00)81557-3 pmid:10660042
40
Frees D, Chastanet A, Qazi S, S?rensen K, Hill P, Msadek T, Ingmer H (2004). Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Mol Microbiol , 54(5): 1445–1462 doi: 10.1111/j.1365-2958.2004.04368.x pmid:15554981
41
Galdiero M, de l’Ero G C, Marcatili A (1997). Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins. Infect Immun , 65(2): 699–707 pmid:9009333
42
Gao Y, Thomas J O, Chow R L, Lee G H, Cowan N J (1992). A cytoplasmic chaperonin that catalyzes beta-actin folding. Cell , 69(6): 1043–1050 doi: 10.1016/0092-8674(92)90622-J pmid:1351421
43
Garrido C, Gurbuxani S, Ravagnan L, Kroemer G (2001). Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun , 286(3): 433–442 doi: 10.1006/bbrc.2001.5427 pmid:11511077
44
Gerthoffer W T, Gunst S J (2001). Invited review: focal adhesion and small heat shock proteins in the regulation of actin remodeling and contractility in smooth muscle. J Appl Physiol , 91(2): 963–972 pmid:11457815
45
Gething M J, Sambrook J (1992). Protein folding in the cell. Nature , 355(6355): 33–45 doi: 10.1038/355033a0 pmid:1731198
46
Glass J I, Lefkowitz E J, Glass J S, Heiner C R, Chen E Y, Cassell G H (2000). The complete sequence of the mucosal pathogen Ureaplasma urealyticum. Nature , 407(6805): 757–762 doi: 10.1038/35037619 pmid:11048724
47
Gong W J, Golic K G (2006). Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock and neurodegeneration. Genetics , 172(1): 275–286 doi: 10.1534/genetics.105.048793 pmid:16204210
48
Gozes I, Brenneman D E (1996). Activity-dependent neurotrophic factor (ADNF). An extracellular neuroprotective chaperonin? J Mol Neurosci , 7(4): 235–244 doi: 10.1007/BF02737061 pmid:8968945
49
Grantham J, Ruddock L W, Roobol A, Carden M J (2002). Eukaryotic chaperonin containing T-complex polypeptide 1 interacts with filamentous actin and reduces the initial rate of actin polymerization in vitro. Cell Stress Chaperones , 7(3): 235–242 doi: 10.1379/1466-1268(2002)007<0235:ECCTCP>2.0.CO;2 pmid:12482199
50
Günther E, Walter L (1994). Genetic aspects of the hsp70 multigene family in vertebrates. Experientia , 50(11–12): 987–1001 doi: 10.1007/BF01923453 pmid:7988674
51
Gupta R S (1995). Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol , 15(1): 1–11 doi: 10.1111/j.1365-2958.1995.tb02216.x pmid:7752884
52
Gupta R S, Ramachandra N B, Bowes T, Singh B (2008). Unusual cellular disposition of the mitochondrial molecular chaperones Hsp60, Hsp70 and Hsp10. Novartis Found Symp , 291: 59–68, discussion 69–73, 137–140 doi: 10.1002/9780470754030.ch5 pmid:18575266
53
Gupta S, Knowlton A A (2002). Cytosolic heat shock protein 60, hypoxia, and apoptosis. Circulation , 106(21): 2727–2733 doi: 10.1161/01.CIR.0000038112.64503.6E pmid:12438300
54
Hackett R W, Lis J T (1983). Localization of the hsp83 transcript within a 3292 nucleotide sequence from the 63B heat shock locus of D. melanogaster. Nucleic Acids Res , 11(20): 7011–7030 doi: 10.1093/nar/11.20.7011 pmid:6314271
55
Hartl F U, Martin J, Neupert W (1992). Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60. Annu Rev Biophys Biomol Struct , 21(1): 293–322 doi: 10.1146/annurev.bb.21.060192.001453 pmid:1525471
56
Heikkila J J (2010). Heat shock protein gene expression and function in amphibian model systems. Comp Biochem Physiol A Mol Integr Physiol , 156(1): 19–33 doi: 10.1016/j.cbpa.2010.01.024 pmid:20138231
57
Hemmingsen S M (1992). What is a chaperonin? Nature , 357(6380): 650–650 doi: 10.1038/357650b0 pmid:1352040
58
Heufelder A E, Wenzel B E, Bahn R S (1992). Cell surface localization of a 72 kilodalton heat shock protein in retroocular fibroblasts from patients with Graves’ ophthalmopathy. J Clin Endocrinol Metab , 74(4): 732–736 doi: 10.1210/jc.74.4.732 pmid:1548335
59
