Kinases, representing almost 500 proteins in the human genome, are responsible for catalyzing the phosphorylation reaction of amino acid residues at their targets. As the largest family of kinases, the protein tyrosine kinases (PTKs) have roles in controlling the essential cellular activities, and their deregulation is generally related to pathologic conditions. The recent efforts on identifying their signal transducer or mediator role in cellular signaling revealed the interaction of PTKs with numerous enzymes of different classes, such as Ser/Thr kinases (STKs), glutathione transferases (GSTs), and receptor tyrosine kinases (RTKs). In either regulation or enhancing the signaling, PTKs are determined in close interaction with these enzymes, under specific cellular conditions, such as oxidative stress and inflammation. In this concept, intensive research on thiol metabolizing enzymes recently showed their involvement in the physiologic functions in cellular signaling besides their well known traditional role in antioxidant defense. The shared signaling components between PTK and GST family enzymes will be discussed in depth in this research review to evaluate the results of recent studies important in drug targeting for therapeutic intervention, such as cell viability, migration, differentiation and proliferation.
. Kinases and glutathione transferases: selective and sensitive targeting[J]. Frontiers in Biology, 0, (): 156-169.
Yasemin G. ISGOR, Belgin S. ISGOR. Kinases and glutathione transferases: selective and sensitive targeting. Front Biol, 0, (): 156-169.
Abe J, Takahashi M, Ishida M, Lee J D, Berk B C (1997). c-Src is required for oxidative stress-mediated activation of big mitogen-activated protein kinase 1. J Biol Chem , 272(33): 20389–20394 doi: 10.1074/jbc.272.33.20389 pmid:9252345
2
Adler V, Pincus M R (2004). Effector peptides from glutathione-S-transferase-pi affect the activation of jun by jun-N-terminal kinase. Ann Clin Lab Sci , 34(1): 35–46 pmid:15038666
3
Adler V, Yin Z, Fuchs S Y, Benezra M, Rosario L, Tew K D, Pincus M R, Sardana M, Henderson C J, Wolf C R, Davis R J, Ronai Z (1999a). Regulation of JNK signaling by GSTp. EMBO J , 18(5): 1321–1334 doi: 10.1093/emboj/18.5.1321 pmid:10064598
4
Adler V, Yin Z, Tew K D, Ronai Z (1999b). Role of redox potential and reactive oxygen species in stress signaling. Oncogene , 18(45): 6104–6111 doi: 10.1038/sj.onc.1203128 pmid:10557101
5
Allan J M, Wild C P, Rollinson S, Willett E V, Moorman A V, Dovey G J, Roddam P L, Roman E, Cartwright R A, Morgan G J (2001). Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc Natl Acad Sci USA , 98(20): 11592–11597 doi: 10.1073/pnas.191211198 pmid:11553769
6
Alvarez R H, Kantarjian H M, Cortes J E (2006). The role of Src in solid and hematologic malignancies: development of new-generation Src inhibitors. Cancer , 107(8): 1918–1929 doi: 10.1002/cncr.22215 pmid:16986126
7
Ayd?n D, Isgor B S, Isgor Y G, Olgen S, (2010). Evaluation of Novel Indole-3-Imine-2-On Derivatives As Src Kinase and Mammalian Glutathione S-Transferase Inhibitors. 3rd International Meeting on Pharmacy and Pharmaceutical Sciences. Istanbul, Turkey : 119
8
Baez S, Segura-Aguilar J, Widersten M, Johansson A S, Mannervik B (1997). Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochem J , 324(Pt 1): 25–28 pmid:9164836
9
Ben-Bassat H, Klein B Y (2000). Inhibitors of tyrosine kinases in the treatment of psoriasis. Curr Pharm Des , 6(9): 933–942 doi: 10.2174/1381612003400182 pmid:10828317
