Leuconostoc spp. (LS1and LI1) isolated from sauerkraut and idli batter was selected for dextran production. To enhance the yield of dextran, effects of various parameters such as sucrose concentration, pH, temperature, incubation and inoculum percentage were analyzed. The optimum sucrose concentration for the Leuconostoc spp. (LS1 and LI1) was found to be 15% and 25% respectively. Isolates produced maximum dextran after 20 h of incubation at 29°C and the optimum pH was found between 8 and 8.5. The inoculum concentration of 7.5% was more favorable for the production of dextran by Leuconostoc spp. (LS1 and LI1). The growth kinetic parameters were studied and compared for the strains LS1 and LI1. Mass production of dextran was carried out using a stirred tank batch reactor. FTIR analysis was done to determine the functional groups of dextran. sephadex is prepared by cross linking dextran using epichlorohydrin and the functional groups are determined by FTIR analysis.
. [J]. Frontiers in Biology, 2014, 9(3): 244-253.
C. SUBATHRA DEVI,Shantan REDDY,V. MOHANASRINIVASAN. Fermentative production of dextran using Leuconostoc spp. isolated from fermented food products. Front. Biol., 2014, 9(3): 244-253.
Positive control (Leuconostoc mesenteroides NCIM2947)
Isolate from sauerkraut (LS1)
Isolate from idli batter (LI1)
1
Grams staining
Purple chains of cocci
Purple chains of cocci
Purple chains of cocci
2
Blood agar
Non hemolytic
Non hemolytic
Non hemolytic
3
MRS agar
Gummy colonies
Gummy colonies
Gummy colonies
4
Indole test
Negative
Negative
Negative
5
MR test
Negative
Negative
Negative
6
VP test
Positive
Positive
Positive
7
Citrate utilization test
Negative
Negative
Negative
8
Eschulin hydrolysis test
Positive
Positive
Positive
9
Catalase test
Negative
Negative
Negative
10
Sucrose fermentation
Positive
Positive
Positive
11
Glucose fermentation
Positive
Positive
Positive
12
Lactose fermentation
Positive
Positive
Positive
13
Arabinose fermentation
Positive
Positive
Positive
14
Maltose fermentation
Positive
Positive
Positive
15
Mannitol fermentation
Negative
Negative
Negative
Tab.1
Fig.2
Fig.3
MRS Broth
Leuconostoc mesenteroides NCIM 2947
Isolate from sauerkraut (LS1)
Isolate form idli batter (LI1)
Generation time (min)
120
70
90
Growth rate constant (h-1)
0.2
0.3
0.3
Doubling time (h)
5
3.33
3.33
Production broth
Leuconostoc mesenteroides NCIM 2947
Isolate from sauerkraut (LS1)
Isolate form idli batter (LI1)
Generation time (min)
120
70
130
Growth rate constant (h-1)
0.2
0.171
0.185
Doubling time (h)
5
5.84
5.416
Tab.2
Leuconostoc mesenteroides NCIM 2947
Leuconostoc spp. (LS1)from sauerkraut
Leuconostoc spp (LI1) form idli batter
Amount of dextran produced (g/100mL)
0.186
0.206
0.282
Tab.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10
Fig.11
Fig.12
Fig.13
1
AlsopR M (1983). Industrial Production of Dextrans. Prog Ind Microbiol, 18: 1-42
2
AmanA, SiddiquiN N, ShahA U Q (2011). Characterization and potential applications of high molecular weight dextran produced by Leuconostoc mesenteroides AA1. Carbohydr Polym, 87(1): 910-915 doi: 10.1016/j.carbpol.2011.08.094
3
GünerA, AkmanÖ, RzaevZ M O (2001). Crosslinking of dextran with some selective Cl-, P- and N-containing functional substances in aqueous solutions. React Funct Polym, 47(1): 55-65 doi: 10.1016/S1381-5148(00)00072-9
4
HalaszH, BarathA, HolzapfelW H (1999). The influence of starter culture selection on sauerkraut fermentation. Z Lebensm Unters Forsch, 208(5-6): 434-438 doi: 10.1007/s002170050443
5
HamasakiY, AyakiM, FuchuH, SugiyamaM, MoritaH (2003). Behaviour of psychrotrophic lactic acid bacteria isolated from spoiling cooked meat products. Appl Environ Microbiol, 69(6): 3668-3671 doi: 10.1128/AEM.69.6.3668-3671.2003
6
HoltJ G (1994). Group 17 Gram-Positive Cocci: Bergey's Manual of Determinative Bacteriology, ed 9th. Baltimore: William & Wilkins: 529-541
7
KaboliH, ReillyP (1980). Immobilization and properties of Leuconostoc mesenteroides dextransucrase. Biotechnol Bioeng, 22(5): 1055-1069 doi: 10.1002/bit.260220513
8
KatinaK, MainaN H, JuvonenR, FlanderL, JohanssonL, VirkkiL, TenkanenM, LaitilaA (2009). In situ production and analysis of Weissella confuse dextran in wheat sourdough. Food Microbiol, 26(7): 734-743 doi: 10.1016/j.fm.2009.07.008
9
KhanF, KhanamA, PariharM S, BilgainyaR, RaiK, KhanF (2010). Dissipative convective structures and nanoparticles encapsulation in Cu/alginate/dextran composite hydrogels and sponges. Carbohydr Polym, 83(2): 586-590 doi: 10.1016/j.carbpol.2010.08.021
10
KimD, DayDF (1994) A New process for the production of clinical dextran by mixed culture fermentation of Lipomyces starkeyi and Leuconostoc mesenteroides, Enzyme Microbial Technol16: 84\4-848.
11
KimD, RobytJ F, LeeS Y, LeeJ H, KimY M (2003). Dextran molecular size and degree of branching as a function of sucrose concentration, pH, and temperature of reaction of Leuconostoc mesenteroides B-512FMCM dextransucrase. Carbohydr Res, 338(11): 183-1189 doi: 10.1016/S0008-6215(03)00148-4
12
LeathersT D, HaymanG T, CoteG L (1995). Rapid screening of Leuconostoc mesenteroides mutants for elevated proportions of alternan to dextran. Curr Microbiol, 31(1): 19-22 doi: 10.1007/BF00294628
13
Martinez-EspindolaJ P, Lopez-ManguiaC A (1985). On the kinetics of dextransucrase and dextran synthesis in batch reactors. Biotechnol Lett, 7(7): 483-486 doi: 10.1007/BF01199863
14
NassabMarzeih Moosavi, GavahianMohsen, YousefiAli R. and AskariHamed (2010) Fermentative production of dextran using food industry wastes. World Acad Sci Eng Technol: 68.
15
SantosM J, TeixeiraJ, RodriguesA (2000). Production of dextransucrase,dextran and fructose from sucrose using Leuconostoc mesenteroides NRRL B512 (f). Biochem Eng J, 4(3): 177-188 doi: 10.1016/S1369-703X(99)00047-9
16
SarwatF, ShahA U Q, AmanA, AhmedN (2008). Production & Characterization of a Unique Dextran from an Indigenous Leuconostoc mesenteroides CMG713. Int J Biol Sci, 4: 379-386 doi: 10.7150/ijbs.4.379
17
Shah AliUL Qader, LubnaIqbal, AfsheenAman, ErumShireen, AbidAzhar (2005). Production of dextran by newly isolated strains of Leuconostoc mesenteroides PCSIR-4 and PCSIR-9. Turk J Biochem, 31(1): 21-26
18
SutherlandI W (1996). Extracellular polysaccharides. Biotechnol, 6(2): 145