Hightower L E, Seth S E (1994). Interactions of vertebrate Hsc70 and HSP70 with unfolded proteins and peptides. In “The Biology of Heat Shock Proteins and Molecular Chaperones”, Morimoto RI (ed), Cold Spring Harbour Lab Press, NY , 179–207
60
Hill J E, Penny S L, Crowell K G, Goh S H, Hemmingsen S M (2004). cpnDB: a chaperonin sequence database. Genome Res , 14(8): 1669–1675 doi: 10.1101/gr.2649204 pmid:15289485
61
Hixon W G, Searcy D G (1993). Cytoskeleton in the archaebacterium Thermoplasma acidophilum? Viscosity increase in soluble extracts. Biosystems , 29(2–3): 151–160 doi: 10.1016/0303-2647(93)90091-P pmid:8374067
62
Hochstrasser M (1992). Ubiquitin and intracellular protein degradation. Curr Opin Cell Biol , 4(6): 1024–1031 doi: 10.1016/0955-0674(92)90135-Y pmid:1336669
63
Houlihan J L, Metzler J J, Blum J S (2009). HSP90alpha and HSP90beta isoforms selectively modulate MHC class II antigen presentation in B cells. J Immunol , 182(12): 7451–7458 doi: 10.4049/jimmunol.0804296 pmid:19494268
64
Houry W A, Frishman D, Eckerskorn C, Lottspeich F, Hartl F U (1999). Identification of in vivo substrates of the chaperonin GroEL. Nature , 402(6758): 147–154 doi: 10.1038/45977 pmid:10647006
65
Hwang M, Moretti L, Lu B (2009). HSP90 inhibitors: multi-targeted antitumor effects and novel combinatorial therapeutic approaches in cancer therapy. Curr Med Chem , 16(24): 3081–3092 doi: 10.2174/092986709788802999 pmid:19689285
66
Inano K, Curtis S W, Korach K S, Omata S, Horigome T (1994). Heat shock protein 90 strongly stimulates the binding of purified estrogen receptor to its responsive element. J Biochem , 116(4): 759–766 pmid:7883750
67
Ireland R C, Berger E M (1982). Synthesis of low molecular weight heat shock peptides stimulated by ecdysterone in a cultured Drosophila cell line. Proc Natl Acad Sci USA , 79(3): 855–859 doi: 10.1073/pnas.79.3.855 pmid:6801663
68
Ito H, Kamei K, Iwamoto I, Inaguma Y, Tsuzuki M, Kishikawa M, Shimada A, Hosokawa M, Kato K (2003). Hsp27 suppresses the formation of inclusion bodies induced by expression of R120G alpha B-crystallin, a cause of desmin-related myopathy. Cell Mol Life Sci , 60(6): 1217–1223 pmid:12861387
69
Iwasaki S, Kobayashi M, Yoda M, Sakaguchi Y, Katsuma S, Suzuki T, Tomari Y (2010). Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell , 39(2): 292–299 doi: 10.1016/j.molcel.2010.05.015 pmid:20605501
70
Jakus S, Neuer A, Dieterle S, Bongiovanni A M, Witkin S S (2008). Antibody to the Chlamydia trachomatis 60 kDa heat shock protein in follicular fluid and in vitro fertilization outcome. Am J Reprod Immunol , 59(2): 85–89 doi: 10.1111/j.1600-0897.2007.00539.x pmid:18076634
71
Jinn T L, Chen Y M, Lin C Y (1995). Characterization and physiological function of Class I low-molecular-mass, heat-shock protein complex in soybean. Plant Physiol , 108(2): 693–701 pmid:12228501
72
Johnston M, Geoffroy M C, Sobala A, Hay R, Hutvagner G (2010). HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Mol Biol Cell , 21(9): 1462–1469 doi: 10.1091/mbc.E09-10-0885 pmid:20237157
73
Jost M, Kari C, Rodeck U (2000). The EGF receptor- an essential regulator of multiple epidermal functions. Eur J Dermatol , 10(7): 505–510 pmid:11056418
74
Kagawa H K, Osipiuk J, Maltsev N, Overbeek R, Quaite-Randall E, Joachimiak A, Trent J D (1995). The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae. J Mol Biol , 253(5): 712–725 doi: 10.1006/jmbi.1995.0585 pmid:7473746
75
Kampinga H H, Craig E A (2010). The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol , 11(8): 579–592 doi: 10.1038/nrm2941 pmid:20651708
76
Kappé G, Franck E, Verschuure P, Boelens W C, Leunissen J A, de Jong W W (2003). The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones , 8(1): 53–61 doi: 10.1379/1466-1268(2003)8<53:THGECS>2.0.CO;2 pmid:12820654