10
Berrier A L, Yamada K M (2007). Cell-matrix adhesion. J Cell Physiol , 213(3): 565–573 doi: 10.1002/jcp.21237 pmid:17680633
11
Bjorge J D, Jakymiw A, Fujita D J (2000). Selected glimpses into the activation and function of Src kinase. Oncogene , 19(49): 5620–5635 doi: 10.1038/sj.onc.1203923 pmid:11114743
12
Board P G, Coggan M, Chelvanayagam G, Easteal S, Jermiin L S, Schulte G K, Danley D E, Hoth L R, Griffor M C, Kamath A V, Rosner M H, Chrunyk B A, Perregaux D E, Gabel C A, Geoghegan K F, Pandit J (2000). Identification, characterization, and crystal structure of the Omega class glutathione transferases. J Biol Chem , 275(32): 24798–24806 doi: 10.1074/jbc.M001706200 pmid:10783391
13
Bordeleau F, Galarneau L, Gilbert S, Loranger A, Marceau N (2010). Keratin 8/18 modulation of protein kinase C-mediated integrin-dependent adhesion and migration of liver epithelial cells. Mol Biol Cell , 21(10): 1698–1713 doi: 10.1091/mbc.E09-05-0373 pmid:20357007
14
Carlucci A, Gedressi C, Lignitto L, Nezi L, Villa-Moruzzi E, Avvedimento E V, Gottesman M, Garbi C, Feliciello A (2008). Protein-tyrosine phosphatase PTPD1 regulates focal adhesion kinase autophosphorylation and cell migration. J Biol Chem , 283(16): 10919–10929 doi: 10.1074/jbc.M707248200 pmid:18223254
15
Chiarugi P, Pani G, Giannoni E, Taddei L, Colavitti R, Raugei G, Symons M, Borrello S, Galeotti T, Ramponi G (2003). Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol , 161(5): 933–944 doi: 10.1083/jcb.200211118 pmid:12796479
16
Cohen P (2000). The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem Sci , 25(12): 596–601 doi: 10.1016/S0968-0004(00)01712-6 pmid:11116185
17
Cohen S, Fleischmann R (2010). Kinase inhibitors: a new approach to rheumatoid arthritis treatment. Curr Opin Rheumatol , 22(3): 330–335 doi: 10.1097/BOR.0b013e3283378e6f pmid:20164774
18
Cowan-Jacob S W, Fendrich G, Manley P W, Jahnke W, Fabbro D, Liebetanz J, Meyer T (2005). The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Structure , 13(6): 861–871 doi: 10.1016/j.str.2005.03.012 pmid:15939018
19
Crout C A, Koh L P, Gockerman J P, Moore J O, Decastro C, Long G D, Diehl L, Gasparetto C, Niedzwiecki D, Edwards J, Prosnitz L, Horwitz M, Chute J, Morris A, Davis P, Beaven A, Chao N J, Ali-Osman F, Rizzieri D A (2010). Overcoming drug resistance in mantle cell lymphoma using a combination of dose-dense and intense therapy. Cancer Invest , 28(6): 654–660 doi: 10.3109/07357901003631015 pmid:20521909
20
Desmots F, Rissel M, Gilot D, Lagadic-Gossmann D, Morel F, Guguen-Guillouzo C, Guillouzo A, Loyer P (2002). Pro-inflammatory cytokines tumor necrosis factor alpha and interleukin-6 and survival factor epidermal growth factor positively regulate the murine GSTA4 enzyme in hepatocytes. J Biol Chem , 277(20): 17892–17900 doi: 10.1074/jbc.M112351200 pmid:11884396
21
Di Pietro G, Magno L A, Rios-Santos F (2010). Glutathione S-transferases: an overview in cancer research. Expert Opin Drug Metab Toxicol , 6(2): 153–170 doi: 10.1517/17425250903427980 pmid:20078251
22
Dincer S, Isgor B S, Isgor Y G, Olgen S (2010). Evaluation of Benzimidazole Derivatives as Src Kinase and Mammalian Glutathione S-Transferase Inhibitors. Joint Meeting of 4th International Meeting on Medicinal and Pharmaceutical Chemistry (IMMPC-4) and 6th International Symposium on Pharmaceutical Chemistry (ISPC-6). Ankara, Turkey
23
Eaton D L, Bammler T K (1999). Concise review of the glutathione S-transferases and their significance to toxicology. Toxicol Sci , 49(2): 156–164 doi: 10.1093/toxsci/49.2.156 pmid:10416260
