1. 1. Department of Basic Oncology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; 2. 2. Key Laboratory of Biodiversity and Conservation of Aquatic Organism, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
Caveolin-1 (Cav-1) isoforms, including Cav-1α and Cav-1β, were identified as integral membrane proteins and the major components of caveolae. Cav-1 proteins are highly conserved during evolution from BoldItalic to human and are capable of interacting with many signaling molecules through their caveolin scaffolding domains to regulate the activities of multiple signaling pathways. Thus, Cav-1 plays crucial roles in the regulation of cellular proliferation, differentiation and apoptosis in a cell-specific and contextual manner. In addition, Cav-1 is essential for embryonic development of vertebrates owing to its regulation of BMP, Wnt, TGF-β and other key signaling molecules. Moreover, Cav-1 is mainly expressed in terminally differentiated cells and its abnormal expression is often associated with human diseases, such as tumor progression, cardiovascular diseases, fibrosis, lung regeneration, and diseases related to virus. In this review, we will further discuss the potential of Cav-1 as a target for disease therapy and multiple drug resistance.
Corresponding Author(s):
CUI Zongbin,Email:zbcui@ihb.ac.cn
引用本文:
. New glimpses of caveolin-1 functions in embryonic development and human diseases[J]. Frontiers in Biology, 2011, 6(5): 367-376.
Saijun MO, Shengli YANG, Zongbin CUI. New glimpses of caveolin-1 functions in embryonic development and human diseases. Front Biol, 2011, 6(5): 367-376.
Stabilize CSD helical conformation Attach with membrane Interact with other protein
Le Lan et al., 2006Schlegel and Lisanti, 2000Couet et al., 1997
82-109
Nuclear magnetic resonance (NMR)
Solution of phosphatidylserine
Le Lan et al., 2006
102-134
Intramembrane region (IMR)
Plasma membrane location
Glenney and Soppet, 1992
135-150
C-attachment domain(C-MAD)
Attachment with membrane
Schlegel and Lisanti, 2000
133, 143, 156
Cysteine
Palmitoylation Interaction with other acylated protein Bind and transport cholesterol
Dietzen et al., 1995Lee et al., 2001Uittenbogaard and Smart, 2000
Tab.1
Molecules
Interact
Substrate
Regulate
Signaling pathway
Reference
Growth factor receptors
TGFR
Directly
most of TβR
Suppress
TGF-β
Razani et al., 2001a
Directly
ALK1
Promote
TGF-β
Santibanez et al., 2008
Directly
BRII
inhibit (β isoform)
BMP
Nohe et al., 2005
EGFR
Directly
EGFR
inhibit
EGF
Couet et al., 1997
Indirectly
EGFR
inhibit
EGFR-MAPK
Han et al., 2009
Directly
EGFR
promote
EGF
Agelaki et al., 2009
FGFR
Directly
Sprouty1-4
inhibit
p42/44 MAPK
Cabrita et al., 2006
Directly
IR
Active
Insulin
Nystrom et al., 1999
IR
Directly
IRS-1
active
Insulin
Chen et al., 2008
IGFR
Directly
IGF-IR
upregulate
IGF
Ravid et al., 2005
VEGFR
Directly
VEGFR-2
no action
VEGF
Labrecque et al., 2003
Directly
VEGFR-2
inhibit
p42/44 MAPK
Fang et al., 2007
Directly
Elk-1
block
VEGF
Liu et al., 1999
PDGFR
Indirectly
PDGFR
inhibit
PDGF
Tamai et al., 2001
TNFR
Directly
TRAIL
Negatively
–
Zhao et al., 2009
Directly
TRAF2
Active
–
Feng et al., 2001
Growth factors
EGF
Indirectly
EGF
Inhibit
p42/44 MAPK
Zhang et al., 2000
–
EGF
Inhibit
PI3K/Akt
Park and Han, 2009
IGF
Directly
IGF-I
Deficiency Promote
PI3K/Akt
Matthews et al., 2008
PDGF
Directly
PDGF
Inhibit
PDGF
Peterson et al., 2003
TNF
Directly
TNFa
Negative
MKK3/p38 MAPK
Wang et al., 2006
VEGF
–
VEGF
Stabilize
PI3K/Akt
Li et al., 2009
TGF
–
TGF-β1
Stabilize
PI3K/Akt
Li et al., 2009
FGF
–
FGF2
Stabilize
PI3K/Akt
Li et al., 2009
Transcriptional factors
β-catenin
Directly
β-catenin
Inhibit
Wnt
Galbiati et al., 2000
Indiirectly
Survivin
Inhibit
Wnt
Torres et al., 2006
Indiirectly
COX-2
Inhibit
Wnt
Rodriguez et al., 2009
Directly
LRP6
Active
Wnt
Yamamoto et al., 2006
NF-kB
Directly
TNFa
Negative
PI3K/PKB and p44/42 MAPK
Fakhrzadeh et al., 2008
Directly
–
