Novel computational biology methods and their applications to drug discovery
Novel computational biology methods and their applications to drug discovery
Sharangdhar S. PHATAK1,2, Hoang T. TRAN2, Shuxing ZHANG2()
1. School of Biomedical Informatics, The University of Texas Health Science Center, 7000 Fannin Street, Houston, TX 77030, USA; 2. The Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
Computational biology methods are now firmly entrenched in the drug discovery process. These methods focus on modeling and simulations of biological systems to complement and direct conventional experimental approaches. Two important branches of computational biology include protein homology modeling and the computational biophysics method of molecular dynamics. Protein modeling methods attempt to accurately predict three-dimensional (3D) structures of uncrystallized proteins for subsequent structure-based drug design applications. Molecular dynamics methods aim to elucidate the molecular motions of the static representations of crystallized protein structures. In this review we highlight recent novel methodologies in the field of homology modeling and molecular dynamics. Selected drug discovery applications using these methods conclude the review.
. Novel computational biology methods and their applications to drug discovery[J]. Frontiers in Biology, 2011, 6(4): 289-299.
Sharangdhar S. PHATAK, Hoang T. TRAN, Shuxing ZHANG. Novel computational biology methods and their applications to drug discovery. Front Biol, 2011, 6(4): 289-299.
Diaz et al., 2009a, 2009b; Pecic et al., 2010; Kortagere et al., 2011
Dengue virus NS2B/S3
Wichapong et al., 2010
Chemokine receptors
Carter and Tebben, 2009
Tab.1
Fig.3
Application
System
References
Structure-function study
Toll-like receptor homologs
Kubarenko et al., 2007
Alternative ligand poses
Immunophilin FKBP
Fujitani et al., 2005
Alternative ligand poses
HIV-1 reverse transcriptase
Okumura et al., 2010
Receptor pocket flexibility
postsynaptic density-95/Dlg/ZO-1 (PDZ) domains
Gerek and Ozkan, 2010
Membrane-bound proteins
Various (reviews)
Lindahl and Sansom, 2008; Khalili-Araghi et al., 2009
Binding free energy
Immunophilin FKBP
Fujitani et al., 2005
Binding pathways
Imatinib and its targeting kinases c-Kit and Abl.
Yang et al., 2009
Tab.2
Fig.4
1
Allen M P, Tildesley D J (1989). Computer Simulations of Liquids. New York, Oxford University Press
2
Bahar I, Lezon T R, Bakan A, Shrivastava I H (2010). Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Chem Rev , 110(3): 1463–1497 doi: 10.1021/cr900095e pmid:19785456
3
Baker D, Sali A (2001). Protein structure prediction and structural genomics. Science , 294(5540): 93–96 doi: 10.1126/science.1065659 pmid:11588250
4
Baker N A, Sept D, Joseph S, Holst M J, McCammon J A (2001). Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA , 98(18): 10037–10041 doi: 10.1073/pnas.181342398 pmid:11517324
5
Barbosa L C, Garrido S S, Garcia A, Delfino D B, Marchetto R (2010). Function inferences from a molecular structural model of bacterial ParE toxin. Bioinformation , 4(10): 438–440 pmid:20975905
6
Barcellos G B, Pauli I, Caceres R A, Timmers L F, Dias R, de Azevedo W F Jr (2008). Molecular modeling as a tool for drug discovery. Curr Drug Targets , 9(12): 1084–1091 doi: 10.2174/138945008786949388 pmid:19128219
7
Bond P J, Wee C L, Sansom M S (2008). Coarse-grained molecular dynamics simulations of the energetics of helix insertion into a lipid bilayer. Biochemistry , 47(43): 11321–11331 doi: 10.1021/bi800642m pmid:18831536
8
Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2009). Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc , 4(1): 1–13 doi: 10.1038/nprot.2008.197 pmid:19131951
9
Bradley P, Misura K M, Baker D (2005). Toward high-resolution de novo structure prediction for small proteins. Science , 309(5742): 1868–1871 doi: 10.1126/science.1113801 pmid:16166519
10