24
Edelman A M, Blumenthal D K, Krebs E G (1987). Protein serine/threonine kinases. Annu Rev Biochem , 56: 567–613 pmid:2956925
25
Frame M C (2002). Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta , 1602(2): 114–130 pmid:12020799
26
Gate L, Majumdar R S, Lunk A, Tew K D (2004). Increased myeloproliferation in glutathione S-transferase pi-deficient mice is associated with a deregulation of JNK and Janus kinase/STAT pathways. J Biol Chem , 279(10): 8608–8616 doi: 10.1074/jbc.M308613200 pmid:14684749
27
Giamas G, Man Y L, Hirner H, Bischof J, Kramer K, Khan K, Ahmed S S, Stebbing J, Knippschild U (2010). Kinases as targets in the treatment of solid tumors. Cell Signal , 22(7): 984–1002 doi: 10.1016/j.cellsig.2010.01.011 pmid:20096351
28
Giannoni E, Buricchi F, Raugei G, Ramponi G, Chiarugi P (2005). Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol , 25(15): 6391–6403 doi: 10.1128/MCB.25.15.6391-6403.2005 pmid:16024778
29
Grahn E, Novotny M, Jakobsson E, Gustafsson A, Grehn L, Olin B, Madsen D, Wahlberg M, Mannervik B, Kleywegt G J (2006). New crystal structures of human glutathione transferase A1-1 shed light on glutathione binding and the conformation of the C-terminal helix. Acta Crystallogr D Biol Crystallogr , 62(Pt 2): 197–207 doi: 10.1107/S0907444905039296 pmid:16421451
30
Griffith D, Parker J P, Marmion C J (2010). Enzyme inhibition as a key target for the development of novel metal-based anti-cancer therapeutics. Anticancer Agents Med Chem , 10(5): 354–370 pmid:20380633
31
Gulick A M, Fahl W E (1995). Forced evolution of glutathione S-transferase to create a more efficient drug detoxication enzyme. Proc Natl Acad Sci USA , 92(18): 8140–8144 doi: 10.1073/pnas.92.18.8140 pmid:7667259
32
Ha C H, Bennett A M, Jin Z G (2008). A novel role of vascular endothelial cadherin in modulating c-Src activation and downstream signaling of vascular endothelial growth factor. J Biol Chem , 283(11): 7261–7270 doi: 10.1074/jbc.M702881200 pmid:18180305
33
Hao Q, Rutherford S A, Low B, Tang H (2006). Suppression of the phosphorylation of receptor tyrosine phosphatase-alpha on the Src-independent site tyrosine 789 by reactive oxygen species. Mol Pharmacol , 69(6): 1938–1944 doi: 10.1124/mol.105.020115 pmid:16505154
34
Harir N, Pecquet C, Kerenyi M, Sonneck K, Kovacic B, Nyga R, Brevet M, Dhennin I, Gouilleux-Gruart V, Beug H, Valent P, Lassoued K, Moriggl R, Gouilleux F (2007). Constitutive activation of Stat5 promotes its cytoplasmic localization and association with PI3-kinase in myeloid leukemias. Blood , 109(4): 1678–1686 doi: 10.1182/blood-2006-01-029918 pmid:17038539
Hayes J D, Pulford D J (1995). The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol , 30(6): 445–600 doi: 10.3109/10409239509083491 pmid:8770536
37
Holm P J, Bhakat P, Jegersch?ld C, Gyobu N, Mitsuoka K, Fujiyoshi Y, Morgenstern R, Hebert H (2006). Structural basis for detoxification and oxidative stress protection in membranes. J Mol Biol , 360(5): 934–945 doi: 10.1016/j.jmb.2006.05.056 pmid:16806268
38
Hosono N, Kishi S, Iho S, Urasaki Y, Yoshida A, Kurooka H, Yokota Y, Ueda T (2010). Glutathione S-transferase M1 inhibits dexamethasone-induced apoptosis in association with the suppression of Bim through dual mechanisms in a lymphoblastic leukemia cell line. Cancer Sci , 101(3): 767–773 doi: 10.1111/j.1349-7006.2009.01432.x pmid:20067466
39
