Isolation and partial purification of fungal ligninolytic enzymes from the forest soil fungi isolated from Bhadra Wildlife Sanctuary
SHIVAKUMAR P. BANAKAR1,*(),B. THIPPESWAMY2
1. Department of Biosciences, Shri J.J.T. University, Vidyanagari, Chudela-333 001 Jhunjhunu (Dist.), Rajasthan, India 2. Department of Studies in Microbiology, Bioscience Complex, Kuvempu University, Jnanasahyadri, Shankaraghatta-577 451, Shivamogga (Dist.), Karnataka, India
Screening was done for the isolation of effective lignin degraders from the forest soil samples, by providing lignin as a carbon source through the enrichment method, which leads to the isolation of 8 effective fungal isolates among 14 isolates. Submerged fermentation was done for the production of ligninolytic enzymes with the effective microorganisms by providing Guiaicol as a carbon source. The assay of laccase, lignin peroxidise activity and specific activity was done after the incubation intervals of 2, 4, 6, 7, 8, 10 and 12 days at 27±2°C under shake culture condition. Partially purified protein content was estimated by using Lowry’s method. Pleurotus sp. and Phanerochaetae chrysosporium are more effective at the 2nd and 7th days of incubation for the production of laccase and lignin peroxidases among the effective isolates.
. [J]. Frontiers in Biology, 2014, 9(4): 291-299.
SHIVAKUMAR P. BANAKAR,B. THIPPESWAMY. Isolation and partial purification of fungal ligninolytic enzymes from the forest soil fungi isolated from Bhadra Wildlife Sanctuary. Front. Biol., 2014, 9(4): 291-299.
Abdel-Raheem A M, Ali E H (2004). Lignocellulolytic enzyme production by aquatic hyphomycetes species isolated from the Nile’s delta region. Mycopathologia, 157(3): 277-286 doi: 10.1023/B:MYCO.0000024178.62244.7c pmid: 15180156
2
Akin D E, Rigsby L L, Sethuraman A, Morrison W H 3rd, Gamble G R, Eriksson K E L (1995). Alterations in structure, chemistry, and biodegradability of grass lignocellulose treated with the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus. Appl Environ Microbiol, 61(4): 1591-1598 pmid: 7747973
3
Arora D S, Chander M, Gill P K (2002). Involvement of lignin peroxidase, manganese peroxidase and laccase in the degradation and selective ligninolysis of wheat straw. Int Bioterior Biodegrad, 50: 115-120
4
Bajpai P (2004). Biological bleaching of chemical pulps. Crit Rev Biotechnol, 24(1): 1-58 doi: 10.1080/07388550490465817 pmid: 15328766
5
Baldrian P, Gabriel J (2003). Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium. FEMS Microbiol Lett, 220(2): 235-240 doi: 10.1016/S0378-1097(03)00102-2 pmid: 12670686
6
Bergmeyer H U (1974). Methods of Enzymatic Analysis 1, 2nd Ed, New York: Academic Press, 1-495
7
Bosco F, Ruggeri B, Sassi G (1999). Performances of a trickle bed reactor (TBR) for exoenzyme production by Phanerochaete chrysosporium: influence of a superficial liquid velocity. Chem Eng Sci, 54(15-16): 3163-3169 doi: 10.1016/S0009-2509(98)00365-0
8
Carlsen M, Nielsen J (2001). Influence of carbon source on α-amylase production by Aspergillus oryzae. Appl Microbiol Biotechnol, 57(3): 346-349 doi: 10.1007/s002530100772 pmid: 11759683
9
Champion H G, Seth S K (1968). A Revised Survey of the forest types of India. New Delhi: Govt. of India Press, 1-404
10
Coll P M, Fernández-Abalos J M, Villanueva J R, Santamaría R, Pérez P (1993). Purification and characterization of a phenoloxidase (laccase) from the lignin-degrading basidiomycete PM1 (CECT 2971). Appl Environ Microbiol, 59(8): 2607-2613 pmid: 8368848
11
Das N, Sengupta S, Mukherjee M (1997). Importance of laccase in vegetative growth of pleurotus Florida. Appl Environ Microbiol, 63(10): 4120-4122 pmid: 16535720
12