Brunetti L, Di Stefano M, Ruggieri S, Cimadamore F, Magni G (2010). Homology modeling and deletion mutants of human nicotinamide mononucleotide adenylyltransferase isozyme 2: new insights on structure and function relationship. Protein Sci , 19(12): 2440–2450 doi: 10.1002/pro.526 pmid:20954240
11
Burley S K, Joachimiak A, Montelione G T, Wilson I A (2008). Contributions to the NIH-NIGMS protein structure initiative from the PSI production centers. Structure , 16(1): 5–11 doi: 10.1016/j.str.2007.12.002 pmid:18184575
12
Butler K V, Kalin J, Brochier C, Vistoli G, Langley B, Kozikowski A P (2010). Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J Am Chem Soc , 132(31): 10842–10846 doi: 10.1021/ja102758v pmid:20614936
13
Bystroff C, Krogh A (2008). Hidden Markov Models for prediction of protein features. Methods Mol Biol , 413: 173–198 doi: 10.1007/978-1-59745-574-9_7 pmid:18075166
14
B-Rao C, Subramanian J, Sharma S D (2009). Managing protein flexibility in docking and its applications. Drug Discov Today , 14(7-8): 394–400
15
Carter P H, Tebben A J (2009). Chapter 12. The use of receptor homology modeling to facilitate the design of selective chemokine receptor antagonists. Methods Enzymol , 461: 249–279 doi: 10.1016/S0076-6879(09)05412-3 pmid:19480923
16
Cavasotto C N, Orry A J, Murgolo N J, Czarniecki M F, Kocsi S A, Hawes B E, O’Neill K A, Hine H, Burton M S, Voigt J H, Abagyan R A, Bayne M L, Monsma F J Jr (2008). Discovery of novel chemotypes to a G-protein-coupled receptor through ligand-steered homology modeling and structure-based virtual screening. J Med Chem , 51(3): 581–588 doi: 10.1021/jm070759m pmid:18198821
17
Cavasotto C N, Phatak S S (2009). Homology modeling in drug discovery: current trends and applications. Drug Discov Today , 14(13-14): 676–683 doi: 10.1016/j.drudis.2009.04.006 pmid:19422931
18
Cherezov V, Abola E, Stevens R C (2010). Recent progress in the structure determination of GPCRs, a membrane protein family with high potential as pharmaceutical targets. Methods Mol Biol , 654: 141–168 doi: 10.1007/978-1-60761-762-4_8 pmid:20665265
19
Chopra G, Kalisman N, Levitt M (2010). Consistent refinement of submitted models at CASP using a knowledge-based potential. Proteins , 78(12): 2668–2678 pmid:20589633
20
Colizzi F, Perozzo R, Scapozza L, Recanatini M, Cavalli A (2010). Single-molecule pulling simulations can discern active from inactive enzyme inhibitors. J Am Chem Soc , 132(21): 7361–7371 doi: 10.1021/ja100259r pmid:20462212
21
Cornell W, Nam K (2009). Steroid hormone binding receptors: application of homology modeling, induced fit docking, and molecular dynamics to study structure-function relationships. Curr Top Med Chem , 9(9): 844–853 doi: 10.2174/156802609789207109 pmid:19754398
22
Coumar M S, Chu C Y, Lin C W, Shiao H Y, Ho Y L, Reddy R, Lin W H, Chen C H, Peng Y H, Leou J S, Lien T W, Huang C T, Fang M Y, Wu S H, Wu J S, Chittimalla S K, Song J S, Hsu J T, Wu S Y, Liao C C, Chao Y S, Hsieh H P (2010). Fast-forwarding hit to lead: aurora and epidermal growth factor receptor kinase inhibitor lead identification. J Med Chem , 53(13): 4980–4988 doi: 10.1021/jm1000198 pmid:20550212
23
Cozzetto D, Tramontano A (2008). Advances and pitfalls in protein structure prediction. Curr Protein Pept Sci , 9(6): 567–577 doi: 10.2174/138920308786733958 pmid:19075747
24
Cozzini P, Kellogg G E, Spyrakis F, Abraham D J, Costantino G, Emerson A, Fanelli F, Gohlke H, Kuhn L A, Morris G M, Orozco M, Pertinhez T A, Rizzi M, Sotriffer C A (2008). Target flexibility: an emerging consideration in drug discovery and design. J Med Chem , 51(20): 6237–6255 doi: 10.1021/jm800562d pmid:18785728
25
Daga P R, Patel R Y, Doerksen R J (2010). Template-based protein modeling: recent methodological advances. Curr Top Med Chem , 10(1): 84–94 doi: 10.2174/156802610790232314 pmid:19929829