Hsu C H, Chen C L, Hong R L, Chen K L, Lin J F, Cheng A L (2002). Prognostic value of multidrug resistance 1, glutathione-S-transferase-pi and p53 in advanced nasopharyngeal carcinoma treated with systemic chemotherapy. Oncology , 62(4): 305–312 doi: 10.1159/000065061 pmid:12138237
40
Hunter T, Cooper J A (1985). Protein-tyrosine kinases. Annu Rev Biochem , 54: 897–930 pmid:2992362
41
Huveneers S, Danen E H (2009). Adhesion signaling- crosstalk between integrins, Src and Rho. J Cell Sci , 122(Pt 8): 1059–1069 doi: 10.1242/jcs.039446 pmid:19339545
42
Igarashi T, Tomihari N, Ohmori S, Ueno K, Kitagawa H, Satoh T (1986). Comparison of glutathione S-transferases in mouse, guinea pig, rabbit and hamster liver cytosol to those in rat liver. Biochem Int , 13(4): 641–648 pmid:3801038
43
Ingley E (2008). Src family kinases: regulation of their activities, levels and identification of new pathways. Biochim Biophys Acta , 1784(1): 56–65 pmid:17905674
44
Isgor B S, Coruh N, Iscan M (2010a). Soluble glutathione s-transferases in bovine liver: existence of GST T2. J Biol Sci , 10: 667–675
45
Isgor B S, Isgor Y G, Kurt-K?l?c Z, Olgen S (2010b). The Effect of Novel pp60c-src Inhibitors on Mammalian Glutathione S-Transferase Activity. 240th ACS National Meeting & Exposition on “Chemistry of Preventing and Combatting Disease”, Boston, Massachusetts, USA
46
Jope R S, Zhang L, Song L (2000). Peroxynitrite modulates the activation of p38 and extracellular regulated kinases in PC12 cells. Arch Biochem Biophys , 376(2): 365–370 doi: 10.1006/abbi.2000.1728 pmid:10775424
47
Kemble D J, Sun G (2009). Direct and specific inactivation of protein tyrosine kinases in the Src and FGFR families by reversible cysteine oxidation. Proc Natl Acad Sci USA , 106(13): 5070–5075 doi: 10.1073/pnas.0806117106 pmid:19273857
48
Khadaroo R G, He R, Parodo J, Powers K A, Marshall J C, Kapus A, Rotstein O D (2004). The role of the Src family of tyrosine kinases after oxidant-induced lung injury in vivo. Surgery , 136(2): 483–488 doi: 10.1016/j.surg.2004.05.029 pmid:15300219
49
Kilic Z, Sener F, Isgor Y G, Coban T, Olgen S (2009). Investigating Antioxidant and Src Kinase Inhibitory Effects of Aminomethylindole Derivatives. 1st Turkish-Russian Joint Meeting on Organic and Medicinal Chemistry. Antalya, Turkey : 51
50
Kilic-Kurt Z, Isgor Y G, Isgor B S, Olgen S (2010). The Effect Of Novel Indole Derivatives As Inhibitors Of Src Kinase and Mammalian Glutathione S-Transferase. Joint Meeting of 4th International Meeting on Medicinal and Pharmaceutical Chemistry (IMMPC-4) and 6th International Symposium on Pharmaceutical Chemistry (ISPC-6). Ankara, Turkey
51
Kim S G, Lee S J (2007). PI3K, RSK, and mTOR signal networks for the GST gene regulation. Toxicol Sci , 96(2): 206–213 doi: 10.1093/toxsci/kfl175 pmid:17122411
52
Kim S K, Abdelmegeed M A, Novak R F (2006). Identification of the insulin signaling cascade in the regulation of alpha-class glutathione S-transferase expression in primary cultured rat hepatocytes. J Pharmacol Exp Ther , 316(3): 1255–1261 doi: 10.1124/jpet.105.096065 pmid:16293713
53
Kim S K, Novak R F (2007). The role of intracellular signaling in insulin-mediated regulation of drug metabolizing enzyme gene and protein expression. Pharmacol Ther , 113(1): 88–120 doi: 10.1016/j.pharmthera.2006.07.004 pmid:17097148
54
Kim S K, Woodcroft K J, Novak R F (2003). Insulin and glucagon regulation of glutathione S-transferase expression in primary cultured rat hepatocytes. J Pharmacol Exp Ther , 305(1): 353–361 doi: 10.1124/jpet.102.045153 pmid:12649389