77
Katinka M D, Duprat S, Cornillot E, Méténier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivarès C P (2001). Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature , 414(6862): 450–453 doi: 10.1038/35106579 pmid:11719806
78
Kellermayer M S, Csermely P (1995). ATP induces dissociation of the 90 kDa heat shock protein (hsp90) from F-actin: interference with the binding of heavy meromyosin. Biochem Biophys Res Commun , 211(1): 166–174 doi: 10.1006/bbrc.1995.1792 pmid:7779083
79
Kikis E A, Gidalevitz T, Morimoto R I (2010). Protein homeostasis in models of aging and age-related conformational disease. Adv Exp Med Biol , 694: 138–159 pmid:20886762
80
Kitagawa M, Wada C, Yoshioka S, Yura T (1991). Expression of ClpB, an analog of the ATP-dependent protease regulatory subunit in Escherichia coli, is controlled by a heat shock sigma factor (sigma 32). J Bacteriol , 173(14): 4247–4253 pmid:1906060
81
Kol A, Lichtman A H, Finberg R W, Libby P, Kurt-Jones E A (2000). Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol , 164(1): 13–17 pmid:10604986
82
Kozlova T, Perezgasga L, Reynaud E, Zurita M (1997). The Drosophila melanogaster homologue of the hsp60 gene is encoded by the essential locus l(1)10AC and is differentially expressed during fly development. Dev Genes Evol , 207(4): 253–263 doi: 10.1007/s004270050113
83
Kurtz S, Rossi J, Petko L, Lindquist S (1986). An ancient developmental induction: heat-shock proteins induced in sporulation and oogensis. Science , 231(4742): 1154–1157 doi: 10.1146/annurev.physiol.67.040403.103635 pmid:15709958
84
Lakhotia S C (2001). Heat Shock Response- Regulation and Functions of Coding and non-coding genes in Drosophila. Proc Ind Natl Acad Sci, B 5:247–264 .
85
Lakhotia S C, Singh A K (1989). A novel heat shock polypeptide in Malpighian tubule of Drosophila melanogaster. J Genet , 68(3): 129–268 doi: 10.1007/BF02927855
86
Laplante A F, Moulin V, Auger F A, Landry J, Li H, Morrow G, Tanguay R M, Germain L (1998). Expression of heat shock proteins in mouse skin during wound healing. J Histochem Cytochem , 46(11): 1291–1301 pmid:9774628
87
Larsen J K, Yamboliev I A, Weber L A, Gerthoffer W T (1997). Phosphorylation of the 27-kDa heat shock protein via p38 MAP kinase and MAPKAP kinase in smooth muscle. Am J Physiol , 273(5 Pt 1): L930–L940 pmid:9374719
88
Leicht B G, Biessmann H, Palter K B, Bonner J J (1986). Small heat shock proteins of Drosophila associate with the cytoskeleton. Proc Natl Acad Sci USA , 83(1): 90–94 doi: 10.1073/pnas.83.1.90 pmid:3079906
89
Leonhardt S A, Fearson K, Danese P N, Mason T L (1993). HSP78 encodes a yeast mitochondrial heat shock protein in the Clp family of ATP-dependent proteases. Mol Cell Biol , 13(10): 6304–6313 pmid:8413229
90
Leroux M R, Candido E P M (1997). Subunit characterization of the Caenorhabditis elegans chaperonin containing TCP-1 and expression pattern of the gene encoding CCT-1. Biochem Biophys Res Commun , 241(3): 687–692 doi: 10.1006/bbrc.1997.7889 pmid:9434769
91
Lewis J, Devin A, Miller A, Lin Y, Rodriguez Y, Neckers L, Liu Z G (2000). Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J Biol Chem , 275(14): 10519–10526 doi: 10.1074/jbc.275.14.10519 pmid:10744744
92
Lilie H, Lang K, Rudolph R, Buchner J (1993). Prolyl isomerases catalyze antibody folding in vitro. Protein Sci , 2(9): 1490–1496 doi: 10.1002/pro.5560020913 pmid:8104614
93
Lindquist S (1980). Varying patterns of protein synthesis in Drosophila during heat shock: implications for regulation. Dev Biol , 77(2): 463–479 doi: 10.1016/0012-1606(80)90488-1 pmid:7399133
Lopatin D E, Combs A, Sweier D G, Fenno J C, Dhamija S (2000). Characterization of heat-inducible expression and cloning of HtpG (Hsp90 homologue) of Porphyromonas gingivalis. Infect Immun , 68(4): 1980–1987 doi: 10.1128/IAI.68.4.1980-1987.2000 pmid:10722592
