1. State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100039, China
Placenta, a temporary organ first formed during the development of a new life is essential for the survival and growth of the fetus in eutherian mammals. It serves as an interface for the exchange of nutrients, gases and wastes between the maternal and fetal compartments. During the past decades, studies employing gene-engineered mouse mutants have revealed a wide range of signaling molecules governing the trophoblast development and function during placentation under various pathophysiological conditions. Here, we summarize the recent progress with particular respect to the involvement of developmental genes during placentation.
Trophectoderm and its derived extraembryonic ectoderm
Failure of chorioallantoic fusion; Defect of fetal vascular invasion into chorion
Arman et al., 1998; Xu et al., 1998
PLCδ1/PLCδ3
Placenta trophoblast
Reduced vascularization, proliferation and aberrant apoptosis in labyrinth area
Nakamura et al., 2005
Pkbα (Akt1)
Trophoblast giant cell, spongiotrophoblast, labyrinth, the endothelium of fetal capillaries
Small layer of labyrinth and spongiotrophoblast; marked reduction of glycogen-containing cells in spongiotrophoblast; disordered fetal vasculature with fewer vessels
Yang et al., 2003
Gab1
Labyrinth trophoblast cells and spongiotrophoblast Cells
Severely reduced number of trophoblast cells in the labyrinth region
Itoh et al., 2000
Grb2
Unknown
Defects in chorioallantoic fusion, smaller labyrinth structures
Disorganized spongiotrophoblastand labyrinth trophoblast layers, incomplete embryonic vasculature in labyrinth
Qian et al., 2000
B-Raf
Unknown
Discontinuous spongiotrophoblast and giant trophoblast layers, underdeveloped labyrinth layer (hypocellular areas filled with stroma in labyrinth)
Galabova-Kovacs et al., 2006
C-raf-1
Unknown
Reduced size of spongiotrophoblast and the labyrinth layer, poorly vascularized and abundant mesenchymal cells-contained labyrinth layer
Mikula et al., 2001
Mekk3 (Map3k3)
Unknown
Reduced embryonic blood vessels in the labyrinth layer
Yang et al., 2000
Mekk4 (Map3k4)
Labyrinth, spongiotrophoblast, and giant cell layers
A point mutation exhibited dysregulated placental development with increased trophoblast invasion.
Abell et al., 2009
Mek1 (Map2k1)
Labyrinth layer
Less defined spongiotrophoblast layer, more compact labyrinthine region with fewer blood vessels
Giroux et al., 1999; Bissonauth et al., 2006; Nadeau et al., 2009
Erk2 (Mapk1)
Trophoectoderm and its derivatives including ectoplacental cone, extraembryonic ectoderm and giant cells
Failure to form the ectoplacental cone and extraembryonic ectoderm in ERK2 (Ex3) mutants; Thinner labyrinthine layers, few fetal blood vessels penetrating into the labyrinthine layer in Erk2 (Ex2) mutants.
Hatano et al., 2003; Saba-El-Leil et al., 2003
Erk5 (Mapk7)
Labyrinth layer
Thinner labyrinth layer, less intermixing between embryonic and maternal blood vessels in the labyrinthine region, more apoptosis.
Regan et al., 2002; Sohn et al., 2002; Yan et al., 2003
FRS2α
Extraembryonic ectoderm
Trophoblast stem cells failed to maintenance of self-renewing.
Melillo et al., 2001; Gotoh et al., 2005
p38α (Mapk14)
Diploid trophoblast of the placenta, including the labyrinth, yolk sac
Thinner labyrinth layer, greatly reduced spongiotrophoblast,decreased vascular network within the labyrinth layer
Adams et al., 2000; Mudgett et al., 2000
Shp2 (Ptpn11)
Spongiotrophoblast and labyrinth trophoblast (unpublished data)
Diminished numbers of trophoblast giant cells, and failure to yield trophoblast stem (TS) cell lines.
Yang et al., 2006
Tab.1
Fig.2
Gene
Expression in placentas
Placenta phenotype of mutant mice
Reference
Wnt2
Allantois, fetal blood vessels in the labyrinth (unpublished data)
Defects of vascularization in placenta
Monkley et al., 1996
Wnt7b
Chorionic trophoblast
Defects in chorioallantoic attachment and cell organization in chorionic plate
Parr et al., 2001
Fzd5
Labyrinth trophoblast, yolk sac
Small labyrinth, failure of fetal vascular invasion into the chorion, defects in yolk sac angiogenesis
Ishikawa et al., 2001
Tcf1/Lef1
Placenta trophoblast (unpublished data)
Unknown defect in placenta
Galceran et al., 1999
Tab.2
Gene
Expression in placentas
Placenta phenotype of mutant mice
Reference
Jagged 1
Unknown
Died at E10.0 due to the vascular defects.Large blood vessels were not present in the yolk sac.
Xue et al., 1999
Delta-like 4
Trophoblast giant cells, umbilical and vitelline arteries
At E10.5 no viable null embryos were found. Yolk sac defects. Haploid insufficiency leads embryonic lethality. Vascular remodeling defects in the yolk sacs and the major central placenta arteries undergo degeneration and regression.