55
Kostyuk V A, Potapovich A I (2009). Mechanisms of the suppression of free radical overproduction by antioxidants. Front Biosci (Elite Ed) , 1: 179–188 (Elite Ed) pmid:19482635
56
Kostyuk V A, Potapovich A I, Cesareo E, Brescia S, Guerra L, Valacchi G, Pecorelli A, Deeva I B, Raskovic D, De Luca C, Pastore S, Korkina L G (2010). Dysfunction of glutathione S-transferase leads to excess 4-hydroxy-2-nonenal and H2O2 and impaired cytokine pattern in cultured keratinocytes and blood of vitiligo patients. Antioxid Redox Signal , 13(5): 607–620 doi: 10.1089/ars.2009.2976 pmid:20070240
57
LaPensee E W, Schwemberger S J, LaPensee C R, Bahassi M, Afton S E, Ben-Jonathan N (2009). Prolactin confers resistance against cisplatin in breast cancer cells by activating glutathione-S-transferase. Carcinogenesis , 30(8): 1298–1304 doi: 10.1093/carcin/bgp120 pmid:19443905
58
Li J, Xia Z, Ding J (2005). Thioredoxin-like domain of human kappa class glutathione transferase reveals sequence homology and structure similarity to the theta class enzyme. Protein Sci , 14(9): 2361–2369 doi: 10.1110/ps.051463905 pmid:16081649
59
Lindberg R A, Quinn A M, Hunter T (1992). Dual-specificity protein kinases: will any hydroxyl do? Trends Biochem Sci , 17(3): 114–119 doi: 10.1016/0968-0004(92)90248-8 pmid:1412695
60
Lo H W, Antoun G R, Ali-Osman F (2004). The human glutathione S-transferase P1 protein is phosphorylated and its metabolic function enhanced by the Ser/Thr protein kinases, cAMP-dependent protein kinase and protein kinase C, in glioblastoma cells. Cancer Res , 64(24): 9131–9138 doi: 10.1158/0008-5472.CAN-04-0283 pmid:15604283
61
Lu Y, Yu Q, Liu J H, Zhang J, Wang H, Koul D, McMurray J S, Fang X, Yung W K, Siminovitch K A, Mills G B (2003). Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades. J Biol Chem , 278(41): 40057–40066 doi: 10.1074/jbc.M303621200 pmid:12869565
62
Manal M E T, Hanachi P, Patimah I, Siddig I A, Fauziah O (2007). The effect of neem (Azadirachta indica) leaves extract on alpha-fetoprotein serum concentration, glutathione s-transferase and glutathione peroxidase activity in hepatocarcinogenesis induced rats. Int J Cancer Res , 3: 111–118 doi: 10.3923/ijcr.2007.111.118
63
Manning G, Whyte D B, Martinez R, Hunter T, Sudarsanam S (2002). The protein kinase complement of the human genome. Science , 298(5600): 1912–1934 doi: 10.1126/science.1075762 pmid:12471243
McIlwain C C, Townsend D M, Tew K D (2006). Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene , 25(11): 1639–1648 doi: 10.1038/sj.onc.1209373 pmid:16550164
66
McLachlan R W, Kraemer A, Helwani F M, Kovacs E M, Yap A S (2007). E-cadherin adhesion activates c-Src signaling at cell-cell contacts. Mol Biol Cell , 18(8): 3214–3223 doi: 10.1091/mbc.E06-12-1154 pmid:17553930
67
McLean G W, Carragher N O, Avizienyte E, Evans J, Brunton V G, Frame M C (2005). The role of focal-adhesion kinase in cancer- a new therapeutic opportunity. Nat Rev Cancer , 5(7): 505–515
68
Nordberg J, Arnér E S (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med , 31(11): 1287–1312 doi: 10.1016/S0891-5849(01)00724-9 pmid:11728801
69
Nyga R, Pecquet C, Harir N, Gu H, Dhennin-Duthille I, Régnier A, Gouilleux-Gruart V, Lassoued K, Gouilleux F (2005). Activated STAT5 proteins induce activation of the PI 3-kinase/Akt and Ras/MAPK pathways via the Gab2 scaffolding adapter. Biochem J , 390(Pt 1): 359–366 doi: 10.1042/BJ20041523 pmid:15833084
70