96
Matzinger P (2002). The danger model: a renewed sense of self. Science , 296(5566): 301–305 doi: 10.1126/science.1071059 pmid:11951032
McKay D B (1991). Structure of the 70-kilodalton heat-shock-related proteins. Springer Semin Immunopathol , 13(1): 1–9 doi: 10.1007/BF01225274 pmid:1776119
100
Meinhardt A, Parvinen M, Bacher M, Aumüller G, Hakovirta H, Yagi A, Seitz J (1995). Expression of mitochondrial heat shock protein 60 in distinct cell types and defined stages of rat seminiferous epithelium. Biol Reprod , 52(4): 798–807 doi: 10.1095/biolreprod52.4.798 pmid:7780001
101
Melki R, Cowan N J (1994). Facilitated folding of actins and tubulins occurs via a nucleotide-dependent interaction between cytoplasmic chaperonin and distinctive folding intermediates. Mol Cell Biol , 14(5): 2895–2904 pmid:7909354
102
Michaud S, Morrow G, Marchand J, Tanguay R M (2002). Drosophila small heat shock proteins: cell and organelle-specific chaperones? Prog Mol Subcell Biol , 28: 79–101 pmid:11908067
103
Mikhaylova L M, Nguyen K, Nurminsky D I (2008). Analysis of the Drosophila melanogaster testes transcriptome reveals coordinate regulation of paralogous genes. Genetics , 179(1): 305–315 doi: 10.1534/genetics.107.080267 pmid:18493055
104
Miklos D, Caplan S, Mertens D, Hynes G, Pitluk Z, Kashi Y, Harrison-Lavoie K, Stevenson S, Brown C, Barrell B, (1994). Primary structure and function of a second essential member of the heterooligomeric TCP1 chaperonin complex of yeast, TCP1 beta. Proc Natl Acad Sci USA , 91(7): 2743–2747 doi: 10.1073/pnas.91.7.2743 pmid:7908441
105
Miller S G, Leclerc R F, Erdos G W (1990). Identification and characterization of a testis-specific isoform of a chaperonin in a moth, Heliothis virescens. J Mol Biol , 214(2): 407–422 doi: 10.1016/0022-2836(90)90190-W pmid:1974308
Morcillo G, Diez J L, Carbajal M E, Tanguay R M (1993). HSP90 associates with specific heat shock puffs (hsr omega) in polytene chromosomes of Drosophila and Chironomus. Chromosoma , 102(9): 648–659 doi: 10.1007/BF00352313 pmid:8306827
108
Morrow G, Heikkila J J, Tanguay R M (2006). Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster. Cell Stress Chaperones , 11(1): 51–60 doi: 10.1379/CSC-166.1 pmid:16572729
109
Morrow G, Tanguay R M (2003). Heat shock proteins and aging in Drosophila melanogaster. Semin Cell Dev Biol , 14(5): 291–299 doi: 10.1016/j.semcdb.2003.09.023 pmid:14986859
110
Murata S, Minami Y, Minami M, Chiba T, Tanaka K (2001). CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep , 2(12): 1133–1138 doi: 10.1093/embo-reports/kve246 pmid:11743028
111
Naaby-Hansen S, Herr J C (2010). Heat shock proteins on the human sperm surface. J Reprod Immunol , 84(1): 32–40 doi: 10.1016/j.jri.2009.09.006 pmid:19962198
112
Nakahara K, Kim K, Sciulli C, Dowd S R, Minden J S, Carthew R W (2005). Targets of microRNA regulation in the Drosophila oocyte proteome. Proc Natl Acad Sci USA , 102(34): 12023–12028 doi: 10.1073/pnas.0500053102 pmid:16099838
113
Neuer A, Lam K N, Tiller F W, Kiesel L, Witkin S S (1997). Humoral immune response to membrane components of Chlamydia trachomatis and expression of human 60 kDa heat shock protein in follicular fluid of in-vitro fertilization patients. Hum Reprod , 12(5): 925–929 doi: 10.1093/humrep/12.5.925 pmid:9194641
114
Neuer A, Spandorfer S D, Giraldo P, Dieterle S, Rosenwaks Z, Witkin S (2000). The role of heat shock protein in reproduction. Hum Repro Updt , 6(2): 149–159 doi: 10.1093/humupd/6.2.149
115
Nollen E A, Morimoto R I (2002). Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. J Cell Sci , 115(Pt 14): 2809–2816 pmid:12082142
116
Nover L, ed. (1984). Heat Shock Response in eukaryotic cells. Springer-Verlag, Berlin , pp-1–78 .