Dhakar K, Pandey A (2013). Laccase Production from a Temperature and pH Tolerant Fungal Strain of Trametes hirsuta (MTCC 11397). Enzyme Res, 2013: 869062. Available at: doi: 10.1155/2013/869062 pmid: 23710343
13
Domsch K H, Gams W (1972). Fungi in Agricultural Soils. London: Longmans Green, 1-290
14
Dritsa V, Rigas F, Natsis K, Marchant R (2007). Characterization of a fungal strain isolated from a polyphenol polluted site. Bioresour Technol, 98(9): 1741-1747 doi: 10.1016/j.biortech.2006.07.025 pmid: 16935498
15
Eggert C, Temp U, Dean J F, Eriksson K E (1996a). A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett, 391(1-2): 144-148 doi: 10.1016/0014-5793(96)00719-3 pmid: 8706903
16
Eggert C, Temp U, Eriksson K E L (1996b). The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol, 62(4): 1151-1158 pmid: 8919775
17
Eisenlord S D, Freedman Z, Zak D R, Xue K, He Z, Zhou J (2013). Microbial mechanisms mediating increased soil C storage under elevated atmospheric N deposition. Appl Environ Microbiol, 79(4): 1191-1199 doi: 10.1128/AEM.03156-12 pmid: 23220961
18
Ellis M B (1971). Dematiaceous Hyphomycetes, Kew: Commonwealth Mycological Institute. England, 1-608
19
Ellis M B (1976). More Dematiaceous Hyphomycetes, Kew: Commonwealth Mycological Institute. England, 1-507
20
Ellis M B, Ellis J P (1997). Microfungi on Land Plants: An Identification Handbook. London: Croom Helm, Richmond Publishers, 1-868
21
Falcon M A, Rodriguez A, Carnicero A, Regalado V, Perestelo F, Milstein O, Fuente G L (1995). Isolation of microorganisms with lignin transformation potential from soil of Tenerife Island. Soil Biol Biochem, 27(2): 121-126 doi: 10.1016/0038-0717(94)00174-Y
22
Giardina P, Aurilia V, Cannio R, Marzullo L, Amoresano A, Siciliano R, Pucci P, Sannia G (1996). The gene, protein and glycan structures of laccase from Pleurotus ostreatus. Eur J Biochem, 235(3): 508-515 doi: 10.1111/j.1432-1033.1996.00508.x pmid: 8654395
23
Gilman J C (2001). A Manual of Soil Fungi, 2nd ed., <PublisherLocation><?Pub Caret?>New Delhi</PublisherLocation>: Biotech Books, 1-392
24
Gochev V K, Krastanov A I (2007). Fungal Laccases. Bulg J Agric Sci, 13: 75-83
25
Gold M H, Alic M (1993). Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev, 57(3): 605-622 pmid: 8246842
26
Hara T, Lim J Y, Fujio Y, Ueda S (1984). Purification and some properties of exopolygalacturonase from Aspergillus niger cultured in the medium containing Satsuna mandarin peel. 4th Conference on Recent Technologies in Agriculture, 31: 581-586
27
Howard R L, Abotsi E, Rensburg E L J V, Howard S (2003). Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol, 2: 602-619
28
Kerem Z, Friesem D, Hadar Y (1992). Lignocellulose Degradation during Solid-State Fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium. Appl Environ Microbiol, 58(4): 1121-1127 pmid: 16348683
29
Lowry O H, Rosebrough N J, Farr A L, Randall R J (1951). Protein measurement with the folin phenol regent. J Gen Microbiol, 131: 3017-3027
30
Lundell T, Hatakka A (1994). Participation of Mn(II) in the catalysis of laccase, manganese peroxidase and lignin peroxidase from Phelbia radiata. FEBS Lett, 348(3): 291-296 doi: 10.1016/0014-5793(94)00627-X pmid: 8034057
31
Metuku R P, Burra S, Nidadavolu, Bindu S V S S S L H, Pabba S, Singaracharya M A (2011). Selection of highest lignolytic white rot fungus and its molecular identification. J Cell Tissue Research, 11: 2557-2562
32
Moilanen A M, Lundell T, Vares T, Hatakka A (1996). A. Hatakka, Manganese and malonate are individual regulators for the production of lignin and manganese peroxidase isozymes and in the degradation of lignin by Phlebia radiate. Appl Microbiol Biotechnol, 45(6): 792-799 doi: 10.1007/s002530050764
33
