Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Frontiers in Biology  2012, Vol. 7 Issue (4): 297-306   https://doi.org/10.1007/s11515-012-1235-x
  REVIEW 本期目录
Cortical development and asymmetric cell divisions
Cortical development and asymmetric cell divisions
Yan ZHOU()
College of Life Sciences, Wuhan University, Luojia Hill, Wuhan 430072, China
 全文: PDF(285 KB)   HTML
Abstract

The development of the mammalian neocortex involves rounds of symmetric and asymmetric cell division of neural progenitors to fulfill needs of both self-renewal of progenitors and production of differentiated progenies such as neurons and glia. The machinery for asymmetric cell division is evolutionarily conserved and extensively used in organogenesis and homeostasis of adult tissues. Here we summarize recent progress regarding cellular characteristics of different types of neural progenitors in mammals, highlighting how asymmetric cell division is utilized during cortical development.

Key wordsasymmetric cell division    radial glial cells    centrosome    spindle orientation
收稿日期: 2012-04-25      出版日期: 2012-08-01
Corresponding Author(s): ZHOU Yan,Email:yan.zhou@whu.edu.cn   
 引用本文:   
. Cortical development and asymmetric cell divisions[J]. Frontiers in Biology, 2012, 7(4): 297-306.
Yan ZHOU. Cortical development and asymmetric cell divisions. Front Biol, 2012, 7(4): 297-306.
 链接本文:  
https://academic.hep.com.cn/fib/CN/10.1007/s11515-012-1235-x
https://academic.hep.com.cn/fib/CN/Y2012/V7/I4/297
Fig.1  
PropertiesNE cellsRG cellsSNPsoRG cellsBasal progenitors
Nuclear locationNEVZVZoSVZSVZ
Apico-basal polarityPresentPresentPresentPresentAbsent
Apical contactPresentPresentPresentAbsentAbsent
Tight junctionsPresentPresent (downregulated)UnknownAbsentAbsent
Adherens junctionsPresentPresentPresentAbsentAbsent
Nuclear movementIKNM (NE)IKNM (VZ)UnknownBasal soma movementAbsent
Basal lamina contactsPresentPresentAbsentPresentAbsent
Nestin expressionPresentPresentPresentPresentAbsent
Astroglial markersAbsentPresentAbsentPresentAbsent
Pax6 expressionPresentPresentPresentPresentAbsent
Tbr2 expressionAbsentAbsentAbsentAbsentPresent
Division patternsSymmetric (proliferative)Sym & asymAsymmetricSym & asymSymmetric (terminal)
Tab.1  
Fig.2  
DrosophilaMouse homologs
Functional categoriesSymbol/nameRoles in cell fate specification of neuroblastsSymbolRoles in cortical neurogenesis
Cell polarity establishmentPar3/ BazookaAfter delamination of the neuroblast from the neuroepithelium, Bazooka provides an asymmetric cue in the apical cytocortex that is required to anchor Inscuteable. Bazooka is also responsible for the maintenance of apical-basal polarity in epithelial tissues (Kuchinke et al., 1998; Schober et al., 1999).mPar31) mPar3 is enriched at the lateral membrane domain in the ventricular endfeet of RG cells during interphase, whereas it becomes dispersed and shows asymmetric localization during mitosis. mPar3 acts through the Notch signaling pathway in generating the asymmetry in radial glial daughter cell fate specification (Bultje et al., 2009).2) Specifies axon-dendrite polarity in hippocampal neurons (Shi et al., 2003).
Par6Sets up apico-basal polarity. Loss of Par-6 leads to defects in the apical localization of Baz and Insc in neuroblasts and defects in the basal localization of Numb and Miranda, as well as the randomization of neuroblast spindle orientation; its loss also leads to defects in epithelial polarity (Petronczki and Knoblich, 2001).Par6 (Pard6A)Pard6BPard6G1) Par6 specifies axon-dendrite polarity in hippocampal neurons (Shi et al., 2003).2) Par6 Controls glial-guided neuronal migration (Solecki et al., 2004).3) Par6 overexpression promotes the generation of RG cells in vitro and in vivo (Costa et al., 2008).
aPKCSets up apico-basal polarity. aPKC mutation results in loss of apico-basal polarity, multilayering of epithelia, mislocalization of Insc, and abnormal spindle orientation in neuroblasts (Wodarz et al., 2000; Rolls et al., 2003).aPKCλ & aPKCζaPKCλ is required for the maintenance of adherens junctions between endfeet of RG cells. In conditional aPKCλ knockout mice, adherens junctions are lost but neurons were produced at a normal rate (Imai et al., 2006).