117
Novoselova T V, Margulis B A, Novoselov S S, Sapozhnikov A M, van der Spuy J, Cheetham M E, Guzhova I V (2005). Treatment with extracellular HSP70/HSC70 protein can reduce polyglutamine toxicity and aggregation. J Neurochem , 94(3): 597–606 doi: 10.1111/j.1471-4159.2005.03119.x pmid:15992387
118
Pandey P, Saleh A, Nakazawa A, Kumar S, Srinivasula S M, Kumar V, Weichselbaum R, Nalin C, Alnemri E S, Kufe D, Kharbanda S (2000). Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J , 19(16): 4310–4322 doi: 10.1093/emboj/19.16.4310 pmid:10944114
119
Paranko J, Seitz J, Meinhardt A (1996). Developmental expression of heat shock protein 60 (HSP60) in the rat testis and ovary. Differentiation , 60(3): 159–167 doi: 10.1046/j.1432-0436.1996.6030159.x pmid:8766595
120
Parsell D A, Lindquist S (1994). Heat shock proteins and stress tolerance. In “The Biology of Heat Shock proteins and Molecular Chaperones”, Morimoto RI. (ed), Cold Spring Harbor Lab Press, NY , 457–493
121
Parsell D A, Sanchez Y, Stitzel J D, Lindquist S (1991). Hsp104 is a highly conserved protein with two essential nucleotide-binding sites. Nature , 353(6341): 270–273 doi: 10.1038/353270a0 pmid:1896074
122
Pauli D, Arrigo A P, Tissières A (1992). Heat shock response in Drosophila. Experientia , 48(7): 623–629 doi: 10.1007/BF02118306 pmid:1639169
123
Pelham H R (1986). Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell , 46(7): 959–961 doi: 10.1016/0092-8674(86)90693-8 pmid:2944601
124
Pfister G, Stroh C M, Perschinka H, Kind M, Knoflach M, Hinterdorfer P, Wick G (2005). Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J Cell Sci , 118(Pt 8): 1587–1594 doi: 10.1242/jcs.02292 pmid:15784682
125
Pockley A G (2002). Heat shock proteins, inflammation, and cardiovascular disease. Circulation , 105(8): 1012–1017 doi: 10.1161/hc0802.103729 pmid:11864934
126
Pratt W B, Czar M J, Stancato L F, Owens J K (1993). The hsp56 immunophilin component of steroid receptor heterocomplexes: could this be the elusive nuclear localization signal-binding protein? J Steroid Biochem Mol Biol , 46(3): 269–279 doi: 10.1016/0960-0760(93)90216-J pmid:9831475
127
Pratt W B, Toft D O (2003). Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) , 228(2): 111–133 pmid:12563018
128
Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan R C, Melton D A (2002). “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science , 298(5593): 597–600 doi: 10.1126/science.1072530 pmid:12228720
129
Ranford J C, Coates A R, Henderson B (2000). Chaperonins are cell-signalling proteins: the unfolding biology of molecular chaperones. Expert Rev Mol Med , 2(8): 1–17 doi: 10.1017/S1462399400002015 pmid:14585136
130
Ranson N A, White H E, Saibil H R (1998). Chaperonins. Biochem J , 333(Pt 2): 233–242 pmid:9657960
131
Rassow J, Ahsen O V, Bomer U, Pfanner N (1997). Molecular chaperones: Towards a characterization of the heat-shock protein 70 family. Trends Genet , 7: 129–133
132
Retzlaff C, Yamamoto Y, Hoffman P S, Friedman H, Klein T W (1994). Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1 secretion in macrophage cultures. Infect Immun , 62(12): 5689–5693 pmid:7960155
133
Richter K, Haslbeck M, Buchner J (2010). The heat shock response: life on the verge of death. Mol Cell , 40(2): 253–266 doi: 10.1016/j.molcel.2010.10.006 pmid:20965420
134
Ritossa F A (1962). A new puffing pattern induced by a temperature shock and DNP in Drosophila. Experientia , 18(12): 571–573 doi: 10.1007/BF02172188
135
Roobol A, Carden M J (1999). Subunits of the eukaryotic cytosolic chaperonin CCT do not always behave as components of a uniform hetero-oligomeric particle. Eur J Cell Biol , 78(1): 21–32 pmid:10082421
136
Roobol A, Holmes F E, Hayes N V L, Baines A J, Carden M J (1995). Cytoplasmic chaperonin complexes enter neurites developing in vitro and differ in subunit composition within single cells. J Cell Sci , 108(Pt 4): 1477–1488 pmid:7615668
137