Duarte et al., 2004; Gale et al., 2004
Notch 1
Vascular endothelial cells in labyrinth, maternal blood sinus (unpublished data)
Single knockout null embryos died before E11.5, but had no placenta defects. Conditional knockout (with tie2-cre) had yolk sac vascular remodeling failure and placenta blood vessels labyrinth invasion defects.
Swiatek et al., 1994; Limbourg et al., 2005
Notch 2
Allantois, spongiotrophoblast, giant cells, endovascular trophoblasts and mesenchymal derivatives in labyrinth
Delayed entry of maternal blood into the mutant placenta and poor blood sinus formation at later stages.
Nakayama et al., 1997; Hamada et al., 1999; Hamada et al., 2007
Notch 4
Vascular endothelial cells in labyrinth
Single knockout exhibited no obvious mutant phenotype. Notch 1 and Notch 4 double knockout had pale yolk sacs, lacking obvious blood vessels and failture of mutant endothelial cells to invade the labyrinth.
Krebs et al., 2000
RBP-J kappa
Mesodermal derivatives in labyrinth
Died before E10.0 due to the deficiency of chorioallantoic fusion.
Oka et al., 1995; Krebs et al., 2004
Hey1 and Hey2
Blood vessels of the allantois and chorionic plate
Complete lack of embryonic blood vessels in the placental labyrinth.
Fischer et al., 2004
Mash2
Ectoplacental cone, chorion and their derivatives in the placenta
Died at E10.0 because of the placental defects. No spongiotrophoblast cells and their precursors, more trophoblast giant cells.
Guillemot et al., 1994; Tanaka et al., 1997
Tab.3
Gene
Expression in placentas
Placenta phenotype of mutant mice
Reference
TGF-β1
Extraembryonic blood islands of the yolk sac, mesodermal cells of the allantois
About 50% homozygous and 25% heterozygous embryos died around E10.5. The yolk sac vasculature defects.
Akhurst et al., 1990; Dickson et al., 1995
Nodal
Spongiotrophoblasts
Insertional null mutant loss of the diploid spongiotrophoblasts and labyrinth, and had more giant cells. Hypomorphic mutation results in an expansion of the giant cell and spongiotrophoblast layers, and a decrease in labyrinthine development.
Iannaccone et al., 1992; Ma et al., 2001
Bmp2
Extraembryonic mesoderm, allantois.
Died at midgestation. Allantois had delayed development.
Winnier et al., 1995
Bmp4
Allantois
Died between E6.5-E9.5. Yolk sac defects, reduced blood islands and no allantois.
Zhang and Bradley, 1996; Lawson et al., 1999
Bmp5and 7
Allantois, endoderm of the visceral yolk sac.
Died at E10.5. Allantois developed abnormal. Failure of chorioallantoic fusion.
Solloway and Robertson, 1999
Bmp8b
Extraembryonic ectoderm.
Short allantois, no allantois in some more severe mutant.
Lawler et al., 1994; Oshima et al., 1996
TGF-β receptorType II
Extraembryonic blood islands of the yolk sac, mesodermal cells of the allantois
Homozygous embryos died around E10.5. Yolk sac hematopoiesis and vasculogenesis.
Ying et al., 2000
Alk1
endothelial cells of fetal vessels
Dilated and fused chorioallantoic vessels.
Lechleider et al., 2001; Tremblay et al., 2001
Smad 1
Yolk sac, allantois
Mutant embryos died around E9.5 due to the defects of allantois formation. The abnormal allantois failed to fuse to the chorion.
Hong et al., 2007
Smad 5
Allantois, yolk sac
Homozygous mutant died between E9.5 and E11.5. Allantois lacked a well-organized vasculature. Allantois could fuse to the chorion, but was not well-elongated.
Chang et al., 1999
P300
Unknown
Null embryos died between E9.0 and E11.5. The yolk sac was poorly vascularized.
Yao et al., 1998
CBP
Unknown
Homozygous embryos died between E9.5 and E10.5. Decreased in erythroid cells and colony-forming cells in the yolk sac.
