BACKGROUND: Periodontitis i.e. inflammation of the periodontium is a multifactorial disease. Antimicrobial peptides (AMPs) which demonstrate a broad-spectrum of activity against varied number of bacteria, fungi, viruses, and parasites, and cancerous cells have been linked to periodontitis. The AMPs even possess the caliber of immunomodulation, and are significantly responsive to innate immuno-stimulation and infections. LL-37 plays a salubrious role by preventing and in treatment of chronic forms of periodontitis.
OBJECTIVE: In the present work we will review the role of antimicrobial peptide LL-37 in periodontitis.
METHODS: A systematic search was carried out from the beginning till August, 2016 using the Pubmed search engine. The keywords included “LL-37,” “periodontitis,” “Papillon–Lefevre syndrome,” “Morbus Kostmann,” “Haim-Munk syndrome” along with use of Boolean operator “and.”
RESULTS: The search resulted in identifying 67 articles which included articles linking LL-37 with periodontitis, articles on Papillon–Lefevre syndrome, Morbus Kostmann, Haim-Munk syndrome, LL-37 and periodontitis and articles on pathogenicity of periodontitis.
CONCLUSION: The literature search concluded that LL-37 plays a pivotal role in preventing and treatment of severe form of periodontitis.
. [J]. Frontiers in Biology, 2017, 12(2): 116-123.
Hansa Jain. Cationic antimicrobial peptide: LL-37 and its role in periodontitis. Front. Biol., 2017, 12(2): 116-123.
Sorensen O E, Clemmensen S N, Dahl S L, Ostergaard O, Heegaard N H , Glenthoj A , Nielsen F C , Borregaard N (2014). Papillon-Lefèvre syndrome patient reveals species-dependent requirements for neutrophil defenses. J Clin Invest, 124(10): 4539–4548 https://doi.org/10.1172/JCI76009
57
Takeuchi Y, Nagasawa T, Katagiri S , Kitagawara S , Kobayashi H , Koyanagi T , Izumi Y (2012). Salivary levels of antibacterial peptide (LL-37/hCAP-18) and cotinine in patients with chronic periodontitis. J Periodontol, 83(6): 766–772 https://doi.org/10.1902/jop.2011.100767
58
Tao R, Jurevic R J, Coulton K K, Tsutsui M T, Roberts M C, Kimball J R, Wells N, Berndt J , Dale B A (2005). Salivary antimicrobial peptide expression and dental caries experience in children. Antimicrob Agents Chemother, 49(9): 3883–3888 https://doi.org/10.1128/AAC.49.9.3883-3888.2005
59
Turkoglu O, Berdeli A, Emingil G , Atilla G (2011). A novel p.S34N mutation of CAMP gene in patients with periodontal disease. Arch Oral Biol, 56(6): 573–579 https://doi.org/10.1016/j.archoralbio.2010.11.016
60
Turkoglu O, Emingil G, Kutukçuler N, Atilla G (2009). Gingival crevicular fluid levels of cathelicidin LL-37 and interleukin-18 in patients with chronic periodontitis. J Periodontol, 80(6): 969–976 https://doi.org/10.1902/jop.2009.080532
61
Turkoglu O, Gurkan A, Emingil G , Afacan B , Toz H, Kutukçuler N, Atilla G (2015). Are antimicrobial peptides related to cyclosporine A-induced gingival overgrowth? Arch Oral Biol, 60(3): 508–515 https://doi.org/10.1016/j.archoralbio.2014.12.007
1
Al Aboud K, Al Aboud D (2011). Salim Haim and the syndrome that bears his name. Dermatol Online J, 17: 15
62
Turkoglu O, Kandiloglu G, Berdeli A , Emingil G , Atilla G (2011). Antimicrobial peptide hCAP-18/LL-37 protein and mRNA expressions in different periodontal diseases. Oral Dis, 17(1): 60–67 https://doi.org/10.1111/j.1601-0825.2010.01704.x
63
Turner J, Cho Y, Dinh N N , Waring A J , Lehrer R I (1998). Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother, 42: 2206–2214
64
Usher A K, Stockley R A (2013). The link between chronic periodontitis and COPD: a common role for the neutrophil? BMC Med, 11(1): 241 https://doi.org/10.1186/1741-7015-11-241
65
Ximenez-Fyvie L A , Haffajee A D , Socransky S S (2000). Microbial composition of supra- and subgingival plaque in subjects with adult periodontitis. J Clin Periodontol, 27(10): 722–732 https://doi.org/10.1034/j.1600-051x.2000.027010722.x