Das R, Qian B, Raman S, Vernon R, Thompson J, Bradley P, Khare S, Tyka M D, Bhat D, Chivian D, Kim D E, Sheffler W H, Malmstr?m L, Wollacott A M, Wang C, Andre I, Baker D (2007). Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home. Proteins , 69(S8 Suppl 8): 118–128 doi: 10.1002/prot.21636 pmid:17894356
28
Deng Y, Roux B (2009). Computations of standard binding free energies with molecular dynamics simulations. J Phys Chem B , 113(8): 2234–2246 doi: 10.1021/jp807701h pmid:19146384
29
Deschavanne P, Tufféry P (2009). Enhanced protein fold recognition using a structural alphabet. Proteins , 76(1): 129–137 doi: 10.1002/prot.22324 pmid:19089985
30
Dessailly B H, Nair R, Jaroszewski L, Fajardo J E, Kouranov A, Lee D, Fiser A, Godzik A, Rost B, Orengo C (2009). PSI-2: structural genomics to cover protein domain family space. Structure , 17(6): 869–881 doi: 10.1016/j.str.2009.03.015 pmid:19523904
31
Diaz P, Phatak S S, Xu J, Astruc-Diaz F, Cavasotto C N, Naguib M (2009a). 6-Methoxy-N-alkyl isatin acylhydrazone derivatives as a novel series of potent selective cannabinoid receptor 2 inverse agonists: design, synthesis, and binding mode prediction. J Med Chem , 52(2): 433–444 doi: 10.1021/jm801353p pmid:19115816
32
Diaz P, Phatak S S, Xu J, Fronczek F R, Astruc-Diaz F, Thompson C M, Cavasotto C N, Naguib M (2009b). 2,3-Dihydro-1-benzofuran derivatives as a series of potent selective cannabinoid receptor 2 agonists: design, synthesis, and binding mode prediction through ligand-steered modeling. ChemMedChem , 4(10): 1615–1629 doi: 10.1002/cmdc.200900226 pmid:19637157
33
Duan J, Wu J, Cheng Y, Duan R D (2010). Understanding the molecular activity of alkaline sphingomyelinase (NPP7) by computer modeling. Biochemistry , 49(42): 9096–9105 doi: 10.1021/bi101069u pmid:20839774
34
Dunbrack R L Jr (2006). Sequence comparison and protein structure prediction. Curr Opin Struct Biol , 16(3): 374–384 doi: 10.1016/j.sbi.2006.05.006 pmid:16713709
35
Engels K, Beyer C, Suárez Fernández M L, Bender F, Gassel M, Unden G, Marh?fer R J, Mottram J C, Selzer P M (2010). Inhibition of Eimeria tenella CDK-related kinase 2: From target identification to lead compounds. ChemMedChem , 5(8): 1259–1271 doi: 10.1002/cmdc.201000157 pmid:20575139
36
Evers A, Gohlke H, Klebe G (2003). Ligand-supported homology modelling of protein binding-sites using knowledge-based potentials. J Mol Biol , 334(2): 327–345 doi: 10.1016/j.jmb.2003.09.032 pmid:14607122
37
Evers A, Klebe G (2004). Successful virtual screening for a submicromolar antagonist of the neurokinin-1 receptor based on a ligand-supported homology model. J Med Chem , 47(22): 5381–5392 doi: 10.1021/jm0311487 pmid:15481976
38
Fariselli P, Rossi I, Capriotti E, Casadio R (2007). The WWWH of remote homolog detection: the state of the art. Brief Bioinform , 8(2): 78–87 doi: 10.1093/bib/bbl032 pmid:17003074
39
Frenkel D, Smit B (2002). Understanding Molecular Simulations: From Algorithms to Applications. San Diego, Academic Press
40
Fujitani H, Tanida Y, Ito M, Jayachandran G, Snow C D, Shirts M R, Sorin E J, Pande V S (2005). Direct calculation of the binding free energies of FKBP ligands. J Chem Phys , 123(8): 084108 doi: 10.1063/1.1999637 pmid:16164283
41
Ge X, Roux B (2010). Absolute binding free energy calculations of sparsomycin analogs to the bacterial ribosome. J Phys Chem B , 114(29): 9525–9539 doi: 10.1021/jp100579y pmid:20608691
42
Gerek Z N, Ozkan S B (2010). A flexible docking scheme to explore the binding selectivity of PDZ domains. Protein Sci , 19(5): 914–928 pmid:20196074
43
Ginalski K (2006). Comparative modeling for protein structure prediction. Curr Opin Struct Biol , 16(2): 172–177 doi: 10.1016/j.sbi.2006.02.003 pmid:16510277
Grant M A (2009). Protein structure prediction in structure-based ligand design and virtual screening. Comb Chem High Throughput Screen , 12(10): 940–960 doi: 10.2174/138620709789824718 pmid:20025561
46