LglControls basal localization of cell-fate determinants(Ohshiro et al., 2000; Peng et al., 2000).Lgl1Maintains cell polarity of RG cells. Loss of Lgl1 in mice results in formation of neuroepithelial rosette-like structures. A large proportion of Lgl1–/– neural progenitor cells fail to exit the cell cycle and differentiate, but continue to proliferate and die by apoptosis. Dividing Lgl1–/– cells are unable to asymmetrically localize Numb (Klezovitch et al., 2004).
Mitotic spindle positioningInscInscuteable tethers together the Par and Pins complexes at the apical side. Loss of Insc results in misoriented mitotic spindles and randomized crescents of determinants. Ectopic expression of Insc in epithelial cells triggers a reorientation of the mitotic spindle into an apical-basal direction (Kraut et al., 1996).mInscOrients mitotic spindles in retinal progenitors and RG cells:1) In rat retinal explants, downregulation of mInsc inhibits vertical divisions and leads to proliferation and cell fate specification defects (Zigman et al., 2005).2) Loss of mInsc results in defects of neurogenesis and depletion of basal progenitors. mInsc overexpression leads to expansion of basal progenitors (Postiglione et al., 2011).
PinsPins and Inscuteable are dependent on each other for asymmetric localization in neuroblasts. In Pins mutants, neuroblasts showed defects in the orientation of their mitotic spindle and the basal asymmetric localization of Numb and Miranda (Schaefer et al., 2000; Yu et al., 2000).LGN(Gpsm2)Maintains planar divisions and RG cell fates.Knocking out LGN randomized the orientation of normally planar divisions of RG cells. The resultant loss of the apical membrane from daughter cells converted them into abnormally localized progenitors without affecting neuronal production rate (Konno et al., 2008).
Ags3(Gpsm1)Receptor-independent activators of Gβγ signaling. Regulates spindle orientation and asymmetric cell fate of RG cells (Sanada and Tsai, 2005).
Hetero-trimeric G proteinsThe signaling mediated by the Gβ subunit of heterotrimeric G proteins determines asymmetric spindle formation. Lack of Gβ induces a large symmetric spindle and causes division into nearly equal-sized cells with normal segregation of the determinants (Fuse et al., 2003).Interfering with G protein function by Gαi overexpression or depletion of heterotrimeric G protein complexes causes defects in spindle orientation and asymmetric localization of determinants (Schaefer et al., 2001).Hetero-trimeric G proteinsInterfering with Gβγ function in mouse neural progenitors causes a shift in spindle orientation from apical-basal divisions to planar divisions. This results in overproduction of neurons as a consequence of both daughter cells adopting the neuronal fate (Sanada and Tsai, 2005).
Cell fate determinationMirandaDirects the basal cortical localization of multiple molecules, including Staufen and prospero RNA, in mitotic neuroblasts in an actin-dependent manner(Ikeshima-Kataoka et al., 1997; Shen et al., 1997).N/AN/A
Numb1) Specifies cell fates in the development of central and peripheral nervous system and myogenic lineage by antagonizing Notch signaling (Rhyu et al., 1994; Knoblich et al., 1995; Ruiz Gómez and Bate, 1997).2) Numb mutation results in overproliferation of neuroblasts and tumor formation in larval brain (Bowman et al., 2008).Numb &Numbl1) Numb and Numbl are redundant in asymmetric cell-fate specification of neural precursors.2) Numb loss leads to depletion or hyperproliferation of neural progenitor cells in different genetic settings (Petersen et al., 2002; Li et al., 2003; Petersen et al., 2004).3) Numb may be also required for maintenance of cadherin-based adhesion and polarity of RG cells (Rasin et al., 2007).