Rubin G M, Yandell M D, Wortman J R, Gabor Miklos G L, Nelson C R, Hariharan I K, Fortini M E, Li P W, Apweiler R, Fleischmann W, Cherry J M, Henikoff S, Skupski M P, Misra S, Ashburner M, Birney E, Boguski M S, Brody T, Brokstein P, Celniker S E, Chervitz S A, Coates D, Cravchik A, Gabrielian A, Galle R F, Gelbart W M, George R A, Goldstein L S, Gong F, Guan P, Harris N L, Hay B A, Hoskins R A, Li J, Li Z, Hynes R O, Jones S J, Kuehl P M, Lemaitre B, Littleton J T, Morrison D K, Mungall C, O’Farrell P H, Pickeral O K, Shue C, Vosshall L B, Zhang J, Zhao Q, Zheng X H, Lewis S (2000). Comparative genomics of the eukaryotes. Science , 287(5461): 2204–2215 doi: 10.1126/science.287.5461.2204 pmid:10731134
138
Rutherford S, Knapp J R, Csermely P (2007). Hsp90 and developmental networks. Adv Exp Med Biol , 594: 190–197 doi: 10.1007/978-0-387-39975-1_16 pmid:17205685
139
Rutherford S L (2003). Between genotype and phenotype: protein chaperones and evolvability. Nat Rev Genet , 4(4): 263–274 doi: 10.1038/nrg1041 pmid:12671657
140
Rutherford S L, Lindquist S (1998). Hsp90 as a capacitor for morphological evolution. Nature , 396(6709): 336–342 doi: 10.1038/24550 pmid:9845070
141
Saibil H (1996). The lid that shapes the pot: structure and function of the chaperonin GroES. Structure , 4(1): 1–4 doi: 10.1016/S0969-2126(96)00002-0 pmid:8805512
142
Samali A, Cai J, Zhivotovsky B, Jones D P, Orrenius S (1999). Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. EMBO J , 18(8): 2040–2048 doi: 10.1093/emboj/18.8.2040 pmid:10205158
143
Sanchez Y, Lindquist S L (1990). HSP104 required for induced thermotolerance. Science , 248(4959): 1112–1115 doi: 2188365" target="_blank">10.1126/science. pmid:2188365 pmid:2188365
144
Sarge K D, Cullen K E (1997). Regulation of hsp expression during rodent spermatogenesis. Cell Mol Life Sci , 53(2): 191–197 doi: 10.1007/PL00000591 pmid:9118007
145
Sarkar S, Arya S, Lakhotia S C (2006) Chaperonins in life and death. In: Stress response: a molecular biology approach (A.S. Sreedhar ed): Signpost Publication: Trivandrum, India (p 43–60 ).
146
Sarkar S, Lakhotia S C (2005). The Hsp60C gene in the 25F cytogenetic region in Drosophila melanogaster is essential for tracheal development and fertility. J Genet , 84(3): 265–281 doi: 10.1007/BF02715797 pmid:16385159
147
Sarkar S, Lakhotia S C (2008). Hsp60C is required in follicle as well as germline cells during oogenesis in Drosophila melanogaster. Dev Dyn , 237(5): 1334–1347 doi: 10.1002/dvdy.21524 pmid:18386820
148
Schirmer E C, Glover J R, Singer M A, Lindquist S (1996). HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci , 21(8): 289–296 pmid:8772382
149
Shinoda H, Huang C C (1996). Heat shock proteins in middle ear cholesteatoma. Otolaryngol Head Neck Surg , 114(1): 77–83 doi: 10.1016/S0194-5998(96)70287-5 pmid:8570255
150
Singh B N, Lakhotia S C (1995). The non-induction of heat shocked Malpighian tubules of Drosophila larvae is not due to constitutive presence of hsp70 or hsc70. Curr Sci , 69: 178–182
151
Sj?gren L L, MacDonald T M, Sutinen S, Clarke A K (2004). Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. Plant Physiol , 136(4): 4114–4126 doi: 10.1104/pp.104.053835 pmid:15563614
152
Slavotinek A M, Biesecker L G (2001). Unfolding the role of chaperones and chaperonins in human disease. Trends Genet , 17(9): 528–535 doi: 10.1016/S0168-9525(01)02413-1 pmid:11525836
153
Soares H, Penque D, Mouta C, Rodrigues-Pousada C (1994). A Tetrahymena orthologue of the mouse chaperonin subunit CCT gamma and its coexpression with tubulin during cilia recovery. J Biol Chem , 269(46): 29299–29307 pmid:7961900
154
Sollars V, Lu X, Xiao L, Wang X, Garfinkel M D, Ruden D M (2003). Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet , 33(1): 70–74 doi: 10.1038/ng1067 pmid:12483213
155
Soltys B J, Gupta R S (1996). Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Exp Cell Res , 222(1): 16–27 doi: 10.1006/excr.1996.0003 pmid:8549659
156