Gruber C W, Muttenthaler M, Freissmuth M (2010). Ligand-based peptide design and combinatorial peptide libraries to target G protein-coupled receptors. Curr Pharm Des , 16(28): 3071–3088 20687879 doi: 10.2174/138161210793292474
47
Grünberg R, Nilges M, Leckner J (2007). Biskit—a software platform for structural bioinformatics. Bioinformatics , 23(6): 769–770 doi: 10.1093/bioinformatics/btl655 pmid:17237072
48
Hildebrand A, Remmert M, Biegert A, S?ding J (2009). Fast and accurate automatic structure prediction with HHpred. Proteins , 77(S9 Suppl 9): 128–132 doi: 10.1002/prot.22499 pmid:19626712
49
Holford N, Ma S C, Ploeger B A (2010). Clinical trial simulation: a review. Clin Pharmacol Ther , 88(2): 166–182 doi: 10.1038/clpt.2010.114 pmid:20613720
50
Hou T, Wang J, Li Y Y, Wang W (2011). Assessing the performance of the MM/PBSA and MM/GBSA Methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model , 51(1): 69–82
51
Hu H, He L Y, Gong Z, Li N, Lu Y N, Zhai Q W, Liu H, Jiang H L, Zhu W L, Wang H Y (2009). A novel class of antagonists for the FFAs receptor GPR40. Biochem Biophys Res Commun , 390(3): 557–563 doi: 10.1016/j.bbrc.2009.10.004 pmid:19818732
52
Irwin J J, Shoichet B K (2005). ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model , 45(1): 177–182 doi: 10.1021/ci049714+ pmid:15667143
53
Jamieson C, Basten S, Campbell R A, Cumming I A, Gillen K J, Gillespie J, Kazemier B, Kiczun M, Lamont Y, Lyons A J, Maclean J K, Moir E M, Morrow J A, Papakosta M, Rankovic Z, Smith L (2010). A novel series of positive modulators of the AMPA receptor: discovery and structure based hit-to-lead studies. Bioorg Med Chem Lett , 20(19): 5753–5756 doi: 10.1016/j.bmcl.2010.07.138 pmid:20805031
54
Jayalakshmi R, Natarajan R, Vivekanandan M, Natarajan G S (2010). Alignment-free sequence comparison using N-dimensional similarity space. Curr Comput Aided Drug Des , 6(4): 290–296 pmid:20883198
55
Jiao D, Golubkov P A, Darden T A, Ren P (2008). Calculation of protein-ligand binding free energy by using a polarizable potential. Proc Natl Acad Sci USA , 105(17): 6290–6295 doi: 10.1073/pnas.0711686105 pmid:18427113
56
Jiao D, Zhang J, Duke R E, Li G, Schnieders M J, Ren P (2009). Trypsin-ligand binding free energies from explicit and implicit solvent simulations with polarizable potential. J Comput Chem , 30(11): 1701–1711 doi: 10.1002/jcc.21268 pmid:19399779
57
Kannan S, Zacharias M (2010). Application of biasing-potential replica-exchange simulations for loop modeling and refinement of proteins in explicit solvent. Proteins , 78(13): 2809–2819 doi: 10.1002/prot.22796 pmid:20635348
58
Karplus K (2009). SAM-T08, HMM-based protein structure prediction. Nucleic Acids Res, 37(Suppl 2) : W492–W497
59
Kaufmann K W, Lemmon G H, Deluca S L, Sheehan J H, Meiler J (2010). Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry , 49(14): 2987–2998 doi: 10.1021/bi902153g pmid:20235548
60
Khalili-Araghi F, Gumbart J, Wen P C, Sotomayor M, Tajkhorshid E, Schulten K (2009). Molecular dynamics simulations of membrane channels and transporters. Curr Opin Struct Biol , 19(2): 128–137 doi: 10.1016/j.sbi.2009.02.011 pmid:19345092
61
Kikugawa G, Apostolov R, Kamiya N, Taiji M, Himeno R, Nakamura H, Yonezawa Y (2009). Application of MDGRAPE-3, a special purpose board for molecular dynamics simulations, to periodic biomolecular systems. J Comput Chem , 30(1): 110–118 doi: 10.1002/jcc.21035 pmid:18524021
62
Kim D E, Chivian D, Baker D (2004). Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res , 32(Suppl 2): W526–W531
63
Kimura S R, Tebben A J, Langley D R (2008). Expanding GPCR homology model binding sites via a balloon potential: A molecular dynamics refinement approach. Proteins , 71(4): 1919–1929 doi: 10.1002/prot.21906 pmid:18175323
64
Kiran M, Coakley S, Walkinshaw N, McMinn P, Holcombe M (2008). Validation and discovery from computational biology models. Biosystems , 93(1-2): 141–150 doi: 10.1016/j.biosystems.2008.03.010 pmid:18487010