Oike et al., 1999
Tab.4
1
Abell A N, Granger D A, Johnson N L, Vincent-Jordan N, Dibble C F, Johnson G L (2009). Trophoblast stem cell maintenance by fibroblast growth factor 4 requires MEKK4 activation of Jun N-terminal kinase. Mol Cell Biol , 29(10): 2748–2761 doi: 10.1128/MCB.01391-08 pmid:19289495
2
Adams R H, Porras A, Alonso G, Jones M, Vintersten K, Panelli S, Valladares A, Perez L, Klein R, Nebreda A R (2000). Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell , 6(1): 109–116 doi: 10.1016/S1097-2765(00)00012-5 pmid:10949032
3
Adamson S L, Lu Y, Whiteley K J, Holmyard D, Hemberger M, Pfarrer C, Cross J C (2002). Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. Dev Biol , 250(2): 358–373 pmid:12376109
4
Akhurst R J, Lehnert S A, Faissner A, Duffie E (1990). TGF beta in murine morphogenetic processes: the early embryo and cardiogenesis. Development , 108(4): 645–656 pmid:1696875
5
Arman E, Haffner-Krausz R, Chen Y, Heath J K, Lonai P (1998). Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc Natl Acad Sci U S A , 95(9): 5082–5087 doi: 10.1073/pnas.95.9.5082 pmid:9560232
6
Armelin H A (1973). Pituitary extracts and steroid hormones in the control of 3T3 cell growth. Proc Natl Acad Sci U S A , 70(9): 2702–2706 doi: 10.1073/pnas.70.9.2702 pmid:4354860
7
Bafico A, Liu G, Yaniv A, Gazit A, Aaronson S A (2001). Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol , 3(7): 683–686 doi: 10.1038/35083081 pmid:11433302
8
Baird A (1994). Fibroblast growth factors: activities and significance of non-neurotrophin neurotrophic growth factors. Curr Opin Neurobiol , 4(1): 78–86 doi: 10.1016/0959-4388(94)90035-3 pmid:8173328
9
Basilico C, Moscatelli D (1992). The FGF family of growth factors and oncogenes. Adv Cancer Res , 59: 115–165 doi: 10.1016/S0065-230X(08)60305-X pmid:1381547
10
Beenken A, Mohammadi M (2009). The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov , 8(3): 235–253 doi: 10.1038/nrd2792 pmid:19247306
11
Bhanot P, Brink M, Samos C H, Hsieh J C, Wang Y, Macke J P, Andrew D, Nathans J, Nusse R (1996). A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature , 382(6588): 225–230 doi: 10.1038/382225a0 pmid:8717036
12
Bissonauth V, Roy S, Gravel M, Guillemette S, Charron J (2006). Requirement for Map2k1 (Mek1) in extra-embryonic ectoderm during placentogenesis. Development , 133(17): 3429–3440 doi: 10.1242/dev.02526 pmid:16887817
13
B?ttcher R T, Niehrs C (2005). Fibroblast growth factor signaling during early vertebrate development. Endocr Rev , 26(1): 63–77 doi: 10.1210/er.2003-0040 pmid:15689573
Chang H, Brown C W, Matzuk M M (2002). Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev , 23(6): 787–823 doi: 10.1210/er.2002-0003 pmid:12466190
16
Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk M M, Zwijsen A (1999). Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development , 126(8): 1631–1642 pmid:10079226
17
Coan P M, Ferguson-Smith A C, Burton G J (2005). Ultrastructural changes in the interhaemal membrane and junctional zone of the murine chorioallantoic placenta across gestation. J Anat , 207(6): 783–796 doi: 10.1111/j.1469-7580.2005.00488.x pmid:16367805
18
Copp A J (1979). Interaction between inner cell mass and trophectoderm of the mouse blastocyst. II. The fate of the polar trophectoderm. J Embryol Exp Morphol , 51: 109–120 pmid:479740
19
Cross J C, Simmons D G, Watson E D (2003). Chorioallantoic morphogenesis and formation of the placental villous tree. Ann N Y Acad Sci , 995(1): 84–93 doi: 10.1111/j.1749-6632.2003.tb03212.x pmid:12814941
20
Cross J C, Werb Z, Fisher S J (1994). Implantation and the placenta: key pieces of the development puzzle. Science , 266(5190): 1508–1518 doi: 7985020" target="_blank">10.1126/science. pmid:7985020 pmid:7985020
21
Dey S K (2005). Reproductive biology: fatty link to fertility. Nature , 435(7038): 34–35 doi: 10.1038/435034a pmid:15875005
22
Dickson M C, Martin J S, Cousins F M, Kulkarni A B, Karlsson S, Akhurst R J (1995). Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development , 121(6): 1845–1854 pmid:7600998
23
Downs K M (2006). In vitro methods for studying vascularization of the murine allantois and allantoic union with the chorion. Methods Mol Med , 121: 241–272 pmid:16251748
24
Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E, Costa L, Henrique D, Rossant J (2004). Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev , 18(20): 2474–2478 doi: 10.1101/gad.1239004 pmid:15466159
25