Oakley A J, Lo Bello M, Mazzetti A P, Federici G, Parker M W (1997). The glutathione conjugate of ethacrynic acid can bind to human pi class glutathione transferase P1-1 in two different modes. FEBS Lett , 419(1): 32–36 doi: 10.1016/S0014-5793(97)01424-5 pmid:9426214
71
Okamura T, Singh S, Buolamwini J, Haystead T, Friedman H, Bigner D, Ali-Osman F (2009a). Tyrosine phosphorylation of the human glutathione S-transferase P1 by epidermal growth factor receptor. J Biol Chem , 284(25): 16979–16989 doi: 10.1074/jbc.M808153200 pmid:19254954
72
Okamura T, Singh S, Buolamwini J K, Friedman H S, Bigner D D, Ali-Osman F (2009b). EGF receptor tyrosine kinase mediates a novel pathway of drug resistance in malignant gliomas via tyrosine phosphorylation and functional activation of GST P1. Neuro-oncol , 11(2): 218–218
73
Okutani Y, Kitanaka A, Tanaka T, Kamano H, Ohnishi H, Kubota Y, Ishida T, Takahara J (2001). Src directly tyrosine-phosphorylates STAT5 on its activation site and is involved in erythropoietin-induced signaling pathway. Oncogene , 20(45): 6643–6650 doi: 10.1038/sj.onc.1204807 pmid:11641791
74
Pani G, Giannoni E, Galeotti T, Chiarugi P (2009). Redox-based escape mechanism from death: the cancer lesson. Antioxid Redox Signal , 11(11): 2791–2806 doi: 10.1089/ars.2009.2739 pmid:19686053
75
Patskovsky Y V, Patskovska L N, Listowsky I, Almo S C(2009, Last Update on 24 February, 2009). Human Glutathione S-Transferase M1A–1A Catalyzes Formation of GSH-Metal Complexes. Retrieved 20 June, 2010 , from http://www.pdb.org.
76
Planchon S M, Waite K A, Eng C (2008). The nuclear affairs of PTEN. J Cell Sci , 121(Pt 3): 249–253 doi: 10.1242/jcs.022459 pmid:18216329
77
Playford M P, Schaller M D (2004). The interplay between Src and integrins in normal and tumor biology. Oncogene , 23(48): 7928–7946 doi: 10.1038/sj.onc.1208080 pmid:15489911
78
Polekhina G, Board P G, Blackburn A C, Parker M W (2001). Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity. Biochemistry , 40(6): 1567–1576 doi: 10.1021/bi002249z pmid:11327815
79
Ricono J M, Huang M, Barnes L A, Lau S K, Weis S M, Schlaepfer D D, Hanks S K, Cheresh D A (2009). Specific cross-talk between epidermal growth factor receptor and integrin alphavbeta5 promotes carcinoma cell invasion and metastasis. Cancer Res , 69(4): 1383–1391 doi: 10.1158/0008-5472.CAN-08-3612 pmid:19208836
80
Rodriguez P, Mitton B, Kranias E G (2005). Phosphorylation of glutathione-S-transferase by protein kinase C-alpha implications for affinity-tag purification. Biotechnol Lett , 27(23-24): 1869–1873 doi: 10.1007/s10529-005-3895-y pmid:16328982
81
Rucci N, Susa M, Teti A (2008). Inhibition of protein kinase c-Src as a therapeutic approach for cancer and bone metastases. Anticancer Agents Med Chem , 8(3): 342–349 doi: 10.2174/187152008783961905 pmid:18393792
82
Schlaepfer D D, Hanks S K, Hunter T, van der Geer P (1994). Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature , 372(6508): 786–791 pmid:7997267
83
Scodelaro Bilbao P, Boland R, Santillán G (2010). ATP modulates transcription factors through P2Y2 and P2Y4 receptors via PKC/MAPKs and PKC/Src pathways in MCF-7 cells. Arch Biochem Biophys , 494(1): 7–14 doi: 10.1016/j.abb.2009.11.002 pmid:19900397
84
Shah O J, Kimball S R, Jefferson L S (2002). The Src-family tyrosine kinase inhibitor PP1 interferes with the activation of ribosomal protein S6 kinases. Biochem J , 366(Pt 1): 57–62 pmid:12014987
85