65
Klepeis J L, Lindorff-Larsen K, Dror R O, Shaw D E (2009). Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol , 19(2): 120–127 doi: 10.1016/j.sbi.2009.03.004 pmid:19361980
66
Kortagere S, Cheng S Y, Antonio T, Zhen J, Reith M E, Dutta A K (2011). Interaction of novel hybrid compounds with the D3 dopamine receptor: Site-directed mutagenesis and homology modeling studies. Biochem Pharmacol , 81(1): 157–163 doi: 10.1016/j.bcp.2010.08.026 pmid:20833147
67
Kryshtafovych A, Fidelis K (2009). Protein structure prediction and model quality assessment. Drug Discov Today , 14(7-8): 386–393 doi: 10.1016/j.drudis.2008.11.010 pmid:19100336
68
Kubarenko A, Frank M, Weber A N (2007). Structure-function relationships of Toll-like receptor domains through homology modelling and molecular dynamics. Biochem Soc Trans , 35(Pt 6): 1515–1518 doi: 10.1042/BST0351515 pmid:18031257
69
Kurkcuoglu O, Bates P A (2010). Mechanism of cohesin loading onto chromosomes: a conformational dynamics study. Biophys J , 99(4): 1212–1220 doi: 10.1016/j.bpj.2010.06.006 pmid:20713005
70
Kutzner C, van der Spoel D, Fechner M, Lindahl E, Schmitt U W, de Groot B L, Grubmüller H (2007). Speeding up parallel GROMACS on high-latency networks. J Comput Chem , 28(12): 2075–2084 doi: 10.1002/jcc.20703 pmid:17405124
71
Lampros C, Papaloukas C, Exarchos K, Fotiadis D I, Tsalikakis D (2009). Improving the protein fold recognition accuracy of a reduced state-space Hidden Markov model. Comput Biol Med , 39(10): 907–914 doi: 10.1016/j.compbiomed.2009.07.007 pmid:19664763
72
Larsson P, Wallner B, Lindahl E, Elofsson A (2008). Using multiple templates to improve quality of homology models in automated homology modeling. Protein Sci , 17(6): 990–1002 doi: 10.1110/ps.073344908 pmid:18441233
Leach A R (2001). Molecular Modeling: Principles and Applications. Dorset, Pearson Education Ltd .
75
Lee M M, Bundschuh R, Chan M K (2008). Distant homology detection using a LEngth and STructure-based sequence Alignment Tool (LESTAT). Proteins , 71(3): 1409–1419 doi: 10.1002/prot.21830 pmid:18076050
76
Lin J H, Perryman A L, Schames J R, McCammon J A (2002). Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc , 124(20): 5632–5633 doi: 10.1021/ja0260162 pmid:12010024
77
Lindahl E, Sansom M S (2008). Membrane proteins: molecular dynamics simulations. Curr Opin Struct Biol , 18(4): 425–431 doi: 10.1016/j.sbi.2008.02.003 pmid:18406600
78
Liphardt J, Dumont S, Smith S B, Tinoco I Jr, Bustamante C (2002). Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science , 296(5574): 1832–1835 doi: 10.1126/science.1071152 pmid:12052949
79
Lobley A, Sadowski M I, Jones D T (2009). pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics , 25(14): 1761–1767 doi: 10.1093/bioinformatics/btp302 pmid:19429599
80
Lu G, Zhang S, Fang X (2008). An improved string composition method for sequence comparison. BMC Bioinformatics , 9(Suppl 6): S15 doi: 10.1186/1471-2105-9-S6-S15 pmid:18541050
Marco E, Gago F (2007). Overcoming the inadequacies or limitations of experimental structures as drug targets by using computational modeling tools and molecular dynamics simulations. ChemMedChem , 2(10): 1388–1401 doi: 10.1002/cmdc.200700087 pmid:17806089
83
Marrink S J, Risselada H J, Yefimov S, Tieleman D P, de Vries A H (2007). The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B , 111(27): 7812–7824 doi: 10.1021/jp071097f pmid:17569554
84
Medina-Franco J L, Lopez-Vallejo F, Kuck D, Lyko F (2010). Natural products as DNA methyltransferase inhibitors: a computer-aided discovery approach. Mol Divers , doi: 10.1007/s11030-010-9262-5
85
Michino M, Chen J, Stevens R C, Brooks C L 3rd (2010). FoldGPCR: structure prediction protocol for the transmembrane domain of G protein-coupled receptors from class A. Proteins , 78(10): 2189–2201 doi: 10.1002/prot.22731 pmid:20544957
86