Mu?oz C, Guillén F, Martínez A T, Martínez M J (1997). Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties, and participation in activation of molecular oxygen and Mn2+ oxidation. Appl Environ Microbiol, 63(6): 2166-2174 pmid: 9172335
34
Nagamani A, Kunwar I K, Manoharachary C (2006). Handbook of Soil Fungi. New Delhi: I. K. International Pvt. Ltd, 1-477
35
Novotny C, Svobodova K, Erbanova P, Cajthaml T, Kasinath A, Lang E, Sasek V (2004). Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem, 36(10): 1545-1551 doi: 10.1016/j.soilbio.2004.07.019
36
Patil N P, Chaudhari B L (2010). Production and purification of pectinase by soil isolate Penicillium sp. and search for better Agro-residue for its SSF. Rec Res Sci Technol, 2: 36-42
37
Périé F H, Reddy G V, Blackburn N J, Gold M H (1998). Purification and characterization of laccases from the white-rot basidiomycete Dichomitus squalens. Arch Biochem Biophys, 353(2): 349-355 doi: 10.1006/abbi.1998.0625 pmid: 9606969
38
Piontek K, Smith A T, Blodig W (2001). Lignin peroxidase structure and function. Biochem Soc Trans, 29(Pt 2): 111-116 doi: 10.1042/BST0290111 pmid: 11356137
39
Pitt J I (1979). The Genus Penicillium and its telomorphic states Eupenicillium and Talaromyces.London: Academic Press Inc Ltd, 1-634
40
Pointing S B, Jones E B G, Vrijmoed L L P (2000). Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture. Mycologia, 92(1): 139-144 doi: 10.2307/3761458
41
Pozdnyakova N N (2012). Involvement of the ligninolytic system of white-rot and litter-decomposing fungi in the degradation of polycyclic aromatic hydrocarbons. Biotechnol Res Int, 2012: 243217 doi: 10.1155/2012/243217 pmid: 22830035
42
Ruggeri B, Sassi G (2003). Experimental sensitivity analysis of a trickle bed bioreactor for lignin peroxidases production by Phanerochaetae chrysosporium. Process Biochem, 38(12): 1-8 doi: 10.1016/S0032-9592(02)00199-1
43
Sarkanen S, Razal R A, Piccariello T, Yamamoto E, Lewis N G (1991). Lignin peroxidase: toward a clarification of its role in vivo. J Biol Chem, 266(6): 3636-3643 pmid: 1995622
44
Tanaka H, Itakura S, Enoki A (1999). Hydroxyl radical generation by an extracellular low-molecular-weight substance and phenol oxidase activity during wood degradation by the white-rot basidiomycete Trametes versicolor. J Biotechnol, 75(1): 57-70 doi: 10.1016/S0168-1656(99)00138-8 pmid: 10704993
45
Thurston C F (1994). The structure and function of fungal laccases. Microbiology, 140(1): 19-26 doi: 10.1099/13500872-140-1-19
46
Tien M, Kirk T K (1988). Lignin peroxidase of Phanerochate chrysosporium. Methods Enzymol, 161: 238-249 doi: 10.1016/0076-6879(88)61025-1
47
Vicuna R (1988). Bacterial degradation of lignin. Enzyme Microb Technol, 10(11): 646-655 doi: 10.1016/0141-0229(88)90055-5
48
Wu J, Xiao Y Z, Yu H Q (2005). Degradation of lignin in pulp mill wastewaters by white-rot fungi on biofilm. Bioresour Technol, 96(12): 1357-1363 doi: 10.1016/j.biortech.2004.11.019 pmid: 15792583
49
Xavier A M R B, Tavares A P M, Ferreira R, Amado F (2007). Trametes versicolor growth and laccase induction with by-products of pulp and paper industry. Electron J Biotechnol, 10(3): 444-451 doi: 10.2225/vol10-issue3-fulltext-1
50
Yu Z, Zeng G M, Chen Y N, Zhang J C, Yu Y, Li H, Liu Z F, Tang L (2011). Effects of inoculation with Phanerochaete chrysosporium on remediation of pentachlorophenol-contaminated soil waste by composting. Process Biochem, 46(6): 1285-1291 doi: 10.1016/j.procbio.2011.02.018
51
Zadrazil F, Gonser A, Lang E (1999). Influence of incubation temperature on the secretion of extracellulare lignolytic enzymes of Pleurotus and Dichomitus squalus into soil. Granada, Spain: Proceedings of the Conference on Enzymes in the environment
52
Zimmermann W (1990). Degradation of lignin by bacteria. J Biotechnol, 13(2-3): 119-130 doi: 10.1016/0168-1656(90)90098-V