Ehebauer M, Hayward P, Arias A M (2006). Notch, a universal arbiter of cell fate decisions. Science , 314(5804): 1414–1415 doi: 10.1126/science.1134042 pmid:17138893
26
Eriksson A E, Cousens L S, Weaver L H, Matthews B W (1991). Three-dimensional structure of human basic fibroblast growth factor. Proc Natl Acad Sci U S A , 88(8): 3441–3445 doi: 10.1073/pnas.88.8.3441 pmid:1707542
27
Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M (2004). The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev , 18(8): 901–911 doi: 10.1101/gad.291004 pmid:15107403
28
Fuerer C, Nusse R, Ten Berge D (2008). Wnt signalling in development and disease. Max Delbrück Center for Molecular Medicine meeting on Wnt signaling in Development and Disease. EMBO Rep , 9(2): 134–138 doi: 10.1038/sj.embor.7401159 pmid:18188179
29
Galabova-Kovacs G, Matzen D, Piazzolla D, Meissl K, Plyushch T, Chen A P, Silva A, Baccarini M (2006). Essential role of B-Raf in ERK activation during extraembryonic development. Proc Natl Acad Sci U S A , 103(5): 1325–1330 doi: 10.1073/pnas.0507399103 pmid:16432225
30
Galceran J, Fari?as I, Depew M J, Clevers H, Grosschedl R (1999). Wnt3a-/-—like phenotype and limb deficiency in Lef1-/-Tcf1-/- mice. Genes Dev , 13(6): 709–717 doi: 10.1101/gad.13.6.709 pmid:10090727
31
Gale N W, Dominguez M G, Noguera I, Pan L, Hughes V, Valenzuela D M, Murphy A J, Adams N C, Lin H C, Holash J, Thurston G, Yancopoulos G D (2004). Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci U S A , 101(45): 15949–15954 doi: 10.1073/pnas.0407290101 pmid:15520367
32
Gasperowicz M, Otto F (2008). The notch signalling pathway in the development of the mouse placenta. Placenta , 29(8): 651–659 doi: 10.1016/j.placenta.2008.06.004 pmid:18603295
33
Giroux S, Tremblay M, Bernard D, Cardin-Girard J F, Aubry S, Larouche L, Rousseau S, Huot J, Landry J, Jeannotte L, Charron J (1999). Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr Biol , 9(7): 369–372 doi: 10.1016/S0960-9822(99)80164-X pmid:10209122
34
Glinka A, Wu W, Delius H, Monaghan A P, Blumenstock C, Niehrs C (1998). Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature , 391(6665): 357–362 doi: 10.1038/34848 pmid:9450748
35
Gordon M D, Nusse R (2006). Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem , 281(32): 22429–22433 doi: 10.1074/jbc.R600015200 pmid:16793760
36
Gospodarowicz D (1974). Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature , 249(453): 123–127 doi: 10.1038/249123a0 pmid:4364816
37
Gotoh N, Manova K, Tanaka S, Murohashi M, Hadari Y, Lee A, Hamada Y, Hiroe T, Ito M, Kurihara T, Nakazato H, Shibuya M, Lax I, Lacy E, Schlessinger J (2005). The docking protein FRS2alpha is an essential component of multiple fibroblast growth factor responses during early mouse development. Mol Cell Biol , 25(10): 4105–4116 doi: 10.1128/MCB.25.10.4105-4116.2005 pmid:15870281
38
Gridley T (2007). Notch signaling in vascular development and physiology. Development , 134(15): 2709–2718 doi: 10.1242/dev.004184 pmid:17611219
39
Grigoryan T, Wend P, Klaus A, Birchmeier W (2008). Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev , 22(17): 2308–2341 doi: 10.1101/gad.1686208 pmid:18765787
40
Guillemot F, Nagy A, Auerbach A, Rossant J, Joyner A L (1994). Essential role of Mash-2 in extraembryonic development. Nature , 371(6495): 333–336 doi: 10.1038/371333a0 pmid:8090202
41
Gurtner G C, Davis V, Li H, McCoy M J, Sharpe A, Cybulsky M I (1995). Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev , 9(1): 1–14 doi: 10.1101/gad.9.1.1 pmid:7530222
42
Haffner-Krausz R, Gorivodsky M, Chen Y, Lonai P (1999). Expression of Fgfr2 in the early mouse embryo indicates its involvement in preimplantation development. Mech Dev , 85(1-2): 167–172 doi: 10.1016/S0925-4773(99)00082-9 pmid:10415357
43
Hamada Y, Hiroe T, Suzuki Y, Oda M, Tsujimoto Y, Coleman J R, Tanaka S (2007). Notch2 is required for formation of the placental circulatory system, but not for cell-type specification in the developing mouse placenta. Differentiation , 75(3): 268–278 doi: 10.1111/j.1432-0436.2006.00137.x pmid:17359302
44
Hamada Y, Kadokawa Y, Okabe M, Ikawa M, Coleman J R, Tsujimoto Y (1999). Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development , 126(15): 3415–3424 pmid:10393120
45
Hatano N, Mori Y, Oh-hora M, Kosugi A, Fujikawa T, Nakai N, Niwa H, Miyazaki J, Hamaoka T, Ogata M (2003). Essential role for ERK2 mitogen-activated protein kinase in placental development. Genes Cells , 8(11): 847–856 doi: 10.1046/j.1365-2443.2003.00680.x pmid:14622137