ProsperoAs a homeodomain-containing transcription factor, prospero represses genes required for self-renewal and activates genes for terminal differentiation. Loss of prospero causes neuroblast overproliferation (Doe et al., 1991; Choksi et al., 2006).Prox1 & Prox21) Inhibit progenitor cell proliferation and promote horizontal cell genesis in the mouse retina (Dyer et al., 2003).2) Prox1 mediates suppression of Notch1, thus relieves Notch’s inhibition on neurogenesis and allows NPCs to exit the cell cycle and differentiate in chick and mouse spinal cords (Kaltezioti et al., 2010).
StaufenMediates asymmetric localization and segregation of prospero RNA but not of Pros protein (Li et al., 1997; Broadus et al., 1998).Stau1 & Stau2Both are RNA binding proteins. Stau1 mediates mRNA decay including mRNA of ADP-ribosylation factor-1 (ARF1) (Kim et al., 2005; Gong and Maquat, 2011; Cho et al., 2012).
BratPromotes neuronal differentiation and inhibits neuroblast self-renewal by inhibiting dMyc (Betschinger et al., 2006; Lee et al., 2006).Trim32Induces neuronal differentiation by inhibiting c-Myc and activating let-7 (Schwamborn et al., 2009).
Tab.2  
1 Anthony T E, Klein C, Fishell G, Heintz N (2004). Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron , 41(6): 881-890
doi: 10.1016/S0896-6273(04)00140-0 pmid:15046721
2 Betschinger J, Knoblich J A (2004). Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Current Biology , CB 14: R674-685
3 Betschinger J, Mechtler K, Knoblich J A (2006). Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell , 124(6): 1241-1253
doi: 10.1016/j.cell.2006.01.038 pmid:16564014
4 Bowman S K, Rolland V, Betschinger J, Kinsey K A, Emery G, Knoblich J A (2008). The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev Cell , 14(4): 535-546
doi: 10.1016/j.devcel.2008.03.004 pmid:18342578
5 Broadus J, Fuerstenberg S, Doe C Q (1998). Staufen-dependent localization of prospero mRNA contributes to neuroblast daughter-cell fate. Nature , 391(6669): 792-795
doi: 10.1038/35861 pmid:9486649
6 Bultje R S, Castaneda-Castellanos D R, Jan L Y, Jan Y N, Kriegstein A R, Shi S H (2009). Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron , 63(2): 189-202
doi: 10.1016/j.neuron.2009.07.004 pmid:19640478
7 Cappello S, Attardo A, Wu X, Iwasato T, Itohara S, Wilsch-Br?uninger M, Eilken H M, Rieger M A, Schroeder T T, Huttner W B, Brakebusch C, G?tz M (2006). The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nat Neurosci , 9(9): 1099-1107
doi: 10.1038/nn1744 pmid:16892058
8 Chenn A, McConnell S K (1995). Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell , 82(4): 631-641
doi: 10.1016/0092-8674(95)90035-7 pmid:7664342
9 Cho H, Kim K M, Han S, Choe J, Park S G, Choi S S, Kim YK (2012). Staufen1-Mediated mRNA Decay Functions in Adipogenesis. Molecular cell , 46(4):495-506
10 Choksi S P, Southall T D, Bossing T, Edoff K, de Wit E, Fischer B E, van Steensel B, Micklem G, Brand A H (2006). Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Dev Cell , 11(6): 775-789
doi: 10.1016/j.devcel.2006.09.015 pmid:17141154
11 Costa M R, Wen G, Lepier A, Schroeder T, G?tz M (2008). Par-complex proteins promote proliferative progenitor divisions in the developing mouse cerebral cortex. Development , 135(1): 11-22
doi: 10.1242/dev.009951 pmid:18032449
12 Delattre M, G?nczy P (2004). The arithmetic of centrosome biogenesis. J Cell Sci , 117(9): 1619-1630
doi: 10.1242/jcs.01128 pmid:15075224
13 Doe C Q, Chu-LaGraff Q, Wright D M, Scott M P (1991). The prospero gene specifies cell fates in the Drosophila central nervous system. Cell , 65(3): 451-464
doi: 10.1016/0092-8674(91)90463-9 pmid:1673362