Active
NF-kB
Garrean et al., 2006
p53
Directly
Mdm2
Stabilize
p53/p21(Waf1/Cip1)
Bartholomew et al., 2009
–
p53
Inhibit
–
Linge et al., 2007
Indirectly
p53
Inhibit
IGF
Ravid et al., 2005
Directly
MEK-1, ERK-2
–
p42/44 MAPK
Engelman et al., 1998a
Tab.2
1
Abulrob A, Giuseppin S, Andrade M F, McDermid A, Moreno M, Stanimirovic D (2004). Interactions of EGFR and caveolin-1 in human glioblastoma cells: evidence that tyrosine phosphorylation regulates EGFR association with caveolae. Oncogene , 23(41): 6967–6979 doi: 10.1038/sj.onc.1207911 pmid:15273741
2
Agelaki S, Spiliotaki M, Markomanolaki H, Kallergi G, Mavroudis D, Georgoulias V, Stournaras C (2009). Caveolin-1 regulates EGFR signaling in MCF-7 breast cancer cells and enhances gefitinib-induced tumor cell inhibition. Cancer Biol Ther , 8(15): 1470–1477 doi: 10.4161/cbt.8.15.8939 pmid:19483462
3
Barakat S, Demeule M, Pilorget A, Régina A, Gingras D, Baggetto L G, Béliveau R (2007). Modulation of p-glycoprotein function by caveolin-1 phosphorylation. J Neurochem , 101(1): 1–8 doi: 10.1111/j.1471-4159.2006.04410.x pmid:17326770
4
Bartholomew J N, Volonte D, Galbiati F (2009). Caveolin-1 regulates the antagonistic pleiotropic properties of cellular senescence through a novel Mdm2/p53-mediated pathway. Cancer Res , 69(7): 2878–2886 doi: 10.1158/0008-5472.CAN-08-2857 pmid:19318577
5
Bélanger M M, Gaudreau M, Roussel E, Couet J (2004). Role of caveolin-1 in etoposide resistance development in A549 lung cancer cells. Cancer Biol Ther , 3(10): 954–959 doi: 10.4161/cbt.3.10.1112 pmid:15326378
6
Bullejos M, Bowles J, Koopmanl P (2002). Extensive vascularization of developing mouse ovaries revealed by caveolin-1 expression. Dev Dyn , 225: 95–99 doi: 10.4161/cbt.3.10.1112 pmid:15326378
7
Cabrita M A, J?ggi F, Widjaja S P, Christofori G (2006). A functional interaction between sprouty proteins and caveolin-1. J Biol Chem , 281(39): 29201–29212 doi: 10.1074/jbc.M603921200 pmid:16877379
8
Cai Q C, Jiang Q W, Zhao G M, Guo Q, Cao G W, Chen T (2003). Putative caveolin-binding sites in SARS-CoV proteins. Acta Pharmacol Sin , 24(10): 1051–1059 pmid:14531951
9
Chen J, Capozza F, Wu A, Deangelis T, Sun H, Lisanti M, Baserga R (2008). Regulation of insulin receptor substrate-1 expression levels by caveolin-1. J Cell Physiol , 217(1): 281–289 doi: 10.1002/jcp.21498 pmid:18506777
10
Cohen A W, Park D S, Woodman S E, Williams T M, Chandra M, Shirani J, Pereira de Souza A, Kitsis R N, Russell R G, Weiss L M, Tang B, Jelicks L A, Factor S M, Shtutin V, Tanowitz H B, Lisanti M P (2003). Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol , 284(2): C457–C474 pmid:12388077
11
Cohen A W, Razani B, Schubert W, Williams T M, Wang X B, Iyengar P, Brasaemle D L, Scherer P E, Lisanti M P (2004). Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation. Diabetes , 53(5): 1261–1270 doi: 10.1016/S1050-1738(97)00001-7
12
Couet J, Li S, Okamoto T, Scherer P S, Lisanti M P (1997). Molecular and cellular biology of caveolae: paradoxes and plasticities. Trends Cardiovasc Med , 7(4): 103–110 doi: 10.1016/S1050-1738(97)00001-7
13
Davidson B, Goldberg I, Givant-Horwitz V, Nesland J M, Berner A, Bryne M, Risberg B, Kopolovic J, Kristensen G B, Tropé C G, van de Putte G, Reich R (2002). Caveolin-1 expression in ovarian carcinoma is MDR1 independent. Am J Clin Pathol , 117(2): 225–234 11863219 doi: 10.1309/U40R-1BN4-6KJ3-BDG3
14
Del Galdo F, Sotgia F, de Almeida C J, Jasmin J F, Musick M, Lisanti M P, Jiménez S A (2008). Decreased expression of caveolin 1 in patients with systemic sclerosis: crucial role in the pathogenesis of tissue fibrosis. Arthritis Rheum , 58(9): 2854–2865 doi: 10.1002/art.23791 pmid:18759267
15
Dietzen D J, Hastings W R, Lublin D M (1995). Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J Biol Chem , 270(12): 6838–6842 pmid:7896831
16
Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft F C, Schedl A, Haller H, Kurzchalia T V (2001). Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science , 293(5539): 2449–2452 doi: 10.1126/science.1062688 pmid:11498544
17
Engelman J A, Chu C, Lin A, Jo H, Ikezu T, Okamoto T, Kohtz D S, Lisanti M P (1998a). Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett , 428(3): 205–211 doi: 10.1016/S0014-5793(98)00470-0 pmid:9654135
18
Engelman J A, Zhang X L, Galbiati F, Lisanti M P (1998b). Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (Cav-1, -2, and -3). Cav-1 and Cav-2 genes map to a known tumor suppressor locus (6-A2/7q31). FEBS Lett , 429(3): 330–336 doi: 10.1016/S0014-5793(98)00619-X pmid:9662443
19
Engelman J A, Zhang X L, Lisanti M P (1999). Sequence and detailed organization of the human caveolin-1 and -2 genes located near the D7S522 locus (7q31.1). Methylation of a CpG island in the 5′ promoter region of the caveolin-1 gene in human breast cancer cell lines. FEBS Lett , 448(2–3): 221–230 doi: 10.1016/S0014-5793(99)00365-8 pmid:10218480
20
Fakhrzadeh L, Laskin J D, Laskin D L (2008). Regulation of caveolin-1 expression, nitric oxide production and tissue injury by tumor necrosis factor-alpha following ozone inhalation. Toxicol Appl Pharmacol , 227(3): 380–389 doi: 10.1016/j.taap.2007.11.012 pmid:18207479
21
Fang K, Fu W, Beardsley A R, Sun X, Lisanti M P, Liu J (2007). Overexpression of caveolin-1 inhibits endothelial cell proliferation by arresting the cell cycle at G0/G1 phase. Cell Cycle , 6(2): 199–204 pmid:17245131
22
Fang P K, Solomon K R, Zhuang L, Qi M, McKee M, Freeman M R, Yelick P C (2006). Caveolin-1α and -1β perform nonredundant roles in early vertebrate development. Am J Pathol , 169(6): 2209–2222 doi: 10.2353/ajpath.2006.060562 pmid:17148682
23
Feng X, Gaeta M L, Madge L A, Yang J H, Bradley J R, Pober J S (2001). Caveolin-1 associates with TRAF2 to form a complex that is recruited to tumor necrosis factor receptors. J Biol Chem , 276(11): 8341–8349 doi: 10.1074/jbc.M007116200 pmid:11112773
24
Fernández M A, Albor C, Ingelmo-Torres M, Nixon S J, Ferguson C, Kurzchalia T, Tebar F, Enrich C, Parton R G, Pol A (2006). Caveolin-1 is essential for liver regeneration. Science , 313(5793): 1628–1632 doi: 10.1126/science.1130773 pmid:16973879
25
Frank P G, Lisanti M P (2006). Zebrafish as a novel model system to study the function of caveolae and caveolin-1 in organismal biology. Am J Pathol , 169(6): 1910–1912 doi: 10.2353/ajpath.2006.060923 pmid:17148656
26
Frank P G, Lisanti M P (2007). Caveolin-1 and liver regeneration: role in proliferation and lipogenesis. Cell Cycle , 6(2): 115–116 pmid:17314510
27
Fujimoto T, Kogo H, Nomura R, Une T (2000). Isoforms of caveolin-1 and caveolar structure. J Cell Sci , 113(Pt 19): 3509–3517 pmid:10984441
28
Galbiati F, Volonte D, Brown A M, Weinstein D E, Ben-Ze’ev A, Pestell R G, Lisanti M P (2000). Caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains. J Biol Chem , 275(30): 23368–23377 doi: 10.1074/jbc.M002020200 pmid:10816572
29
Galbiati F, Volonté D, Liu J, Capozza F, Frank P G, Zhu L, Pestell R G, Lisanti M P (2001). Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism. Mol Biol Cell , 12(8): 2229–2244 pmid:11514613
30
Garrean S, Gao X P, Brovkovych V, Shimizu J, Zhao Y Y, Vogel S M, Malik A B (2006). Caveolin-1 regulates NF-kappaB activation and lung inflammatory response to sepsis induced by lipopolysaccharide. J Immunol , 177(7): 4853–4860 pmid:16982927
31
Glenney J R Jr, Soppet D (1992). Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proc Natl Acad Sci U S A , 89(21): 10517–10521 doi: 10.1073/pnas.89.21.10517 pmid:1279683
32
Han F, Gu D, Chen Q, Zhu H (2009). Caveolin-1 acts as a tumor suppressor by down-regulating epidermal growth factor receptor-mitogen-activated protein kinase signaling pathway in pancreatic carcinoma cell lines. Pancreas , 38(7): 766–774 doi: 10.1097/MPA.0b013e3181b2bd11 pmid:19893453
33
Hashimoto M, Takenouchi T, Rockenstein E, Maslia E (2003). Alpha-synuclein up-regulates expression of caveolin-1 and down-regulates extracellular signal-regulated kinase activity in B103 neuroblastoma cells: role in the pathogenesis of Parkinson's disease. J Neurochem , 85(6): 1468–1479 doi: 10.1097/MPA.0b013e3181b2bd11 pmid:19893453
34
Head B P, Insel P A (2007). Do caveolins regulate cells by actions outside of caveolae? Trends Cell Biol , 17(2): 51–57 doi: 10.1016/j.tcb.2006.11.008 pmid:17150359
35
Hernández-Bello R, Bermúdez-Cruz R M, Fonseca-Li?án R, García-Reyna P, Le Guerhier F, Boireau P, Ortega-Pierres G (2008). Identification, molecular characterisation and differential expression of caveolin-1 in Trichinella spiralis maturing oocytes and embryos. Int J Parasitol , 38(2): 191–202 doi: 10.1016/j.ijpara.2007.07.009 pmid:17803998
36
Hino M, Doihara H, Kobayashi K, Aoe M, Shimizu N (2003). Caveolin-1 as tumor suppressor gene in breast cancer. Surg Today , 33(7): 486–490 pmid:14506991
37
Huang J H, Lu L, Lu H, Chen X, Jiang S, Chen Y H (2007). Identification of the HIV-1 gp41 core-binding motif in the scaffolding domain of caveolin-1. J Biol Chem , 282(9): 6143–6152 doi: 10.1074/jbc.M607701200 pmid:17197700
38
Joshi B, Strugnell S S, Goetz J G, Kojic L D, Cox M E, Griffith O L, Chan S K, Jones S J, Leung S P, Masoudi H, Leung S, Wiseman S M, Nabi I R (2008). Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Res , 68(20): 8210–8220 doi: 10.1158/0008-5472.CAN-08-0343 pmid:18922892
39
Juhász M, Chen J, Tulassay Z, Malfertheiner P, Ebert M P (2003). Expression of caveolin-1 in gastrointestinal and extraintestinal cancers. J Cancer Res Clin Oncol , 129(9): 493–497 12898235 doi: 10.1007/s00432-003-0468-0
40
Kasper M, Reimann T, Hempel U, Wenzel K W, Bierhaus A, Schuh D, Dimmer V, Haroske G, Müller M (1998). Loss of caveolin expression in type I pneumocytes as an indicator of subcellular alterations during lung fibrogenesis. Histochem Cell Biol , 109(1): 41–48 doi: 10.1007/s004180050200 pmid:9452954
41
Kim H A, Kim K H, Lee R A (2006). Expression of caveolin-1 is correlated with Akt-1 in colorectal cancer tissues. Exp Mol Pathol , 80(2): 165–170 doi: 10.1210/en.143.5.1726 pmid:11956154
42
Kim Y N, Bertics P J (2002). The endocytosis-linked protein dynamin associates with caveolin-1 and is tyrosine phosphorylated in response to the activation of a noninternalizing epidermal growth factor receptor mutant. Endocrinology , 143(5): 1726–1731 doi: 10.1210/en.143.5.1726 pmid:11956154
43
Kogo H, Aiba T, Fujimoto T (2004). Cell type-specific occurrence of caveolin-1alpha and -1beta in the lung caused by expression of distinct mRNAs. J Biol Chem , 279(24): 25574–25581 doi: 10.1074/jbc.M310807200 pmid:15067006
44
Kogo H, Fujimoto T (2000). Caveolin-1 isoforms are encoded by distinct mRNAs. Identification of mouse caveolin-1 mRNA variants caused by alternative transcription initiation and splicing. FEBS Lett , 465(2–3): 119–123 doi: 10.1016/S0014-5793(99)01730-5 pmid:10631317
45
Labrecque L, Royal I, Surprenant D S, Patterson C, Gingras D, Béliveau R (2003). Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol Biol Cell , 14(1): 334–347 doi: 10.1091/mbc.E02-07-0379 pmid:12529448
46
Lavie Y, Fiucci G, Liscovitch M (1998). Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells. J Biol Chem , 273(49): 32380–32383 doi: 10.1074/jbc.273.49.32380 pmid:9829965
47
Le Lan C, Neumann J M, Jamin N (2006). Role of the membrane interface on the conformation of the caveolin scaffolding domain: a CD and NMR study. FEBS Lett , 580(22): 5301–5305 doi: 10.1016/j.febslet.2006.08.075 pmid:16979631
48
Lee E K, Lee Y S, Han I O, Park S H (2007). Expression of Caveolin-1 reduces cellular responses to TGF-beta1 through down-regulating the expression of TGF-beta type II receptor gene in NIH3T3 fibroblast cells. Biochem Biophys Res Commun , 359(2): 385–390 doi: 10.1016/j.bbrc.2007.05.121 pmid:17543885
49
Lee H, Volonte D, Galbiati F, Iyengar P, Lublin D M, Bregman D B, Wilson M T, Campos-Gonzalez R, Bouzahzah B, Pestell R G, Scherer P E, Lisanti M P (2000). Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol , 14(11): 1750–1775 doi: 10.1210/me.14.11.1750 pmid:11075810
50
Lee H, Woodman S E, Engelman J A, Volonté D, Galbiati F, Kaufman H L, Lublin D M, Lisanti M P (2001). Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the c-Src tyrosine kinase: targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (TYR-14). J Biol Chem , 276(37): 35150–35158 doi: 10.1074/jbc.M104530200 pmid:11451957
51
Li L, Ren C, Yang G, Goltsov A A, Tabata K, Thompson T C (2009). Caveolin-1 promotes autoregulatory, Akt-mediated induction of cancer-promoting growth factors in prostate cancer cells. Mol Cancer Res , 7(11): 1781–1791 doi: 10.1158/1541-7786.MCR-09-0255 pmid:19903767
52
Li S, Seitz R, Lisanti M P (1996). Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem , 271(7): 3863–3868 pmid:8632005
53
Lin S, Wang X M, Nadeau P E, Mergia A (2010). HIV infection upregulates caveolin 1 expression to restrict virus production. J Virol , 84(18): 9487–9496 doi: 10.1128/JVI.00763-10 pmid:20610713
54
Linge A, Weinhold K, Bl?sche R, Kasper M, Barth K (2007). Downregulation of caveolin-1 affects bleomycin-induced growth arrest and cellular senescence in A549 cells. Int J Biochem Cell Biol , 39(10): 1964–1974 doi: 10.1016/j.biocel.2007.05.018 pmid:17662641
55
Lisanti M P, Scherer P E, Vidugiriene J, Tang Z, Hermanowski-Vosatka A, Tu Y H, Cook R F, Sargiacomo M (1994). Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J Cell Biol , 126(1): 111–126 doi: 10.1083/jcb.126.1.111 pmid:7517942
56
Liu J, Razani B, Tang S, Terman B I, Ware J A, Lisanti M P (1999). Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1. J Biol Chem , 274(22): 15781–15785 doi: 10.1074/jbc.274.22.15781 pmid:10336480
57
Liu P, Rudick M, Anderson R G (2002). Multiple functions of caveolin-1. J Biol Chem , 277(44): 41295–41298 doi: 10.1074/jbc.R200020200 pmid:12189159
58
Llano M, Kelly T, Vanegas M, Peretz M, Peterson T E, Simari R D, Poeschla E M (2002). Blockade of human immunodeficiency virus type 1 expression by caveolin-1. J Virol , 76(18): 9152–9164 doi: 10.1128/JVI.76.18.9152-9164.2002 pmid:12186899
59
Machleidt T, Li W P, Liu P, Anderson R G (2000). Multiple domains in caveolin-1 control its intracellular traffic. J Cell Biol , 148(1): 17–28 doi: 10.1083/jcb.148.1.17 pmid:10629215
60
Macovei A, Radulescu C, Lazar C, Petrescu S, Durantel D, Dwek R A, Zitzmann N, Nichita N B (2010). Hepatitis B virus requires intact caveolin-1 function for productive infection in HepaRG cells. J Virol , 84(1): 243–253 doi: 10.1128/JVI.01207-09 pmid:19846513
61
Matthews L C, Taggart M J, Westwood M (2008). Modulation of caveolin-1 expression can affect signalling through the phosphatidylinositol 3-kinase/Akt pathway and cellular proliferation in response to insulin-like growth factor I. Endocrinology , 149(10): 5199–5208 doi: 10.1210/en.2007-1211 pmid:18583416
62
Mayoral R, Fernández-Martínez A, Roy R, Boscá L, Martín-Sanz P (2007). Dispensability and dynamics of caveolin-1 during liver regeneration and in isolated hepatic cells. Hepatology , 46(3): 813–822 doi: 10.1002/hep.21746 pmid:17654701
63
Mir K D, Parr R D, Schroeder F, Ball J M (2007). Rotavirus NSP4 interacts with both the amino- and carboxyl-termini of caveolin-1. Virus Res , 126(1–2): 106–115 doi: 10.1016/j.virusres.2007.02.004 pmid:17379346
64
Mo S, Wang L, Li Q, Li J, Li Y, Thannickal V J, Cui Z (2010). Caveolin-1 regulates dorsoventral patterning through direct interaction with beta-catenin in zebrafish. Dev Biol , 344(1): 210–223 doi: 10.1016/j.ydbio.2010.04.033 pmid:20452340
65
Nixon S J, Carter A, Wegner J, Ferguson C, Floetenmeyer M, Riches J, Key B, Westerfield M, Parton R G (2007). Caveolin-1 is required for lateral line neuromast and notochord development. J Cell Sci , 120(Pt 13): 2151–2161 doi: 10.1242/jcs.003830 pmid:17550965
66
Nohe A, Keating E, Underhill T M, Knaus P, Petersen N O (2005). Dynamics and interaction of caveolin-1 isoforms with BMP-receptors. J Cell Sci , 118(Pt 3): 643–650 doi: 10.1242/jcs.01402 pmid:15657086
67
Nystrom F H, Chen H, Cong L N, Li Y, Quon M J (1999). Caveolin-1 interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Cos-7 cells and rat adipose cells. Mol Endocrinol , 13(12): 2013–2024 doi: 10.1210/me.13.12.2013 pmid:10598578
68
Ono K, Iwanaga Y, Hirayama M, Kawamura T, Sowa N, Hasegawa K (2004). Contribution of caveolin-1 alpha and Akt to TNF-alpha-induced cell death. Am J Physiol Lung Cell Mol Physiol , 287(1): L201–L209 doi: 10.1152/ajplung.00293.2003 pmid:15020298
69
Padhan K, Tanwar C, Hussain A, Hui P Y, Lee M Y, Cheung C Y, Peiris J S, Jameel S (2007). Severe acute respiratory syndrome coronavirus Orf3a protein interacts with caveolin. J Gen Virol , 88(Pt 11): 3067–3077 doi: 10.1099/vir.0.82856-0 pmid:17947532
70
Park J H, Han H J (2009). Caveolin-1 plays important role in EGF-induced migration and proliferation of mouse embryonic stem cells: involvement of PI3K/Akt and ERK. Am J Physiol Cell Physiol , 297(4): C935–C944 doi: 10.1152/ajpcell.00121.2009 pmid:19625610
71
Peng F, Zhang B, Wu D, Ingram A J, Gao B, Krepinsky J C (2008). TGFbeta-induced RhoA activation and fibronectin production in mesangial cells require caveolae. Am J Physiol Renal Physiol , 295(1): F153–F164 doi: 10.1152/ajprenal.00419.2007 pmid:18434385
72
Peterson T E, Guicciardi M E, Gulati R, Kleppe L S, Mueske C S, Mookadam M, Sowa G, Gores G J, Sessa W C, Simari R D (2003). Caveolin-1 can regulate vascular smooth muscle cell fate by switching platelet-derived growth factor signaling from a proliferative to an apoptotic pathway. Arterioscler Thromb Vasc Biol , 23(9): 1521–1527 doi: 10.1161/01.ATV.0000081743.35125.05 pmid:12816877
73
Ravid D, Leser G P, Lamb R A (2010). A role for caveolin 1 in assembly and budding of the paramyxovirus parainfluenza virus 5. J Virol , 84(19): 9749–9759 doi: 10.1128/JVI.01079-10 pmid:20631121
74
Ravid D, Maor S, Werner H, Liscovitch M (2005). Caveolin-1 inhibits cell detachment-induced p53 activation and anoikis by upregulation of insulin-like growth factor-I receptors and signaling. Oncogene , 24(8): 1338–1347 doi: 10.1038/sj.onc.1208337 pmid:15592498
75
Razani B, Altschuler Y, Zhu L, Pestell R G, Mostov K E, Lisanti M P (2000). Caveolin-1 expression is down-regulated in cells transformed by the human papilloma virus in a p53-dependent manner. Replacement of caveolin-1 expression suppresses HPV-mediated cell transformation. Biochemistry , 39(45): 13916–13924 doi: 10.1021/bi001489b pmid:11076533
76
Razani B, Engelman J A, Wang X B, Schubert W, Zhang X L, Marks C B, Macaluso F, Russell R G, Li M, Pestell R G, Di Vizio D, Hou H Jr, Kneitz B, Lagaud G, Christ G J, Edelmann W, Lisanti M P (2001b). Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem , 276(41): 38121–38138 pmid:11457855
77
Razani B, Park D S, Miyanaga Y, Ghatpande A, Cohen J, Wang X B, Scherer P E, Evans T, Lisanti M P (2002). Molecular cloning and developmental expression of the caveolin gene family in the amphibian Xenopus laevis. Biochemistry , 41(25): 7914–7924 doi: 10.1021/bi020043n pmid:12069580
78
Razani B, Zhang X L, Bitzer M, von Gersdorff G, B?ttinger E P, Lisanti M P (2001a). Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J Biol Chem , 276(9): 6727–6738 doi: 10.1074/jbc.M008340200 pmid:11102446
79
Rodriguez D A, Tapia J C, Fernandez J G, Torres V A, Mu?oz N, Galleguillos D, Leyton L, Quest A F (2009). Caveolin-1-mediated suppression of cyclooxygenase-2 via a beta-catenin-Tcf/Lef-dependent transcriptional mechanism reduced prostaglandin E2 production and survivin expression. Mol Biol Cell , 20(8): 2297–2310 doi: 10.1091/mbc.E08-09-0939 pmid:19244345
80
Rothberg K G, Heuser J E, Donzell W C, Ying Y S, Glenney J R, Anderson R G (1992). Caveolin, a protein component of caveolae membrane coats. Cell , 68(4): 673–682 doi: 10.1016/0092-8674(92)90143-Z pmid:1739974
81
Santibanez J F, Blanco F J, Garrido-Martin E M, Sanz-Rodriguez F, del Pozo M A, Bernabeu C (2008). Caveolin-1 interacts and cooperates with the transforming growth factor-beta type I receptor ALK1 in endothelial caveolae. Cardiovasc Res , 77(4): 791–799 doi: 10.1093/cvr/cvm097 pmid:18065769
82
Sargiacomo M, Scherer P E, Tang Z, Kübler E, Song K S, Sanders M C, Lisanti M P (1995). Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc Natl Acad Sci USA , 92(20): 9407–9411 doi: 10.1073/pnas.92.20.9407 pmid:7568142
83
Sawada S, Ishikawa C, Tanji H, Nakachi S, Senba M, Okudaira T, Uchihara J N, Taira N, Ohshiro K, Yamada Y, Tanaka Y, Uezato H, Ohshima K, Sasai K, Burgering B M, Duc Dodon M, Fujii M, Sunakawa H, Mori N (2010). Overexpression of caveolin-1 in adult T-cell leukemia. Blood , 115(11): 2220–2230 doi: 10.1182/blood-2009-08-240044 pmid:20061557
84
Scheel J, Srinivasan J, Honnert U, Henske A, Kurzchalia T V (1999). Involvement of caveolin-1 in meiotic cell-cycle progression in Caenorhabditis elegans. Nat Cell Biol , 1(2): 127–129 doi: 10.1038/10100 pmid:10559886
85
Scherer P E, Lewis R Y, Volonte D, Engelman J A, Galbiati F, Couet J, Kohtz D S, van Donselaar E, Peters P, Lisanti M P (1997). Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem , 272(46): 29337–29346 doi: 10.1074/jbc.272.46.29337 pmid:9361015
86
Scherer P E, Tang Z, Chun M, Sargiacomo M, Lodish H F, Lisanti M P (1995). Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. Identification and epitope mapping of an isoform-specific monoclonal antibody probe. J Biol Chem , 270(27): 16395–16401 pmid:7608210
87
Schwencke C, Braun-Dullaeus R C, Wunderlich C, Strasser R H (2006). Caveolae and caveolin in transmembrane signaling: Implications for human disease. Cardiovasc Res , 70(1): 42–49 pmid:7608210
88
Schlegel A, Lisanti M P (2000). A molecular dissection of caveolin-1 membrane attachment and oligomerization. Two separate regions of the caveolin-1 C-terminal domain mediate membrane binding and oligomer/oligomer interactions in vivo. J Biol Chem , 275(28): 21605–21617 doi: 10.1074/jbc.M002558200 pmid:10801850
89
Schubert W, Sotgia F, Cohen A W, Capozza F, Bonuccelli G, Bruno C, Minetti C, Bonilla E, Dimauro S, Lisanti M P (2007). Caveolin-1(-/-)- and caveolin-2(-/-)-deficient mice both display numerous skeletal muscle abnormalities, with tubular aggregate formation. Am J Pathol , 170(1): 316–333 doi: 10.2353/ajpath.2007.060687 pmid:17200204
90
Sedding D G, Braun-Dullaeus R C (2006). Caveolin-1: dual role for proliferation of vascular smooth muscle cells. Trends Cardiovasc Med , 16(2): 50–55 doi: 10.1016/j.tcm.2005.11.007 pmid:16473762
91
Smith J L, Campos S K, Ozbun M A (2007). Human papillomavirus type 31 uses a caveolin 1- and dynamin 2-mediated entry pathway for infection of human keratinocytes. J Virol , 81(18): 9922–9931 doi: 10.1128/JVI.00988-07 pmid:17626097
92
Sun L, Hemg?rd G V, Susanto S A, Wirth M (2010). Caveolin-1 influences human influenza A virus (H1N1) multiplication in cell culture. Virol J , 7(1): 108 doi: 10.1186/1743-422X-7-108 pmid:20504340
93
Sun X H, Flynn D C, Castranova V, Millecchia L L, Beardsley A R, Liu J (2007). Identification of a novel domain at the N terminus of caveolin-1 that controls rear polarization of the protein and caveolae formation. J Biol Chem , 282(10): 7232–7241 doi: 10.1074/jbc.M607396200 pmid:17213184
94
Tamai O, Oka N, Kikuchi T, Koda Y, Soejima M, Wada Y, Fujisawa M, Tamaki K, Kawachi H, Shimizu F, Kimura H, Imaizumi T, Okuda S (2001). Caveolae in mesangial cells and caveolin expression in mesangial proliferative glomerulonephritis. Kidney Int , 59(2): 471–480 doi: 10.1046/j.1523-1755.2001.059002471.x pmid:11168929
95
Tang Z, Okamoto T, Boontrakulpoontawee P, Katada T, Otsuka A J, Lisanti M P (1997). Identification, sequence, and expression of an invertebrate caveolin gene family from the nematode Caenorhabditis elegans. Implications for the molecular evolution of mammalian caveolin genes. J Biol Chem , 272(4): 2437–2445 doi: 10.1074/jbc.272.4.2437 pmid:8999956
96
Torres V A, Tapia J C, Rodríguez D A, Párraga M, Lisboa P, Montoya M, Leyton L, Quest A F (2006). Caveolin-1 controls cell proliferation and cell death by suppressing expression of the inhibitor of apoptosis protein survivin. J Cell Sci , 119(Pt 9): 1812–1823 doi: 10.1242/jcs.02894 pmid:16608879
97
Tourkina E, Richard M, G??z P, Bonner M, Pannu J, Harley R, Bernatchez P N, Sessa W C, Silver R M, Hoffman S (2008). Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol , 294(5): L843–L861 doi: 10.1152/ajplung.00295.2007 pmid:18203815
98
Uittenbogaard A, Smart E J (2000). Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae. J Biol Chem , 275(33): 25595–25599 doi: 10.1074/jbc.M003401200 pmid:10833523
99
Wang C, Mei Y, Li L, Mo D, Li J, Zhang H, Tian X, Chen Y (2008). Molecular characterization and expression analysis of caveolin-1 in pig tissues. Sci China C Life Sci , 51(7): 655–661 doi: 10.1007/s11427-008-0082-0 pmid:18622749
100
Wang L, Mo S, Li J, Li Q, Cui Z (2010a). Preliminary study on functions of zebrafish Caveolin-1. Acta Hydrobiologica Sinica , 34(4): 1083–1090
101
Wang X M, Kim H P, Song R, Choi A M (2006). Caveolin-1 confers antiinflammatory effects in murine macrophages via the MKK3/p38 MAPK pathway. Am J Respir Cell Mol Biol , 34(4): 434–442 doi: 10.1165/rcmb.2005-0376OC pmid:16357362
102
Wang X M, Nadeau P E, Lo Y T, Mergia A (2010b). Caveolin-1 modulates HIV-1 envelope-induced bystander apoptosis through gp41. J Virol , 84(13): 6515–6526 doi: 10.1128/JVI.02722-09 pmid:20392844
103
Williams T M, Lisanti M P (2004). The Caveolin genes: from cell biology to medicine. Ann Med , 36(8): 584–595 doi: 10.1080/07853890410018899 pmid:15768830
104
Williams T M, Lisanti M P (2005). Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol , 288(3): C494–C506 doi: 10.1152/ajpcell.00458.2004 pmid:15692148
105
Yamada E (1955). The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol , 1(5): 445–458 doi: 10.1083/jcb.1.5.445 pmid:13263332
106
Yamaguchi Y, Yasuoka H, Stolz D B, Feghali-Bostwick C A (2010). Decreased caveolin-1 levels contribute to fibrosis and deposition of extracellular IGFBP-5. J Cell Mol Med , doi: 10.1111/j.1582-4934.2010.01063.x pmid:20345844
107
Yamamoto H, Komekado H, Kikuchi A (2006). Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin. Dev Cell , 11(2): 213–223 doi: 10.1016/j.devcel.2006.07.003 pmid:16890161
108
Zaas D W, Swan Z, Brown B J, Wright J R, Abraham S N (2009). The expanding roles of caveolin proteins in microbial pathogenesis. Commun Integr Biol , 2(6): 535–537 doi: 10.4161/cib.2.6.9259 pmid:20195460
109
Zhang B, Peng F, Wu D, Ingram A J, Gao B, Krepinsky J C (2007). Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells. Cell Signal , 19(8): 1690–1700 doi: 10.1016/j.cellsig.2007.03.005 pmid:17446044
110
Zhang W, Razani B, Altschuler Y, Bouzahzah B, Mostov K E, Pestell R G, Lisanti M P (2000). Caveolin-1 inhibits epidermal growth factor-stimulated lamellipod extension and cell migration in metastatic mammary adenocarcinoma cells (MTLn3). Transformation suppressor effects of adenovirus-mediated gene delivery of caveolin-1. J Biol Chem , 275(27): 20717–20725 doi: 10.1074/jbc.M909895199 pmid:10748172
111
Zhao X, Liu Y, Ma Q, Wang X, Jin H, Mehrpour M, Chen Q (2009). Caveolin-1 negatively regulates TRAIL-induced apoptosis in human hepatocarcinoma cells. Biochem Biophys Res Commun , 378(1): 21–26 pmid:18992712
112
Zhu H, Cai C, Chen J (2004). Suppression of P-glycoprotein gene expression in Hs578T/Dox by the overexpression of caveolin-1. FEBS Lett , 576(3): 369–374 doi: 10.1016/j.febslet.2004.09.041 pmid:15498565