Singh S, Okamura T, Ali-Osman F (2010). Serine phosphorylation of glutathione S-transferase P1 (GSTP1) by PKCα enhances GSTP1-dependent cisplatin metabolism and resistance in human glioma cells. Biochem Pharmacol , 80(9): 1343–1355 doi: 10.1016/j.bcp.2010.07.019 pmid:20654585
86
Smeyne M, Boyd J, Raviie Shepherd K, Jiao Y, Pond B B, Hatler M, Wolf R, Henderson C, Smeyne R J (2007). GSTpi expression mediates dopaminergic neuron sensitivity in experimental parkinsonism. Proc Natl Acad Sci U S A , 104(6): 1977–1982 doi: 10.1073/pnas.0610978104 pmid:17267597
87
Sun G, Kemble D J (2009). To C or not to C: direct and indirect redox regulation of Src protein tyrosine kinase. Cell Cycle , 8(15): 2353–2355 pmid:19571676
88
Tars K, Larsson A K, Shokeer A, Olin B, Mannervik B, Kleywegt G J (2006). Structural basis of the suppressed catalytic activity of wild-type human glutathione transferase T1-1 compared to its W234R mutant. J Mol Biol , 355(1): 96–105 doi: 10.1016/j.jmb.2005.10.049 pmid:16298388
89
Thomas S M, Brugge J S (1997). Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol , 13(1): 513–609 doi: 10.1146/annurev.cellbio.13.1.513 pmid:9442882
90
Tice D A, Biscardi J S, Nickles A L, Parsons S J (1999). Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc Natl Acad Sci U S A , 96(4): 1415–1420 doi: 10.1073/pnas.96.4.1415 pmid:9990038
91
Townsend D M, Findlay V J, Fazilev F, Ogle M, Fraser J, Saavedra J E, Ji X, Keefer L K, Tew K D (2006). A glutathione S-transferase pi-activated prodrug causes kinase activation concurrent with S-glutathionylation of proteins. Mol Pharmacol , 69(2): 501–508 doi: 10.1124/mol.105.018523 pmid:16288082
92
Townsend D M, He L, Hutchens S, Garrett T E, Pazoles C J, Tew K D (2008). NOV-002, a glutathione disulfide mimetic, as a modulator of cellular redox balance. Cancer Res , 68(8): 2870–2877 doi: 10.1158/0008-5472.CAN-07-5957 pmid:18413755
93
Townsend D M, Shen H, Staros A L, Gaté L, Tew K D (2002). Efficacy of a glutathione S-transferase pi-activated prodrug in platinum-resistant ovarian cancer cells. Mol Cancer Ther , 1(12): 1089–1095 pmid:12481432
94
Uys J D, Manevich Y, Devane L C, He L, Garret T E, Pazoles C J, Tew K D, Townsend D M (2010). Preclinical pharmacokinetic analysis of NOV-002, a glutathione disulfide mimetic. Biomed Pharmacother , 64(7): 493–498 doi: 10.1016/j.biopha.2010.01.003 pmid:20359856
95
Villafania A, Anwar K, Amar S, Chie L, Way D, Chung D L, Adler V, Ronai Z, Brandt-Rauf P W, Yamaizumii Z, Kung H F, Pincus M R (2000). Glutathione-S-Transferase as a selective inhibitor of oncogenic ras-p21-induced mitogenic signaling through blockade of activation of jun by jun-N-terminal kinase. Ann Clin Lab Sci , 30(1): 57–64 pmid:10678584
Waldmann H, Levitzki A (2001). Protein tyrosine kinase inhibitors as therapeutic agents. Bioorganic Chemistry of Biological Signal Transduction , 211: 1–15
98
Waldron R T, Rey O, Zhukova E, Rozengurt E (2004). Oxidative stress induces protein kinase C-mediated activation loop phosphorylation and nuclear redistribution of protein kinase D. J Biol Chem , 279(26): 27482–27493 doi: 10.1074/jbc.M402875200 pmid:15084589
99
Wallez Y, Cand F, Cruzalegui F, Wernstedt C, Souchelnytskyi S, Vilgrain I, Huber P (2007). Src kinase phosphorylates vascular endothelial-cadherin in response to vascular endothelial growth factor: identification of tyrosine 685 as the unique target site. Oncogene , 26(7): 1067–1077 doi: 10.1038/sj.onc.1209855 pmid:16909109
100
Wallez Y, Vilgrain I, Huber P (2006). Angiogenesis: the VE-cadherin switch. Trends Cardiovasc Med , 16(2): 55–59 doi: 10.1016/j.tcm.2005.11.008 pmid:16473763