Hong K H, Seki T, Oh S P (2007). Activin receptor-like kinase 1 is essential for placental vascular development in mice. Lab Invest , 87(7): 670–679 doi: 10.1038/labinvest.3700560 pmid:17530030
48
Huang H, He X (2008). Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol , 20(2): 119–125 doi: 10.1016/j.ceb.2008.01.009 pmid:18339531
49
Huang H C, Klein P S (2004). Interactions between BMP and Wnt signaling pathways in mammalian cancers. Cancer Biol Ther , 3(7): 676–678 doi: 10.4161/cbt.3.7.1026 pmid:15280667
Iannaccone P M, Zhou X, Khokha M, Boucher D, Kuehn M R (1992). Insertional mutation of a gene involved in growth regulation of the early mouse embryo. Dev Dyn , 194(3): 198–208 pmid:1467556
52
Inman K E, Downs K M (2007). The murine allantois: emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus. Genesis , 45(5): 237–258 doi: 10.1002/dvg.20281 pmid:17440924
53
Ishikawa T, Tamai Y, Zorn A M, Yoshida H, Seldin M F, Nishikawa S, Taketo M M (2001). Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development , 128(1): 25–33 pmid:11092808
54
Itoh M, Yoshida Y, Nishida K, Narimatsu M, Hibi M, Hirano T (2000). Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. Mol Cell Biol , 20(10): 3695–3704 doi: 10.1128/MCB.20.10.3695-3704.2000 pmid:10779359
55
Johnson D E, Williams L T (1993). Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res , 60: 1–41 doi: 10.1016/S0065-230X(08)60821-0 pmid:8417497
56
Jones R L, Stoikos C, Findlay J K, Salamonsen L A (2006). TGF-beta superfamily expression and actions in the endometrium and placenta. Reproduction , 132(2): 217–232 doi: 10.1530/rep.1.01076 pmid:16885531
57
Krebs L T, Shutter J R, Tanigaki K, Honjo T, Stark K L, Gridley T (2004). Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev , 18(20): 2469–2473 doi: 10.1101/gad.1239204 pmid:15466160
58
Krebs L T, Xue Y, Norton C R, Shutter J R, Maguire M, Sundberg J P, Gallahan D, Closson V, Kitajewski J, Callahan R, Smith G H, Stark K L, Gridley T (2000). Notch signaling is essential for vascular morphogenesis in mice. Genes Dev , 14(11): 1343–1352 pmid:10837027
59
Kühl M, Sheldahl L C, Park M, Miller J R, Moon R T (2000). The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet , 16(7): 279–283 doi: 10.1016/S0168-9525(00)02028-X pmid:10858654
60
Kwee L, Baldwin H S, Shen H M, Stewart C L, Buck C, Buck C A, Labow M A (1995). Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development , 121(2): 489–503 pmid:7539357
61
Lawler S, Candia A F, Ebner R, Shum L, Lopez A R, Moses H L, Wright C V, Derynck R (1994). The murine type II TGF-beta receptor has a coincident embryonic expression and binding preference for TGF-beta 1. Development , 120(1): 165–175 pmid:8119124
62
Lawson K A, Dunn N R, Roelen B A, Zeinstra L M, Davis A M, Wright C V, Korving J P, Hogan B L (1999). Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev , 13(4): 424–436 doi: 10.1101/gad.13.4.424 pmid:10049358
63
Lechleider R J, Ryan J L, Garrett L, Eng C, Deng C, Wynshaw-Boris A, Roberts A B (2001). Targeted mutagenesis of Smad1 reveals an essential role in chorioallantoic fusion. Dev Biol , 240(1): 157–167 doi: 10.1006/dbio.2001.0469 pmid:11784053
64
Lee P L, Johnson D E, Cousens L S, Fried V A, Williams L T (1989). Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science , 245(4913): 57–60 doi: 2544996" target="_blank">10.1126/science. pmid:2544996 pmid:2544996
65
Levine R J, Lam C, Qian C, Yu K F, Maynard S E, Sachs B P, Sibai B M, Epstein F H, Romero R, Thadhani R, Karumanchi S A, the CPEP Study Group (2006). Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med , 355(10): 992–1005 doi: 10.1056/NEJMoa055352 pmid:16957146
66
Limbourg F P, Takeshita K, Radtke F, Bronson R T, Chin M T, Liao J K (2005). Essential role of endothelial Notch1 in angiogenesis. Circulation , 111(14): 1826–1832 doi: 10.1161/01.CIR.0000160870.93058.DD pmid:15809373
67
Ma G T, Soloveva V, Tzeng S J, Lowe L A, Pfendler K C, Iannaccone P M, Kuehn M R, Linzer D I (2001). Nodal regulates trophoblast differentiation and placental development. Dev Biol , 236(1): 124–135 doi: 10.1006/dbio.2001.0334 pmid:11456449
68
Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler B M, Delius H, Hoppe D, Stannek P, Walter C, Glinka A, Niehrs C (2002). Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature , 417(6889): 664–667 doi: 10.1038/nature756 pmid:12050670
69
Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, Niehrs C (2001). LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature , 411(6835): 321–325 doi: 10.1038/35077108 pmid:11357136
70
Melillo R M, Santoro M, Ong S H, Billaud M, Fusco A, Hadari Y R, Schlessinger J, Lax I (2001). Docking protein FRS2 links the protein tyrosine kinase RET and its oncogenic forms with the mitogen-activated protein kinase signaling cascade. Mol Cell Biol , 21(13): 4177–4187 doi: 10.1128/MCB.21.13.4177-4187.2001 pmid:11390647
71
Mikula M, Schreiber M, Husak Z, Kucerova L, Rüth J, Wieser R, Zatloukal K, Beug H, Wagner E F, Baccarini M (2001). Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. EMBO J , 20(8): 1952–1962 doi: 10.1093/emboj/20.8.1952 pmid:11296228
72
Mlodzik M (2002). Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation? Trends Genet , 18(11): 564–571 doi: 10.1016/S0168-9525(02)02770-1 pmid:12414186
73
Monkley S J, Delaney S J, Pennisi D J, Christiansen J H, Wainwright B J (1996). Targeted disruption of the Wnt2 gene results in placentation defects. Development , 122(11): 3343–3353 pmid:8951051
74
Moon R T, Kohn A D, De Ferrari G V, Kaykas A (2004). WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet , 5(9): 691–701 doi: 10.1038/nrg1427 pmid:15372092
75
Mudgett J S, Ding J, Guh-Siesel L, Chartrain N A, Yang L, Gopal S, Shen M M (2000). Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc Natl Acad Sci U S A , 97(19): 10454–10459 doi: 10.1073/pnas.180316397 pmid:10973481
76
Murphy V E, Smith R, Giles W B, Clifton V L (2006). Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocr Rev , 27(2): 141–169 doi: 10.1210/er.2005-0011 pmid:16434511
77
Nadeau V, Guillemette S, Bélanger L F, Jacob O, Roy S, Charron J (2009). Map2k1 and Map2k2 genes contribute to the normal development of syncytiotrophoblasts during placentation. Development , 136(8): 1363–1374 doi: 10.1242/dev.031872 pmid:19304888
78
Nakamura Y, Hamada Y, Fujiwara T, Enomoto H, Hiroe T, Tanaka S, Nose M, Nakahara M, Yoshida N, Takenawa T, Fukami K (2005). Phospholipase C-delta1 and -delta3 are essential in the trophoblast for placental development. Mol Cell Biol , 25(24): 10979–10988 doi: 10.1128/MCB.25.24.10979-10988.2005 pmid:16314520
Natale D R, Hemberger M, Hughes M, Cross J C (2009). Activin promotes differentiation of cultured mouse trophoblast stem cells towards a labyrinth cell fate. Dev Biol , 335(1): 120–131 doi: 10.1016/j.ydbio.2009.08.022 pmid:19716815
81
Natale D R, Starovic M, Cross J C (2006). Phenotypic analysis of the mouse placenta. Methods Mol Med , 121: 275–293 pmid:16251749
82
Nusse R, Varmus H E (1982). Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell , 31(1): 99–109 doi: 10.1016/0092-8674(82)90409-3 pmid:6297757
83
Oike Y, Takakura N, Hata A, Kaname T, Akizuki M, Yamaguchi Y, Yasue H, Araki K, Yamamura K, Suda T (1999). Mice homozygous for a truncated form of CREB-binding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. Blood , 93(9): 2771–2779 pmid:10216070
84
Oka C, Nakano T, Wakeham A, de la Pompa J L, Mori C, Sakai T, Okazaki S, Kawaichi M, Shiota K, Mak T W, Honjo T (1995). Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development , 121(10): 3291–3301 pmid:7588063
85
Ornitz D M, Itoh N (2001). Fibroblast growth factors. Genome Biol, 2(3): 1-12
86
Ornitz D M, Xu J, Colvin J S, McEwen D G, MacArthur C A, Coulier F, Gao G, Goldfarb M (1996). Receptor specificity of the fibroblast growth factor family. J Biol Chem , 271(25): 15292–15297 doi: 10.1074/jbc.271.25.15292 pmid:8663044
87
Oshima M, Oshima H, Taketo M M (1996). TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol , 179(1): 297–302 doi: 10.1006/dbio.1996.0259 pmid:8873772
88
Parr B A, Cornish V A, Cybulsky M I, McMahon A P (2001). Wnt7b regulates placental development in mice. Dev Biol , 237(2): 324–332 doi: 10.1006/dbio.2001.0373 pmid:11543617
89
Peng S, Miao C, Li J, Fan X, Cao Y, Duan E (2006). Dickkopf-1 induced apoptosis in human placental choriocarcinoma is independent of canonical Wnt signaling. Biochem Biophys Res Commun , 350(3): 641–647 doi: 10.1016/j.bbrc.2006.09.087 pmid:17026960
90
Plotnikov A N, Hubbard S R, Schlessinger J, Mohammadi M (2000). Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell , 101(4): 413–424 doi: 10.1016/S0092-8674(00)80851-X pmid:10830168
91
Polakis P (2000). Wnt signaling and cancer. Genes Dev , 14(15): 1837–1851 pmid:10921899
92
Pollheimer J, Knofler M (2005). Signalling pathways regulating the invasive differentiation of human trophoblasts: a review. Placenta , 26 (Suppl A): S21–30
93
Pollheimer J, Loregger T, Sonderegger S, Saleh L, Bauer S, Bilban M, Czerwenka K, Husslein P, Kn?fler M (2006). Activation of the canonical wingless/T-cell factor signaling pathway promotes invasive differentiation of human trophoblast. Am J Pathol , 168(4): 1134–1147 doi: 10.2353/ajpath.2006.050686 pmid:16565489
94
Powers C J, McLeskey S W, Wellstein A (2000). Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer , 7(3): 165–197 doi: 10.1677/erc.0.0070165 pmid:11021964
95
Qian X, Esteban L, Vass W C, Upadhyaya C, Papageorge A G, Yienger K, Ward J M, Lowy D R, Santos E (2000). The Sos1 and Sos2 Ras-specific exchange factors: differences in placental expression and signaling properties. EMBO J , 19(4): 642–654 doi: 10.1093/emboj/19.4.642 pmid:10675333
96
Rattner A, Hsieh J C, Smallwood P M, Gilbert D J, Copeland N G, Jenkins N A, Nathans J (1997). A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc Natl Acad Sci U S A , 94(7): 2859–2863 doi: 10.1073/pnas.94.7.2859 pmid:9096311
97
Redline R W, Chernicky C L, Tan H Q, Ilan J, Ilan J (1993). Differential expression of insulin-like growth factor-II in specific regions of the late (post day 9.5) murine placenta. Mol Reprod Dev , 36(2): 121–129 doi: 10.1002/mrd.1080360202 pmid:8257562
98
Regan C P, Li W, Boucher D M, Spatz S, Su M S, Kuida K (2002). Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Proc Natl Acad Sci U S A , 99(14): 9248–9253 doi: 10.1073/pnas.142293999 pmid:12093914
99
Robinson M L, MacMillan-Crow L A, Thompson J A, Overbeek P A (1995). Expression of a truncated FGF receptor results in defective lens development in transgenic mice. Development , 121(12): 3959–3967 pmid:8575296
100
Roca C, Adams R H (2007). Regulation of vascular morphogenesis by Notch signaling. Genes Dev , 21(20): 2511–2524 doi: 10.1101/gad.1589207 pmid:17938237
Saba-El-Leil M K, Vella F D, Vernay B, Voisin L, Chen L, Labrecque N, Ang S L, Meloche S (2003). An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep , 4(10): 964–968 doi: 10.1038/sj.embor.embor939 pmid:14502223
103
Saxton T M, Cheng A M, Ong S H, Lu Y, Sakai R, Cross J C, Pawson T (2001). Gene dosage-dependent functions for phosphotyrosine-Grb2 signaling during mammalian tissue morphogenesis. Curr Biol , 11(9): 662–670 doi: 10.1016/S0960-9822(01)00198-1 pmid:11369229
Scifres C M, Nelson D M (2009). Intrauterine growth restriction, human placental development and trophoblast cell death. J Physiol , 587(Pt 14): 3453–3458 doi: 10.1113/jphysiol.2009.173252 pmid:19451203
106
Sem?nov M V, Tamai K, Brott B K, Kühl M, Sokol S, He X (2001). Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol , 11(12): 951–961 doi: 10.1016/S0960-9822(01)00290-1 pmid:11448771
107
Sleeman M, Fraser J, McDonald M, Yuan S, White D, Grandison P, Kumble K, Watson J D, Murison J G (2001). Identification of a new fibroblast growth factor receptor, FGFR5. Gene , 271(2): 171–182 doi: 10.1016/S0378-1119(01)00518-2 pmid:11418238
108
Sohn S J, Sarvis B K, Cado D, Winoto A (2002). ERK5 MAPK regulates embryonic angiogenesis and acts as a hypoxia-sensitive repressor of vascular endothelial growth factor expression. J Biol Chem , 277(45): 43344–43351 doi: 10.1074/jbc.M207573200 pmid:12221099
109
Solloway M J, Robertson E J (1999). Early embryonic lethality in Bmp5;Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup. Development , 126(8): 1753–1768 pmid:10079236
110
Sonderegger S, Husslein H, Leisser C,Knofler M (2007). Complex expression pattern of Wnt ligands and frizzled receptors in human placenta and its trophoblast subtypes. Placenta , 28 (Suppl A): S97–102
111
Song H, Lim H, Paria B C, Matsumoto H, Swift L L, Morrow J, Bonventre J V, Dey S K (2002). Cytosolic phospholipase A2alpha is crucial [correction of A2alpha deficiency is crucial] for ‘on-time’ embryo implantation that directs subsequent development. Development , 129(12): 2879–2889 pmid:12050136
112
Swiatek P J, Lindsell C E, del Amo F F, Weinmaster G, Gridley T (1994). Notch1 is essential for postimplantation development in mice. Genes Dev , 8(6): 707–719 doi: 10.1101/gad.8.6.707 pmid:7926761
113
Tanaka M, Gertsenstein M, Rossant J, Nagy A (1997). Mash2 acts cell autonomously in mouse spongiotrophoblast development. Dev Biol , 190(1): 55–65 doi: 10.1006/dbio.1997.8685 pmid:9331331
114
Tanaka S, Kunath T, Hadjantonakis A K, Nagy A, Rossant J (1998). Promotion of trophoblast stem cell proliferation by FGF4. Science , 282(5396): 2072–2075 doi: 10.1126/science.282.5396.2072 pmid:9851926