14 Dyer M A, Livesey F J, Cepko C L, Oliver G (2003). Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nat Genet , 34(1): 53-58
doi: 10.1038/ng1144 pmid:12692551
15 Englund C, Fink A, Lau C, Pham D, Daza R A, Bulfone A, Kowalczyk T, Hevner R F (2005). Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. The Journal of neuroscience: the official journal of the Society for Neuroscience , 25: 247-251
16 Fietz S A, Huttner W B (2011). Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Curr Opin Neurobiol , 21(1): 23-35
doi: 10.1016/j.conb.2010.10.002 pmid:21036598
17 Fietz S A, Kelava I, Vogt J, Wilsch-Br?uninger M, Stenzel D, Fish J L, Corbeil D, Riehn A, Distler W, Nitsch R, Huttner W B (2010). OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci , 13(6): 690-699
doi: 10.1038/nn.2553 pmid:20436478
18 Fish J L, Kosodo Y, Enard W, P??bo S, Huttner W B (2006). Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc Natl Acad Sci USA , 103(27): 10438-10443
doi: 10.1073/pnas.0604066103 pmid:16798874
19 Fuse N, Hisata K, Katzen A L, Matsuzaki F (2003). Heterotrimeric G proteins regulate daughter cell size asymmetry in Drosophila neuroblast divisions. Current Biology , CB(13): 947-954
20 Gal J S, Morozov Y M, Ayoub A E, Chatterjee M, Rakic P, Haydar T F (2006). Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. The Journal of neuroscience: the official journal of the Society for Neuroscience , 26: 1045-1056
21 Gong C, Maquat L E (2011). lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature , 470(7333): 284-288
doi: 10.1038/nature09701 pmid:21307942
22 G?tz M, Huttner W B (2005). The cell biology of neurogenesis. Nat Rev Mol Cell Biol , 6(10): 777-788
doi: 10.1038/nrm1739 pmid:16314867
23 Hansen D V, Lui J H, Parker P R, Kriegstein A R (2010). Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature , 464(7288): 554-561
doi: 10.1038/nature08845 pmid:20154730
24 Huttner W B, Brand M (1997). Asymmetric division and polarity of neuroepithelial cells. Curr Opin Neurobiol , 7(1): 29-39
doi: 10.1016/S0959-4388(97)80117-1 pmid:9039800
25 Ikeshima-Kataoka H, Skeath J B, Nabeshima Y, Doe C Q, Matsuzaki F (1997). Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature , 390(6660): 625-629
doi: 10.1038/37641 pmid:9403694
26 Imai F, Hirai S, Akimoto K, Koyama H, Miyata T, Ogawa M, Noguchi S, Sasaoka T, Noda T, Ohno S (2006). Inactivation of aPKClambda results in the loss of adherens junctions in neuroepithelial cells without affecting neurogenesis in mouse neocortex. Development , 133(9): 1735-1744
doi: 10.1242/dev.02330 pmid:16571631
27 Kaltezioti V, Kouroupi G, Oikonomaki M, Mantouvalou E, Stergiopoulos A, Charonis A, Rohrer H, Matsas R, Politis P K (2010). Prox1 regulates the notch1-mediated inhibition of neurogenesis. PLoS Biol , 8(12): e1000565
doi: 10.1371/journal.pbio.1000565 pmid:21203589
28 Kim Y K, Furic L, Desgroseillers L, Maquat L E (2005). Mammalian Staufen1 recruits Upf1 to specific mRNA 3’UTRs so as to elicit mRNA decay. Cell , 120(2): 195-208
doi: 10.1016/j.cell.2004.11.050 pmid:15680326
29 Klezovitch O, Fernandez T E, Tapscott S J, Vasioukhin V (2004). Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev , 18(5): 559-571
doi: 10.1101/gad.1178004 pmid:15037549
30 Knoblich J A (2008). Mechanisms of asymmetric stem cell division. Cell , 132(4): 583-597
doi: 10.1016/j.cell.2008.02.007 pmid:18295577
31 Knoblich J A, Jan L Y, Jan Y N (1995). Asymmetric segregation of Numb and Prospero during cell division. Nature , 377(6550): 624-627
doi: 10.1038/377624a0 pmid:7566172
32 Konno D, Shioi G, Shitamukai A, Mori A, Kiyonari H, Miyata T, Matsuzaki F (2008). Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat Cell Biol , 10(1): 93-101