Soltys B J, Gupta R S (1999). Mitochondrial-matrix proteins at unexpected locations: are they exported? Trends Biochem Sci , 24(5): 174–177 doi: 10.1016/S0968-0004(99)01390-0 pmid:10322429
157
Song H Y, Dunbar J D, Zhang Y X, Guo D, Donner D B (1995). Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor. J Biol Chem , 270(8): 3574–3581 doi: 10.1074/jbc.270.8.3574 pmid:7876093
S?ti C, Nagy E, Giricz Z, Vígh L, Csermely P, Ferdinandy P (2005). Heat shock proteins as emerging therapeutic targets. Br J Pharmacol , 146(6): 769–780 doi: 10.1038/sj.bjp.0706396 pmid:16170327
160
Southgate R, Ayme A, Voellmy R (1983). Nucleotide sequence analysis of the Drosophila small heat shock gene cluster at locus 67B. J Mol Biol , 165(1): 35–57 doi: 10.1016/S0022-2836(83)80241-1 pmid:6302284
161
Spiess C, Meyer A S, Reissmann S, Frydman J (2004). Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol , 14(11): 598–604 doi: 10.1016/j.tcb.2004.09.015 pmid:15519848
162
Squires C L, Pedersen S, Ross B M, Squires C (1991). ClpB is the Escherichia coli heat shock protein F84.1. J Bacteriol , 173(14): 4254–4262 pmid:2066329
163
Srinivas U K, Revathi C J, Das M R (1987). Heat-induced expression of albumin during early stages of rat embryo development. Mol Cell Biol , 7(12): 4599–4602 pmid:3325829
164
Sternlicht H, Farr G W, Sternlicht M L, Driscoll J K, Willison K, Yaffe M B (1993). The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. Proc Natl Acad Sci USA , 90(20): 9422–9426 doi: 10.1073/pnas.90.20.9422 pmid:8105476
165
Sun Y, MacRae T H (2005). Small heat shock proteins: molecular structure and chaperone function. Cell Mol Life Sci , 62(21): 2460–2476 doi: 10.1007/s00018-005-5190-4 pmid:16143830
166
Tabibzadeh S, Kong Q F, Satyaswaroop P G, Babaknia A (1996). Heat shock proteins in human endometrium throughout the menstrual cycle. Hum Reprod , 11(3): 633–640 pmid:8671282
167
Tai P K, Albers M W, Chang H, Faber L E, Schreiber S L (1992). Association of a 59-kilodalton immunophilin with the glucocorticoid receptor complex. Science , 256(5061): 1315–1318 doi: 1376003" target="_blank">10.1126/science. pmid:1376003 pmid:1376003
168
Tai P K, Faber L E (1985). Isolation of dissimilar components of the 8.5S nonactivated uterine progestin receptor. Can J Biochem Cell Biol , 63(1): 41–49 doi: 10.1139/o85-006 pmid:3886102
169
Taipale M, Jarosz D F, Lindquist S (2010). HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol , 11(7): 515–528 doi: 10.1038/nrm2918 pmid:20531426
170
Thirumalai D, Lorimer G H (2001). Chaperonin-mediated protein folding. Annu Rev Biophys Biomol Struct , 30(1): 245–269 doi: 10.1146/annurev.biophys.30.1.245 pmid:11340060
Tissières A, Mitchell H K, Tracy U M (1974). Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol , 84(3): 389–398 doi: 10.1016/0022-2836(74)90447-1 pmid:4219221
174
Togo T, Dickson D W (2002). Ballooned neurons in progressive supranuclear palsy are usually due to concurrent argyrophilic grain disease. Acta Neuropathol , 104(1): 53–56 doi: 10.1007/s00401-002-0520-1 pmid:12070664
175
T?r?k Z, Horváth I, Goloubinoff P, Kovács E, Glatz A, Balogh G, Vígh L (1997). Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions. Proc Natl Acad Sci USA , 94(6): 2192–2197 doi: 10.1073/pnas.94.6.2192 pmid:9122170
176
Trent J D, Kagawa H K, Yaoi T, Olle E, Zaluzec N J (1997). Chaperonin filaments: the archaeal cytoskeleton? Proc Natl Acad Sci USA , 94(10): 5383–5388 doi: 10.1073/pnas.94.10.5383 pmid:9144246
177
Trent J D, Nimmesgern E, Wall J S, Hartl F U, Horwich A L (1991). A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature , 354(6353): 490–493 doi: 10.1038/354490a0 pmid:1836250
178
Trepel J, Mollapour M, Giaccone G, Neckers L (2010). Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer , 10(8): 537–549 doi: 10.1038/nrc2887 pmid:20651736
179
Ursic D, Culbertson M R (1991). The yeast homolog to mouse Tcp-1 affects microtubule-mediated processes. Mol Cell Biol , 11(5): 2629–2640 pmid:1901944
180