66
Yılmaz D, Guncu GN, Kononen E , Barış E , Çaglayan F , Gursoy UK (2015). Overexpressions of hBD-2, hBD-3, and hCAP18/LL-37 in gingiva of diabetics with periodontitis. Immunobiology, pii: S0171–2985: 30010–3
67
Zetterstrom R (2002). Kostmann disease-infantile genetic agranulocytosis: historical views and new aspects. Acta Paediatr, 91(12): 1279–1281 https://doi.org/10.1080/08035250216106
2
Aswath N, Swamikannu B, Ramakrishnan S N , Shanmugam R , Thomas J , Ramanathan A (2014). Heterozygous Ile453Val codon mutation in exon 7, homozygous single nucleotide polymorphisms in intron 2 and 5 of cathepsin C are associated with Haim-Munk syndrome. Eur J Dent, 8(1): 79–84 https://doi.org/10.4103/1305-7456.126250
3
Bals R, Wang X, Zasloff M , Wilson J M (1998). The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broadantimicrobial activity at the airway surface. Proc Natl Acad Sci USA, 95(16): 9541–9546 https://doi.org/10.1073/pnas.95.16.9541
4
Band V I, Weiss D S (2015). Mechanisms of antimicrobial peptide resistance in Gram-negative bacteria. Antibiotics (Basel), 4(1): 18–41 https://doi.org/10.3390/antibiotics4010018
5
Bedran T B, Mayer M P, Spolidorio D P, Grenier D (2014). Synergistic anti-inflammatory activity of the antimicrobial peptides human beta-defensin-3 (hBD-3) and cathelicidin (LL-37) in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts. PLoS One, 9(9): e106766 https://doi.org/10.1371/journal.pone.0106766
6
Bevec D, Cavalli F, Cavalli V , Bacher G (2008). Use of peptide ll-37 as a therapeutic agent. U.S. Patent Application 12/677,802, filed September 9
7
Carlsson G, Andersson M, Putsep K , Garwicz D , Nordenskjold M , Henter J I , Palmblad J , Fadeel B (2006). Kostmann syndrome or infantile genetic agranulocytosis, part one: celebrating 50 years of clinical and basic research on severe congenital neutropenia. Acta Paediatr, 95(12): 1526–1532 https://doi.org/10.1080/08035250601087607
Chung W O, Dommisch H, Yin L , Dale B A (2007). Expression of defensins in gingiva and their role in periodontal health and disease. Curr Pharm Des, 13(30): 3073–3083 https://doi.org/10.2174/138161207782110435
10
Dahiya P, Kamal R, Gupta R , Bhardwaj R , Chaudhary K , Kaur S (2013). Reactive oxygen species in periodontitis. J Indian Soc Periodontol, 17(4): 411–416 https://doi.org/10.4103/0972-124X.118306
Dale B A, Kimball J R, Krisanaprakornkit S, Roberts F , Robinovitch M , O’Neal R , Valore E V , Ganz T, Anderson G M, Weinberg A (2001). Localized antimicrobial peptide expression in human gingiva. J Periodontal Res, 36(5): 285–294 https://doi.org/10.1034/j.1600-0765.2001.360503.x
13
Davidopoulou S, Diza E, Menexes G , Kalfas S (2012). Salivary concentration of the antimicrobial peptide LL-37 in children. Arch Oral Biol, 57(7): 865–869 https://doi.org/10.1016/j.archoralbio.2012.01.008
14
De Yang C Q , Chen Q, Schmidt A P, Anderson G M, Wang J M, Wooters J, Oppenheim J J , Chertov O (2000). LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1(FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med, 192(7): 1069–1074 https://doi.org/10.1084/jem.192.7.1069
15
Eick S, Puklo M, Adamowicz K , Kantyka T , Hiemstra P , Stennicke H , Guentsch A , Schacher B , Eickholz P , Potempa J (2014). Lack of cathelicidin processing in Papillon-Lefèvre syndrome patients reveals essential role of LL-37 inperiodontal homeostasis. Orphanet J Rare Dis, 9(1): 148 https://doi.org/10.1186/s13023-014-0148-y
16
Frohm M, Agerberth B, Ahangari G , Stahle-Backdahl M , Liden S , Wigzell H , Gudmundsson G H (1997). The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes duringinflammatory disorders. J Biol Chem, 272(24): 15258–15263 https://doi.org/10.1074/jbc.272.24.15258
17
Godaly G, Ambite I, Svanborg C (2015). Innate immunity and genetic determinants of urinary tract infection susceptibility. See comment in PubMed Commons below. Curr Opin Infect Dis, 28: 88–96