Montelione G T, Szyperski T (2010). Advances in protein NMR provided by the NIGMS Protein Structure Initiative: impact on drug discovery. Curr Opin Drug Discov Devel , 13(3): 335–349 pmid:20443167
87
Mooney C, Pollastri G (2009). Beyond the Twilight Zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information. Proteins , 77(1): 181–190 doi: 10.1002/prot.22429 pmid:19422056
88
Moro S, Deflorian F, Bacilieri M, Spalluto G (2006). Ligand-based homology modeling as attractive tool to inspect GPCR structural plasticity. Curr Pharm Des , 12(17): 2175–2185 doi: 10.2174/138161206777585265 pmid:16796562
89
Morra G, Meli M, Colombo G (2008). Molecular dynamics simulations of proteins and peptides: from folding to drug design. Curr Protein Pept Sci , 9(2): 181–196 doi: 10.2174/138920308783955234 pmid:18393887
90
Mortier J, Frederick R, Ganeff C, Remouchamps C, Talaga P, Pochet L, Wouters J, Piette J, Dejardin E, Masereel B (2010). Pyrazolo[4,3-c]isoquinolines as potential inhibitors of NF-kappaB activation. Biochem Pharmacol , 79(10): 1462–1472 doi: 10.1016/j.bcp.2010.01.007 pmid:20096267
91
Mortier J, Masereel B, Remouchamps C, Ganeff C, Piette J, Frederick R (2010). NF-kappaB inducing kinase (NIK) inhibitors: identification of new scaffolds using virtual screening. Bioorg Med Chem Lett , 20(15): 4515–4520 doi: 10.1016/j.bmcl.2010.06.027 pmid:20580552
92
Muddassar M, Jang J W, Hong S K, Cho Y S, Kim E E, Keum K C, Oh T, Cho S N, Pae A N (2010). Identification of novel antitubercular compounds through hybrid virtual screening approach. Bioorg Med Chem , 18(18): 6914–6921 doi: 10.1016/j.bmc.2010.07.010 pmid:20727773
93
Murumkar P R, Zambre V P, Yadav M R (2010). Development of predictive pharmacophore model for in silico screening, and 3D QSAR CoMFA and CoMSIA studies for lead optimization, for designing of potent tumor necrosis factor alpha converting enzyme inhibitors. J Comput Aided Mol Des , 24(2): 143–156 doi: 10.1007/s10822-010-9322-z pmid:20179991
94
Myler P J, Stacy R, Stewart L, Staker B L, Van Voorhis W C, Varani G, Buchko G W (2009). The Seattle Structural Genomics Center for Infectious Disease (SSGCID). Infect Disord Drug Targets , 9(5): 493–506 doi: 10.2174/187152609789105687 pmid:19594426
95
Neves M A, Sim?es S, Sá e Melo M L (2010). Ligand-guided optimization of CXCR4 homology models for virtual screening using a multiple chemotype approach. J Comput Aided Mol Des , 24(12): 1023–1033 doi: 10.1007/s10822-010-9393-x pmid:20960031
96
Obungu V H, Gelfanova V, Rathnachalam R, Bailey A, Sloan-Lancaster J, Huang L (2009). Determination of the mechanism of action of anti-FasL antibody by epitope mapping and homology modeling. Biochemistry , 48(30): 7251–7260 doi: 10.1021/bi900296g pmid:19588926
97
Odell L R, Howan D, Gordon C P, Robertson M J, Chau N, Mariana A, Whiting A E, Abagyan R, Daniel J A, Gorgani N N, Robinson P J, McCluskey A (2010). The pthaladyns: GTP competitive inhibitors of dynamin I and II GTPase derived from virtual screening. J Med Chem , 53(14): 5267–5280 doi: 10.1021/jm100442u pmid:20575553
98
Ogata K, Isomura T, Kawata S, Yamashita H, Kubodera H, Wodak S J (2010). Lead generation and optimization based on protein-ligand complementarity. Molecules , 15(6): 4382–4400 doi: 10.3390/molecules15064382 pmid:20657448
99
Okimoto N, Futatsugi N, Fuji H, Suenaga A, Morimoto G, Yanai R, Ohno Y, Narumi T, Taiji M (2010). High-performance drug discovery: Computational screening by combining docking and molecular dynamics simulations. PLoS Comp Bio , 5(10): e1000528
100
Okumura H, Gallicchio E, Levy R M (2010). Conformational populations of ligand-sized molecules by replica exchange molecular dynamics and temperature reweighting. J Comput Chem , 31(7): 1357–1367 pmid:19882731
101
Ostrov D A, Magis A T, Wronski T J, Chan E K, Toro E J, Donatelli R E, Sajek K, Haroun I N, Nagib M I, Piedrahita A, Harris A, Holliday L S (2009). Identification of enoxacin as an inhibitor of osteoclast formation and bone resorption by structure-based virtual screening. J Med Chem , 52(16): 5144–5151 doi: 10.1021/jm900277z pmid:19630402