Ursic D, Sedbrook J C, Himmel K L, Culbertson M R (1994). The essential yeast Tcp1 protein affects actin and microtubules. Mol Biol Cell , 5(10): 1065–1080 pmid:7865875
181
van der Straten A, Rommel C, Dickson B, Hafen E (1997). The heat shock protein 83 (Hsp83) is required for Raf-mediated signalling in Drosophila. EMBO J , 16(8): 1961–1969 doi: 10.1093/emboj/16.8.1961 pmid:9155022
Verdegaal M E, Zegveld S T, van Furth R (1996). Heat shock protein 65 induces CD62e, CD106, and CD54 on cultured human endothelial cells and increases their adhesiveness for monocytes and granulocytes. J Immunol , 157(1): 369–376 pmid:8683139
184
Vinh D B, Drubin D G (1994). A yeast TCP-1-like protein is required for actin function in vivo. Proc Natl Acad Sci USA , 91(19): 9116–9120 doi: 10.1073/pnas.91.19.9116 pmid:7916461
185
Voellmy R, Bromley P, Kocher H P (1983). Structural similarities between corresponding heat-shock proteins from different eucaryotic cells. J Biol Chem , 258(6): 3516–3522 pmid:6403517
186
Vos M J, Zijlstra M P, Kanon B, van Waarde-Verhagen M A, Brunt E R, Oosterveld-Hut H M, Carra S, Sibon O C, Kampinga H H (2010). HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum Mol Genet , 19(23): 4677–4693 doi: 10.1093/hmg/ddq398 pmid:20843828
187
Werner A, Meinhardt A, Seitz J, Bergmann M (1997). Distribution of heat-shock protein 60 immunoreactivity in testes of infertile men. Cell Tissue Res , 288(3): 539–544 doi: 10.1007/s004410050839 pmid:9134866
188
Werner A, Seitz J, Meinhardt A, Bergmann M (1996). Distribution pattern of HSP60 immunoreactivity in the testicular tissue of infertile men. Ann Anat , 178(1): 81–82 pmid:8717331
189
Whitley D, Goldberg S P, Jordan W D (1999). Heat shock proteins: a review of the molecular chaperones. J Vasc Surg , 29(4): 748–751 doi: 10.1074/jbc.274.29.20049 pmid:10400609
190
Wolf B B, Green D R (1999). Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem , 274(29): 20049–20052 doi: 10.1074/jbc.274.29.20049 pmid:10400609
191
Xanthoudakis S, Roy S, Rasper D, Hennessey T, Aubin Y, Cassady R, Tawa P, Ruel R, Rosen A, Nicholson D W (1999). Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J , 18(8): 2049–2056 doi: 10.1093/emboj/18.8.2049 pmid:10205159
192
Xu Q, Wick G (1996). The role of heat shock proteins in protection and pathophysiology of the arterial wall. Mol Med Today , 2(9): 372–379 doi: 10.1016/S1357-4310(96)10034-4 pmid:8885256
193
Yaffe M B, Farr G W, Miklos D, Horwich A L, Sternlicht M L, Sternlicht H (1992). TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature , 358(6383): 245–248 doi: 10.1038/358245a0 pmid:1630491
Yamamoto M, Takahashi Y, Inano K, Horigome T, Sugano H (1991). Characterization of the hydrophobic region of heat shock protein 90. J Biochem , 110(1): 141–145 pmid:1939021
196
Zhang L, Koivisto L, Heino J, Uitto V J (2004). Bacterial heat shock protein 60 may increase epithelial cell migration through activation of MAP kinases and inhibition of α6β4 integrin expression. Biochem Biophys Res Commun , 319(4): 1088–1095 doi: 10.1016/j.bbrc.2004.04.202 pmid:15194479
197
Zhang L, Pelech S L, Mayrand D, Grenier D, Heino J, Uitto V J (2001). Bacterial heat shock protein-60 increases epithelial cell proliferation through the ERK1/2 MAP kinases. Exp Cell Res , 266(1): 11–20 doi: 10.1006/excr.2001.5199 pmid:11339820
198
Zhao R, Davey M, Hsu Y C, Kaplanek P, Tong A, Parsons A B, Krogan N, Cagney G, Mai D, Greenblatt J, Boone C, Emili A, Houry W A (2005). Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell , 120(5): 715–727 doi: 10.1016/j.cell.2004.12.024 pmid:15766533
199
Zimmerman J L, Petri W, Meselson M (1983). Accumulation of a specific subset of D. melanogaster heat shock mRNAs in normal development without heat shock. Cell , 32(4): 1161–1170 doi: 10.1016/0092-8674(83)90299-4 pmid:6404558
200
Zügel U, Kaufmann S H (1999). Immune response against heat shock proteins in infectious diseases. Immunobiology , 201(1): 22–35 pmid:10532278