Greer A, Zenobia C, Darveau R P (2013). Defensins and LL-37: a review of function in the gingival epithelium. Periodontol 2000, 63(1): 67–79 https://doi.org/10.1111/prd.12028
21
Gronberg A, Mahlapuu M, Stahle M , Whately-Smith C , Rollman O (2014). Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: a randomized, placebo-controlled clinical trial. Wound Repair Regen, 22(5): 613–621 https://doi.org/10.1111/wrr.12211
22
Gutner M, Chaushu S, Balter D , Bachrach G (2009). Saliva enables the antimicrobial activity of LL-37 in the presence of proteases of Porphyromonas gingivalis. Infect Immun, 77(12): 5558–5563 https://doi.org/10.1128/IAI.00648-09
23
Guzman-Rodriguez J J , Ochoa-Zarzosa A , Lopez-Gomez R , Lopez-Meza J E (2015). Plant antimicrobial peptides as potential anticancer agents. BioMed Res Int, 735087 https://doi.org/10.1155/2015/735087
24
Guzman-Rodriguez J J , Ochoa-Zarzosa A , Lopez-Gomez R , Lopez-Meza J E (2015). Plant antimicrobial peptides as potential anticancer agents. BioMed Res Int, 735087 https://doi.org/10.1155/2015/735087
Hatipoglu M, Saglam M, Koseoglu S , Koksal E , Keleş A , Esen H H (2015). The effectiveness of Crataegus orientalis M Bieber. (Hawthorn) extract administration in preventing alveolar bone loss in rats with experimental periodontitis. PLoS One, 10(6): e0128134 https://doi.org/10.1371/journal.pone.0128134
27
Henzler Wildman K A , Lee D K , Ramamoorthy A (2003). Mechanism of lipid bilayer disruption by human antimicrobial peptide, LL-37. Biochemistry, 42(21): 6545–6558 https://doi.org/10.1021/bi0273563
28
Inomata M, Into T, Murakami Y (2010). Suppressive effect of the antimicrobial peptide LL-37 on expression of IL-6, IL-8 and CXCL10 induced by Porphyromonas gingivalis cells and extracts in human gingival fibroblasts. Eur J Oral Sci, 118(6): 574–581 https://doi.org/10.1111/j.1600-0722.2010.00775.x
29
Into T, Inomata M, Shibata K , Murakami Y (2010). Effect of the antimicrobial peptide LL-37 on Toll-like receptors 2-, 3- and 4-triggered expression of IL-6, IL-8 andCXCL10 in human gingival fibroblasts. Cell Immunol, 264(1): 104–109 https://doi.org/10.1016/j.cellimm.2010.05.005
Khan F Y, Jan S M, Mushtaq M (2012). Papillon-Lefèvre syndrome: Case report and review of the literature. J Indian Soc Periodontol, 16(2): 261–265 https://doi.org/10.4103/0972-124X.99273
32
Koczulla R, von Degenfeld G, Kupatt C , Krotz F , Zahler S , Gloe T, Issbrucker K, Unterberger P , Zaiou M , Lebherz C , Karl A, Raake P, Pfosser A , Boekstegers P , Welsch U , Hiemstra P S , Vogelmeier C , Gallo R L , Clauss M , Bals R (2003). An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest, 111(11): 1665–1672 https://doi.org/10.1172/JCI17545
33
Koziel J, Karim A Y, Przybyszewska K, Ksiazek M , Rapala-Kozik M , Nguyen K A , Potempa J (2010). Proteolytic inactivation of LL-37 by karilysin, a novel virulence mechanism of Tannerella forsythia. J Innate Immun, 2(3): 288–293 https://doi.org/10.1159/000281881
34
Leszczynska K, Namiot A, Janmey P A , Bucki R (2010). Modulation of exogenous antibiotic activity by host cathelicidin LL-37. APMIS, 118(11): 830–836 https://doi.org/10.1111/j.1600-0463.2010.02667.x
35
Leszczynska K, Namiot D, Byfield F J , Cruz K, Zendzian-Piotrowska M, Fein D E , Savage P B , Diamond S , McCulloch C A , Janmey P A , Bucki R (2013). Antibacterial activity of the human host defence peptide LL-37 and selected synthetic cationic lipids against bacteria associated with oral and upper respiratory tract infections. J Antimicrob Chemother, 68(3): 610–618 https://doi.org/10.1093/jac/dks434
36
Lombardo Bedran T B , Palomari Spolidorio D , Grenier D (2015). Green tea polyphenol epigallocatechin-3-gallate and cranberry proanthocyanidins act in synergy withcathelicidin (LL-37) to reduce the LPS-induced inflammatory response in a three-dimensional co-culture model ofgingival epithelial cells and fibroblasts. Arch Oral Biol, 60(6): 845–853 https://doi.org/10.1016/j.archoralbio.2015.02.021