115
Tremblay K D, Dunn N R, Robertson E J (2001). Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development , 128(18): 3609–3621 pmid:11566864
116
Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim Y M, Bdolah Y, Lim K H, Yuan H T, Libermann T A, Stillman I E, Roberts D, D’Amore P A, Epstein F H, Sellke F W, Romero R, Sukhatme V P, Letarte M, Karumanchi S A (2006). Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med , 12(6): 642–649 doi: 10.1038/nm1429 pmid:16751767
117
Wang H, Dey S K (2006). Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet , 7(3): 185–199 doi: 10.1038/nrg1808 pmid:16485018
118
Watson E D, Cross J C (2005). Development of structures and transport functions in the mouse placenta. Physiology (Bethesda) , 20(3): 180–193 doi: 10.1152/physiol.00001.2005 pmid:15888575
119
Wilcox A J, Baird D D, Weinberg C R (1999). Time of implantation of the conceptus and loss of pregnancy. N Engl J Med , 340(23): 1796–1799 doi: 10.1056/NEJM199906103402304 pmid:10362823
120
Willert K, Brown J D, Danenberg E, Duncan A W, Weissman I L, Reya T, Yates J R 3rd, Nusse R (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature , 423(6938): 448–452 doi: 10.1038/nature01611 pmid:12717451
121
Willert K, Jones K A (2006). Wnt signaling: is the party in the nucleus? Genes Dev , 20(11): 1394–1404 doi: 10.1101/gad.1424006 pmid:16751178
122
Winnier G, Blessing M, Labosky P A, Hogan B L (1995). Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev , 9(17): 2105–2116 doi: 10.1101/gad.9.17.2105 pmid:7657163
123
Xie H, Tranguch S, Jia X, Zhang H, Das S K, Dey S K, Kuo C J, Wang H (2008). Inactivation of nuclear Wnt-beta-catenin signaling limits blastocyst competency for implantation. Development , 135(4): 717–727 doi: 10.1242/dev.015339 pmid:18199579
124
Xu X, Weinstein M, Li C, Naski M, Cohen R I, Ornitz D M, Leder P, Deng C (1998). Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development , 125(4): 753–765 pmid:9435295
125
Xue Y, Gao X, Lindsell C E, Norton C R, Chang B, Hicks C, Gendron-Maguire M, Rand E B, Weinmaster G, Gridley T (1999). Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet , 8(5): 723–730 doi: 10.1093/hmg/8.5.723 pmid:10196361
126
Yan L, Carr J, Ashby P R, Murry-Tait V, Thompson C, Arthur J S (2003). Knockout of ERK5 causes multiple defects in placental and embryonic development. BMC Dev Biol , 3(1): 11 doi: 10.1186/1471-213X-3-11 pmid:14675480
127
Yang J, Boerm M, McCarty M, Bucana C, Fidler I J, Zhuang Y, Su B (2000). Mekk3 is essential for early embryonic cardiovascular development. Nat Genet , 24(3): 309–313 doi: 10.1038/73550 pmid:10700190
128
Yang J T, Rayburn H, Hynes R O (1995). Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development , 121(2): 549–560 pmid:7539359
129
Yang W, Klaman L D, Chen B, Araki T, Harada H, Thomas S M, George E L, Neel B G (2006). An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival. Dev Cell , 10(3): 317–327 doi: 10.1016/j.devcel.2006.01.002 pmid:16516835
130
Yang Z Z, Tschopp O, Hemmings-Mieszczak M, Feng J, Brodbeck D, Perentes E, Hemmings B A (2003). Protein kinase B alpha/Akt1 regulates placental development and fetal growth. J Biol Chem , 278(34): 32124–32131 doi: 10.1074/jbc.M302847200 pmid:12783884
131
Yao T P, Oh S P, Fuchs M, Zhou N D, Ch’ng L E, Newsome D, Bronson R T, Li E, Livingston D M, Eckner R (1998). Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell , 93(3): 361–372 doi: 10.1016/S0092-8674(00)81165-4 pmid:9590171
132
Ye X, Hama K, Contos J J, Anliker B, Inoue A, Skinner M K, Suzuki H, Amano T, Kennedy G, Arai H, Aoki J, Chun J (2005). LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature , 435(7038): 104–108 doi: 10.1038/nature03505 pmid:15875025
133
Ying Y, Liu X M, Marble A, Lawson K A, Zhao G Q (2000). Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol , 14(7): 1053–1063 doi: 10.1210/me.14.7.1053 pmid:10894154
134
Zeigler B M, Sugiyama D, Chen M, Guo Y, Downs K M, Speck N A (2006). The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential. Development , 133(21): 4183–4192 doi: 10.1242/dev.02596 pmid:17038514
135
Zhang H, Bradley A (1996). Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development , 122(10): 2977–2986 pmid:8898212
136
Zhu X, Komiya H, Chirino A, Faham S, Fox G M, Arakawa T, Hsu B T, Rees D C (1991). Three-dimensional structures of acidic and basic fibroblast growth factors. Science , 251(4989): 90–93 doi: 10.1126/science.1702556 pmid: 1702556