102
Pandit S A, Scott H L (2009). Multiscale simulations of heterogeneous model membranes. Biochim Biophys Acta , 1788(1): 136–148 doi: 10.1016/j.bbamem.2008.09.004 pmid:18848917
103
Pecic S, Makkar P, Chaudhary S, Reddy B V, Navarro H A, Harding W W (2010). Affinity of aporphines for the human 5-HT2A receptor: insights from homology modeling and molecular docking studies. Bioorg Med Chem , 18(15): 5562–5575 doi: 10.1016/j.bmc.2010.06.043 pmid:20621490
Phatak S S, Clifford C S, (2009). High-throughput and in silico screening in drug discovery. Exp. Opn. Drug Disc , 4(9): 947–959 doi: 10.1517/17460440903190961
106
Phatak S S, Gatica E A, Cavasotto C N (2010). Ligand-steered modeling and docking: a benchmarking study in class a g-protein-coupled receptors. J Chem Inf Model , 50(12): 2119–2128 doi: 10.1021/ci100285f pmid:21080692
107
Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kalé L, Schulten K (2005). Scalable molecular dynamics with NAMD. J Comput Chem , 26(16): 1781–1802 doi: 10.1002/jcc.20289 pmid:16222654
108
Postigo M P, Guido R V, Oliva G, Castilho M S, da R Pitta I, de Albuquerque J F, Andricopulo A D (2010). Discovery of new inhibitors of Schistosoma mansoni PNP by pharmacophore-based virtual screening. J Chem Inf Model , 50(9): 1693–1705 20695479 doi: 10.1021/ci100128k
109
Radestock S, Weil T, Renner S (2008). Homology model-based virtual screening for GPCR ligands using docking and target-biased scoring. J Chem Inf Model , 48(5): 1104–1117 doi: 10.1021/ci8000265 pmid:18442221
110
Rai B K, Tawa G J, Katz A H, Humblet C (2010). Modeling G protein-coupled receptors for structure-based drug discovery using low-frequency normal modes for refinement of homology models: application to H3 antagonists. Proteins , 78(2): 457–473 doi: 10.1002/prot.22571 pmid:19787776
111
Rajman I (2008). PK/PD modelling and simulations: utility in drug development. Drug Discov Today , 13(7-8): 341–346 doi: 10.1016/j.drudis.2008.01.003 pmid:18405847
112
Roy A, Kucukural A, Zhang Y (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc , 5(4): 725–738 doi: 10.1038/nprot.2010.5 pmid:20360767
113
Sansom M S, Scott K A, Bond P J (2008). Coarse-grained simulation: a high-throughput computational approach to membrane proteins. Biochem Soc Trans , 36(Pt 1): 27–32 doi: 10.1042/BST0360027 pmid:18208379
114
Shaw D E, Chao J C, Eastwood M P, Gagliardo J, Grossman J P, Ho C R, Ierardi D J, Kolossváry I, Klepeis J L, Layman T, McLeavey C, Deneroff M M, Moraes M A, Mueller R, Priest E C, Shan Y, Spengler J, Theobald M, Towles B, Wang S C, Dror R O, Kuskin J S, Larson R H, Salmon J K, Young C, Batson B, Bowers K J (2007). Anton, a special-purpose machine for molecular dynamics simulation. ACM SIGARCH Computer Architecture News , 35(2): 1–12 doi: 10.1145/1273440.1250664
115
Shirts M R, Pande V S (2005). Comparison of efficiency and bias of free energies computed by exponential averaging, the Bennett acceptance ratio, and thermodynamic integration. J Chem Phys , 122(14): 144107 doi: 10.1063/1.1873592 pmid:15847516
116
Sierecki E, Sinko W, McCammon J A, Newton A C (2010). Discovery of small molecule inhibitors of the PH domain leucine-rich repeat protein phosphatase (PHLPP) by chemical and virtual screening. J Med Chem , 53(19): 6899–6911 doi: 10.1021/jm100331d pmid:20836557
117
Sisay M T, Steinmetzer T, Stirnberg M, Maurer E, Hammami M, Bajorath J, Gütschow M (2010). Identification of the first low-molecular-weight inhibitors of matriptase-2. J Med Chem , 53(15): 5523–5535 doi: 10.1021/jm100183e pmid:20684597
118
Stone J E, Hardy D J, Ufimtsev I S, Schulten K (2010). GPU-accelerated molecular modeling coming of age. J Mol Graph Model , 29(2): 116–125 doi: 10.1016/j.jmgm.2010.06.010 pmid:20675161
119
Stumpff-Kane A W, Maksimiak K, Lee M S, Feig M (2008). Sampling of near-native protein conformations during protein structure refinement using a coarse-grained model, normal modes, and molecular dynamics simulations. Proteins , 70(4): 1345–1356 doi: 10.1002/prot.21674 pmid:17876825
120
Sugita Y, Okamoto Y (1999). Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett , 314(1-2): 141–151 doi: 10.1016/S0009-2614(99)01123-9
121
Talele T T, Arora P, Kulkarni S S, Patel M R, Singh S, Chudayeu M, Kaushik-Basu N (2010). Structure-based virtual screening, synthesis and SAR of novel inhibitors of hepatitis C virus NS5B polymerase. Bioorg Med Chem , 18(13): 4630–4638
122
Trojanowski S, Rutkowska A, Kolinski A (2010). TRACER. A new approach to comparative modeling that combines threading with free-space conformational sampling. Acta Biochim Pol , 57(1): 125–133 pmid:20309433
123
Verdonk M L, Cole J C, Hartshorn M J, Murray C W, Taylor R D (2003). Improved protein-ligand docking using GOLD. Proteins , 52(4): 609–623 doi: 10.1002/prot.10465 pmid:12910460
124
Walsh I, Baù D, Martin A J, Mooney C, Vullo A, Pollastri G (2009). Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks. BMC Struct Biol , 9(1): 5 doi: 10.1186/1472-6807-9-5 pmid:19183478
125
Weigelt J (2010). Structural genomics-impact on biomedicine and drug discovery. Exp Cell Res , 316(8): 1332–1338 doi: 10.1016/j.yexcr.2010.02.041 pmid:20211166
126
White S H (2004). The progress of membrane protein structure determination. Protein Sci , 13(7): 1948–1949 doi: 10.1110/ps.04712004 pmid:15215534
127
Wichapong K, Pianwanit S, Sippl W, Kokpol S (2010). Homology modeling and molecular dynamics simulations of Dengue virus NS2B/NS3 protease: insight into molecular interaction. J Mol Recognit , 23(3): 283–300 pmid:19693793
128
Wu S, Skolnick J, Zhang Y (2007). Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol , 5(1): 17 doi: 10.1186/1741-7007-5-17 pmid:17488521
129
Xiang Z (2006). Advances in homology protein structure modeling. Curr Protein Pept Sci , 7(3): 217–227 doi: 10.2174/138920306777452312 pmid:16787261
130
Yan R X, Si J N, Wang C, Zhang Z (2009). DescFold: a web server for protein fold recognition. BMC Bioinformatics , 10(1): 416 doi: 10.1186/1471-2105-10-416 pmid:20003426
131
Yang L J, Zou J, Xie H Z, Li L L, Wei Y Q, Yang S Y (2009). Steered molecular dynamics simulations reveal the likelier dissociation pathway of imatinib from its targeting kinases c-Kit and Abl. PLoS ONE , 4(12): e8470 doi: 10.1371/journal.pone.0008470 pmid:20041122
132
Yao L, Evans J A, Rzhetsky A (2009). Novel opportunities for computational biology and sociology in drug discovery. Trends Biotechnol , 27(9): 531–540 doi: 10.1016/j.tibtech.2009.06.003 pmid:19674801
133
Ying Y, Huang K, Campbell C (2009). Enhanced protein fold recognition through a novel data integration approach. BMC Bioinformatics , 10(1): 267 doi: 10.1186/1471-2105-10-267 pmid:19709406
134
Zhang Y (2008). Progress and challenges in protein structure prediction. Curr Opin Struct Biol , 18(3): 342–348 doi: 10.1016/j.sbi.2008.02.004 pmid:18436442
135
Zhou H, Skolnick J (2010). Improving threading algorithms for remote homology modeling by combining fragment and template comparisons. Proteins , 78(9): 2041–2048 pmid:20455261
136
Zhu J, Cheng L, Fang Q, Zhou Z H, Honig B (2010). Building and refining protein models within cryo-electron microscopy density maps based on homology modeling and multiscale structure refinement. J Mol Biol , 397(3): 835–851 doi: 10.1016/j.jmb.2010.01.041 pmid:20109465
137
Zhu J, Fan H, Periole X, Honig B, Mark A E (2008). Refining homology models by combining replica-exchange molecular dynamics and statistical potentials. Proteins , 72(4): 1171–1188 doi: 10.1002/prot.22005 pmid:18338384
138
Zwier M C, Chong L T (2010). Reaching biological timescales with all-atom molecular dynamics simulations. Curr Opin Pharmacol , 10(6): 745–752 doi: 10.1016/j.coph.2010.09.008 pmid:20934381