doi: 10.1038/ncb1673 pmid:18084280
33 Kraut R, Chia W, Jan L Y, Jan Y N, Knoblich J A (1996). Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature , 383(6595): 50-55
doi: 10.1038/383050a0 pmid:8779714
34 Kuchinke U, Grawe F, Knust E (1998). Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Current biology , CB(8): 1357-1365
35 Lee C Y, Wilkinson B D, Siegrist S E, Wharton R P, Doe C Q (2006). Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. Dev Cell , 10(4): 441-449
doi: 10.1016/j.devcel.2006.01.017 pmid:16549393
36 Li H S, Wang D, Shen Q, Schonemann M D, Gorski J A, Jones K R, Temple S, Jan L Y, Jan Y N (2003). Inactivation of Numb and Numblike in embryonic dorsal forebrain impairs neurogenesis and disrupts cortical morphogenesis. Neuron , 40(6): 1105-1118
doi: 10.1016/S0896-6273(03)00755-4 pmid:14687546
37 Li P, Yang X, Wasser M, Cai Y, Chia W (1997). Inscuteable and Staufen mediate asymmetric localization and segregation of prospero RNA during Drosophila neuroblast cell divisions. Cell , 90(3): 437-447
doi: 10.1016/S0092-8674(00)80504-8 pmid:9267024
38 Lui J H, Hansen D V, Kriegstein A R (2011). Development and evolution of the human neocortex. Cell , 146(1): 18-36
doi: 10.1016/j.cell.2011.06.030 pmid:21729779
39 Meraldi P, Nigg E A (2002). The centrosome cycle. FEBS Lett , 521(1-3): 9-13
doi: 10.1016/S0014-5793(02)02865-X pmid:12067716
40 Morin X, Jaouen F, Durbec P (2007). Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nat Neurosci , 10(11): 1440-1448
doi: 10.1038/nn1984 pmid:17934458
41 Noctor S C, Martínez-Cerde?o V, Ivic L, Kriegstein A R (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci , 7(2): 136-144
doi: 10.1038/nn1172 pmid:14703572
42 Ohshiro T, Yagami T, Zhang C, Matsuzaki F (2000). Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast. Nature , 408(6812): 593-596
doi: 10.1038/35046087 pmid:11117747
43 Peng C Y, Manning L, Albertson R, Doe C Q (2000). The tumour-suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Nature , 408(6812): 596-600
doi: 10.1038/35046094 pmid:11117748
44 Petersen P H, Zou K, Hwang J K, Jan Y N, Zhong W (2002). Progenitor cell maintenance requires numb and numblike during mouse neurogenesis. Nature , 419(6910): 929-934
doi: 10.1038/nature01124 pmid:12410312
45 Petersen P H, Zou K, Krauss S, Zhong W (2004). Continuing role for mouse Numb and Numbl in maintaining progenitor cells during cortical neurogenesis. Nat Neurosci , 7(8): 803-811
doi: 10.1038/nn1289 pmid:15273690
46 Petronczki M, Knoblich J A (2001). DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nat Cell Biol , 3(1): 43-49
doi: 10.1038/35050550 pmid:11146625
47 Postiglione M P, Jüschke C, Xie Y, Haas G A, Charalambous C, Knoblich J A (2011). Mouse inscuteable induces apical-basal spindle orientation to facilitate intermediate progenitor generation in the developing neocortex. Neuron , 72(2): 269-284
doi: 10.1016/j.neuron.2011.09.022 pmid:22017987
48 Rasin M R, Gazula V R, Breunig J J, Kwan K Y, Johnson M B, Liu-Chen S, Li H S, Jan L Y, Jan Y N, Rakic P, Sestan N (2007). Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nat Neurosci , 10(7): 819-827
doi: 10.1038/nn1924 pmid:17589506
49 Rebollo E, Sampaio P, Januschke J, Llamazares S, Varmark H, González C (2007). Functionally unequal centrosomes drive spindle orientation in asymmetrically dividing Drosophila neural stem cells. Dev Cell , 12(3): 467-474
doi: 10.1016/j.devcel.2007.01.021 pmid:17336911
50 Rhyu M S, Jan L Y, Jan Y N (1994). Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell , 76(3): 477-491
doi: 10.1016/0092-8674(94)90112-0 pmid:8313469
51 Rolls M M, Albertson R, Shih H P, Lee C Y, Doe C Q (2003). Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia. J Cell Biol , 163(5): 1089-1098