37
Lopez-Meza J E , Ochoa-Zarzosa A , Barboza-Corona J E , Bideshi D K (2015). Antimicrobial peptides: current and potential applications in biomedical therapies. BioMed Res Int, 367243 doi:10.1155/2015/367243
Makeudom A, Kulpawaropas S, Montreekachon P , Khongkhunthian S , Sastraruji T , Pothacharoen P , Kongtawelert P , Krisanaprakornkit S (2014). Positive correlations between hCAP18/LL-37 and chondroitin sulphate levels in chronic periodontitis. J Clin Periodontol, 41(3): 252–261 https://doi.org/10.1111/jcpe.12216
40
McCrudden M T , Orr D F , Yu Y, Coulter W A, Manning G, Irwin C R , Lundy F T (2013). LL-37 in periodontal health and disease and its susceptibility to degradation by proteinases present in gingival crevicular fluid. J Clin Periodontol, 40(10): 933–941 https://doi.org/10.1111/jcpe.12141
41
Mysak J, Podzimek S, Sommerova P , Lyuya-Mi Y , Bartova J , Janatova T , Prochazkova J , Duskova J (2014). Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol Res, 476068 https://doi.org/10.1155/2014/476068
42
Nakamichi Y, Horibe K, Takahashi N , Udagawa N (2014). Roles of cathelicidins in inflammation and bone loss. Odontology, 102(2): 137–146 https://doi.org/10.1007/s10266-014-0167-0
43
Oh D Y, Koh S J (2015). Cross-regulation of innate and adaptive immunity: a new perspective for the pathogenesis of inflammatory bowel disease. Gut Liver, 9(3): 263–264 https://doi.org/10.5009/gnl15123
44
Oudhoff M J, Blaauboer M E, Nazmi K, Scheres N , Bolscher J G , Veerman E C (2010). The role of salivary histatin and the human cathelicidin LL-37 in wound healing and innate immunity. Biol Chem, 391(5): 541–548 https://doi.org/10.1515/bc.2010.057
45
Oyinloye B E, Adenowo A F, Kappo A P (2015). Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases. Pharmaceuticals (Basel), 8(2): 151–175 https://doi.org/10.3390/ph8020151
46
Oyinloye B E, Adenowo A F, Kappo A P (2015). Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases. Pharmaceuticals (Basel), 8(2): 151–175 https://doi.org/10.3390/ph8020151
Panteleev P V , Bolosov I A , Balandin S V , Ovchinnikova T V (2015). Structure and biological functions of β-hairpin antimicrobial Peptides. Acta Naturae, 7: 37–47
49
Peschel A, Sahl H G (2006). The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol, 4(7): 529–536 https://doi.org/10.1038/nrmicro1441
50
Puklo M, Guentsch A, Hiemstra P S , Eick S, Potempa J (2008). Analysis of neutrophil-derived antimicrobial peptides in gingival crevicular fluid suggests importance of cathelicidin LL-37 in the innate immune response against periodontogenic bacteria. Oral Microbiol Immunol, 23(4): 328–335 https://doi.org/10.1111/j.1399-302X.2008.00433.x
51
Putsep K, Carlsson G, Boman H G , Andersson M (2002). Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet, 360(9340): 1144–1149 https://doi.org/10.1016/S0140-6736(02)11201-3
52
Roberts H M, Ling M R, Insall R, Kalna G , Spengler J , Grant M M , Chapple I L (2015). Impaired neutrophil directional chemotactic accuracy in chronic periodontitis patients. J Clin Periodontol, 42(1): 1–11 https://doi.org/10.1111/jcpe.12326
53
Scott M G, Davidson D J, Gold M R, Bowdish D, Hancock R E (2002). The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol, 169(7): 3883–3891 https://doi.org/10.4049/jimmunol.169.7.3883
54
Shah A F, Tangade P, Agarwal S (2014). Papillon-Lefevre syndrome: Reporting consanguinity as a risk factor. Saudi Dent J, 26(3): 126–131 https://doi.org/10.1016/j.sdentj.2014.02.004
55
Silva N, Abusleme L, Bravo D , Dutzan N , Garcia-Sesnich J , Vernal R , Hernandez M , Gamonal J (2015). Host response mechanisms in periodontal diseases. J Appl Oral Sci, 23(3): 329–355 https://doi.org/10.1590/1678-775720140259