doi: 10.1083/jcb.200306079 pmid:14657233
52 Ruiz Gómez M, Bate M (1997). Segregation of myogenic lineages in Drosophila requires numb. Development , 124(23): 4857-4866
pmid:9428422
53 Sanada K, Tsai L H (2005). G protein betagamma subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell , 122(1): 119-131
doi: 10.1016/j.cell.2005.05.009 pmid:16009138
54 Schaefer M, Petronczki M, Dorner D, Forte M, Knoblich J A (2001). Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell , 107(2): 183-194
doi: 10.1016/S0092-8674(01)00521-9 pmid:11672526
55 Schaefer M, Shevchenko A, Shevchenko A, Knoblich J A (2000). A protein complex containing Inscuteable and the Galpha-binding protein Pins orients asymmetric cell divisions in Drosophila. Current biology , CB(10): 353-362
56 Schober M, Schaefer M, Knoblich J A (1999). Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature , 402(6761): 548-551
doi: 10.1038/990135 pmid:10591217
57 Schwamborn J C, Berezikov E, Knoblich J A (2009). The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell , 136(5): 913-925
doi: 10.1016/j.cell.2008.12.024 pmid:19269368
58 Shen C P, Jan L Y, Jan Y N (1997). Miranda is required for the asymmetric localization of Prospero during mitosis in Drosophila. Cell , 90(3): 449-458
doi: 10.1016/S0092-8674(00)80505-X pmid:9267025
59 Shen Q, Wang Y, Dimos J T, Fasano C A, Phoenix T N, Lemischka I R, Ivanova N B, Stifani S, Morrisey E E, Temple S (2006). The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci , 9(6): 743-751
doi: 10.1038/nn1694 pmid:16680166
60 Shi S H, Jan L Y, Jan Y N (2003). Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell , 112(1): 63-75
doi: 10.1016/S0092-8674(02)01249-7 pmid:12526794
61 Solecki D J, Model L, Gaetz J, Kapoor T M, Hatten M E (2004). Par6alpha signaling controls glial-guided neuronal migration. Nat Neurosci , 7(11): 1195-1203
doi: 10.1038/nn1332 pmid:15475953
62 Stancik E K, Navarro-Quiroga I, Sellke R, Haydar T F (2010). Heterogeneity in ventricular zone neural precursors contributes to neuronal fate diversity in the postnatal neocortex. The Journal of neuroscience: the official journal of the Society for Neuroscience , 30: 7028-7036
63 Wang X, Tsai J W, Imai J H, Lian W N, Vallee R B, Shi S H (2009). Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature , 461(7266): 947-955
doi: 10.1038/nature08435 pmid:19829375
64 Wang X, Tsai J W, LaMonica B, Kriegstein A R (2011). A new subtype of progenitor cell in the mouse embryonic neocortex. Nat Neurosci , 14(5): 555-561
doi: 10.1038/nn.2807 pmid:21478886
65 Wodarz A, Ramrath A, Grimm A, Knust E (2000). Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J Cell Biol , 150(6): 1361-1374
doi: 10.1083/jcb.150.6.1361 pmid:10995441
66 Wodarz A, Ramrath A, Kuchinke U, Knust E (1999). Bazooka provides an apical cue for inscuteable localization in Drosophila neuroblasts. Nature , 402(6761): 544-547
doi: 10.1038/990128 pmid:10591216
67 Yu F, Morin X, Cai Y, Yang X, Chia W (2000). Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell , 100(4): 399-409
doi: 10.1016/S0092-8674(00)80676-5 pmid:10693757
68 Zhong W, Chia W (2008). Neurogenesis and asymmetric cell division. Curr Opin Neurobiol , 18(1): 4-11
doi: 10.1016/j.conb.2008.05.002 pmid:18513950
69 Zigman M, Cayouette M, Charalambous C, Schleiffer A, Hoeller O, Dunican D, McCudden C R, Firnberg N, Barres B A, Siderovski D P, Knoblich J A (2005). Mammalian inscuteable regulates spindle orientation and cell fate in the developing retina. Neuron , 48(4): 539-545
doi: 10.1016/j.neuron.2005.09.030 pmid:16301171
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed