BACKGROUND:Porphyromonas gingivalis is a periodontal pathogen, which is considered to be a keystone pathogen for periodontitis. A diverse conglomerate of P. gingivalis virulence factors including lipopolysaccharide, fimbriae, capsular polysaccharide, haemagglutinin and cysteine proteases (Arg-gingipains and Lys-gingipain) are considered to be involved in the pathogenesis of periodontitis. Leupeptin is a cysteine protease inhibitor which is specific for Arg gingipains. The present review focuses on action of leupeptin on Arg gingipains.
METHOD: A search was carried out systematically from the start till September, 2016. The search was made in Medline database via PubMed. The keywords enlisted were “leupeptin”; “gingipains”; “periodontitis” using Boolean operator “and.”
RESULTS: The result was selection of 58 articles which linked leupeptin to periodontitis and gingipains; pathogenesis of periodontitis, pathogenicity of gingipains and role of leupeptin.
CONCLUSION: It was concluded that leupeptin inhibits and attenuates a number of destructive activities of Arg gingipains including inhibition of platelet aggregation; inhibit degradation of LL-37, which is an antimicrobial peptide; blocking inhibition of monocyte chemoattractant protein; restoring level of interleukin-2; inhibiting degradation of collagen type I and IV to name a few.
. [J]. Frontiers in Biology, 2017, 12(3): 192-198.
Hansa Jain. Inhibition and attenuation of pathogenicity of Porphyromonas gingivalis by leupeptin: A review. Front. Biol., 2017, 12(3): 192-198.
Activates protease activity receptors resulting in platelet aggregation
Decreases interaction between epinephrine and Porphyromonas gingivalisthus decreasing platelet aggregation
Increasing area of atherosclerotic plaque and conversion of low density lipoprotein to foam cells
Stimulates the situation
Inhibits the process
Production of monocyte chemoattractant protein-1
Inhibits the process
Prevents inhibition
Degradation of antimicrobial peptide LL-37
Stimulates the process
Inhibits the process
Reduction of expression of interleukin-2
Stimulates the process
Inhibits the process, restores the level of interleukin-2
Activation of Matrix Metalloproteinases which causes degradation of collagen
Stimulates the process
Inhibits the process
Degradation of laminin, fibronectin, type IV collagen and Matri protein
Stimulates the process
Inhibits the process
Direct Collagen degradation
Stimulates the process
Inhibits the process, along with this, it causes thirty fold increase in the volume fraction of cross-banded collagen fibrils.
Cell detachment
Stimulates the process
Inhibits the process
Inhibition of hydrolysis of α1-antitrypsin, α2-macroglobulin, apotransferrin, benzoyl-L-arginin-ρ-nitroanilide, benzoyl-D3L-arginine-β-naphthylamide and tosyl-L-arginine methyl ester, cleavage of LPS receptor CD14 from the surface of human U937 macrophage like cells
Stimulates the process
Inhibits the process
Degradation of transferrin for acquisition of iron
Andrian E, Grenier D, Rouabhia M (2004). In vitro models of tissue penetration and destruction by Porphyromonas gingivalis. Infect Immun, 72(8): 4689–4698 https://doi.org/10.1128/IAI.72.8.4689-4698.2004
3
Aoyagi T, Miyata S, Nanbo M , Kojima F , Matsuzaki M , Ishizuka M , Takeuchi T , Umezawa H (1969a). Biological activities of leupeptins. J Antibiot (Tokyo), 22(11): 558–568 https://doi.org/10.7164/antibiotics.22.558
4
Aoyagi T, Takeuchi T, Matsuzaki A , Kawamura K , Kondo S , Hamada M , Maeda K , Umezawa H (1969b). Leupeptins, new protease inhibitors from Actinomycetes. J Antibiot (Tokyo), 22(6): 283–286 https://doi.org/10.7164/antibiotics.22.283
5
Baek K J, Ji S, Kim Y C , Choi Y (2015). Association of the invasion ability of Porphyromonas gingivalis with the severity of periodontitis. Virulence, 6(3): 274–281 https://doi.org/10.1080/21505594.2014.1000764
6
Baker P J, Dixon M, Evans R T , Dufour L , Johnson E , Roopenian D C (1999). CD4(+) T cells and the proinflammatory cytokines gamma interferon and interleukin-6 contribute to alveolar bone loss in mice. Infect Immun, 67: 2804–2809
7
Bedi G S, Williams T (1994). Purification and characterization of a collagen-degrading protease from Porphyromonas gingivalis. J Biol Chem, 269: 599–606
8
Brochu V, Grenier D, Nakayama K , Mayrand D (2001). Acquisition of iron from human transferrin by Porphyromonas gingivalis: a role for Arg- and Lys-gingipain activities. Oral Microbiol Immunol, 16(2): 79–87 https://doi.org/10.1034/j.1399-302x.2001.016002079.x
9
Choi E K, Kim S Y, Kim S H, Paek Y W, Kang I C (2014). Proteolytic activity of Porphyromonas gingivalis attenuates MCP-1 mRNA expression in LPS-stimulated THP-1 cells. Microb Pathog, 73: 13–18 https://doi.org/10.1016/j.micpath.2014.05.004
10
Curtis M A, Aduse Opoku J, Rangarajan M , Gallagher A , Sterne J A , Reid C R , Evans H E , Samuelsson B (2002). Attenuation of the virulence of Porphyromonas gingivalis by using a specific synthetic Kgp protease inhibitor. Infect Immun, 70(12): 6968–6975 https://doi.org/10.1128/IAI.70.12.6968-6975.2002
11
de Diego I, Veillard F, Sztukowska M N , Guevara T , Potempa B , Pomowski A , Huntington J A , Potempa J , Gomis-Ruth F X (2014). Structure and mechanism of cysteine peptidase gingipain K (Kgp), a major virulence factor of Porphyromonas gingivalis in periodontitis. J Biol Chem, 289(46): 32291–32302 https://doi.org/10.1074/jbc.M114.602052
12
Duncan L, Yoshioka M, Chandad F , Grenier D (2004). Loss of lipopolysaccharide receptor CD14 from the surface of human macrophage-like cells mediated by Porphyromonas gingivalis outer membrane vesicles. Microb Pathog, 36(6): 319–325 https://doi.org/10.1016/j.micpath.2004.02.004
13
Everts V, Beertsen W, Tigchelaar-Gutter W (1985). The digestion of phagocytosed collagen is inhibited by the proteinase inhibitors leupeptin and E-64. Coll Relat Res, 5(4): 315–336 https://doi.org/10.1016/S0174-173X(85)80021-2
14
Freeman S J, Lloyd J B (1983). Inhibition of proteolysis in rat yolk sac as a cause of teratogenesis. Effects of leupeptin in vitro and in vivo. J Embryol Exp Morphol, 78: 183–193
15
Gamboa F, Acosta A, Garcia D A , Velosa J , Araya N , Ledergerber R (2014). Occurrence of porphyromonas gingivalis and its antibacterial susceptibility to metronidazole and tetracycline in patients with chronic periodontitis. Acta Odontol Latinoam, 27: 137–144
16
Grenier D, Gauthier P, Plamondon P , Nakayama K , Mayrand D (2001). Studies on the aminopeptidase activities of Porphyromonas gingivalis. Oral Microbiol Immunol, 16(4): 212–217 https://doi.org/10.1034/j.1399-302X.2001.160403.x
17
Grenier D, Imbeault S, Plamondon P , Grenier G , Nakayama K , Mayrand D (2001). Role of gingipains in growth of Porphyromonas gingivalis in the presence of human serum albumin. Infect Immun, 69(8): 5166–5172 https://doi.org/10.1128/IAI.69.8.5166-5172.2001
18
Grenier D, Roy S, Chandad F , Plamondon P , Yoshioka M , Nakayama K , Mayrand D (2003). Effect of inactivation of the Arg- and/or Lys-gingipain gene on selected virulence and physiological properties of Porphyromonas gingivalis. Infect Immun, 71(8): 4742–4748 https://doi.org/10.1128/IAI.71.8.4742-4748.2003
19
Hajishengallis G, Lamont R J (2012). Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol, 27(6): 409–419 https://doi.org/10.1111/j.2041-1014.2012.00663.x
20
Holt S C, Ebersole J L (2005). Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the “red complex”, a prototypepoly bacterial pathogenic consortium in periodontitis. Periodontol 2000, 38(1): 72–122 https://doi.org/10.1111/j.1600-0757.2005.00113.x
21
Houle M A, Grenier D, Plamondon P , Nakayama K (2003). The collagenase activity of Porphyromonas gingivalis is due to Arg-gingipain. FEMS Microbiol Lett, 221(2): 181–185 https://doi.org/10.1016/S0378-1097(03)00178-2
22
Imamura T, Potempa J, Pike R N , Moore J N , Barton M H , Travis J (1995). Effect of free and vesicle-bound cysteine proteinases of Porphyromonas gingivalis on plasma clot formation: implications for bleeding tendency at periodontitis sites. Infect Immun, 63: 4877–4882
23
Islam S A, Seo M, Lee Y S , Moon S S (2015). Association of periodontitis with insulin resistance, β-cell function, and impaired fasting glucose before onset of diabetes. Endocr J, 2015(62): 981–989 https://doi.org/10.1507/endocrj.EJ15-0350
24
Kanakdande V, Patil K P, Nayyar A S (2015). Comparative evaluation of clinical hematological and systemic inflammatory markers in smokers and non-smokers with chronic periodontitis. Contemp Clin Dent, 6(3): 348–357 https://doi.org/10.4103/0976-237X.161885
25
Katz J, Yang Q B, Zhang P, Potempa J , Travis J , Michalek S M , Balkovetz D F (2002). Hydrolysis of epithelial junctional proteins by Porphyromonas gingivalis gingipains. Infect Immun, 70(5): 2512–2518 https://doi.org/10.1128/IAI.70.5.2512-2518.2002
26
Kesavalu L, Chandrasekar B, Ebersole J L (2002). In vivo induction of proinflammatory cytokines in mouse tissue by Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans. Oral Microbiol Immunol, 17(3): 177–180 https://doi.org/10.1034/j.1399-302X.2002.170307.x
27
Khalaf H, Bengtsson T (2012). Altered T-cell responses by the periodontal pathogen Porphyromonas gingivalis. PLoS One, 7(9): e45192 https://doi.org/10.1371/journal.pone.0045192
28
Kieran D, Greensmith L (2004). Inhibition of calpains, by treatment with leupeptin, improves motoneuron survival and muscle function in models of motoneuron degeneration. Neuroscience, 125(2): 427–439 https://doi.org/10.1016/j.neuroscience.2004.01.046
29
Kitano S, Irimura K, Sasaki T , Abe N, Baba A, Miyake Y , Katunuma N , Yamamoto K (2001). Suppression of gingival inflammation induced by Porphyromonas gingivalis in rats by leupeptin. Jpn J Pharmacol, 85(1): 84–91 https://doi.org/10.1254/jjp.85.84
30
Kondo S I, Kawamura K, Iwanaga J , Hamada M , Aoyagi T , Maeda K , Takeuchi T , Umezawa H (1969). Isolation and characterization of leupeptins produced by Actinomycetes. Chem Pharm Bull (Tokyo), 17(9): 1896–1901 https://doi.org/10.1248/cpb.17.1896
31
Kontani M, Ono H, Shibata H , Okamura Y , Tanaka T , Fujiwara T , Kimura S , Hamada S (1996). Cysteine protease of Porphyromonas gingivalis 381 enhances binding of fimbriae to cultured human fibroblasts and matrix proteins. Infect Immun, 64: 756–762
32
Kuramochi H, Nakata H, Ishii S (1979). Mechanism of association of a specific aldehyde inhibitor, leupeptin, with bovine trypsin. J Biochem, 86: 1403–1410
33
Kuula H, Salo T, Pirila E , Tuomainen A M , Jauhiainen M , Uitto V J , Tjaderhane L , Pussinen P J , Sorsa T (2009). Local and systemic responses in matrix metalloproteinase 8-deficient mice during Porphyromonas gingivalis-induced periodontitis. Infect Immun, 77(2): 850–859 https://doi.org/10.1128/IAI.00873-08
34
Libby P, Goldberg A L (1978). Leupeptin, a protease inhibitor, decreases protein degradation in normal and diseased muscles. Science, 199(4328): 534–536 https://doi.org/10.1126/science.622552
35
Lv J, Zhu Y X, Liu Y Q, Xue X (2015). Distinctive pathways characterize A. actinomycetemcomitans and P. gingivalis. Mol Biol Rep, 42(2): 441–449 https://doi.org/10.1007/s11033-014-3785-2
36
Maeda K, Kawamura K, Kondo S I , Aoyagi T , Takeuchi T , Umezawa H (1971). The structure and activity of leupeptins and related analogs. J Antibiot (Tokyo), 24(6): 402–404 https://doi.org/10.7164/antibiotics.24.402
McConnell R M , York J L , Frizzell D , Ezell C (1993). Inhibition studies of some serine and thiol proteinases by new leupeptin analogues. J Med Chem, 36(8): 1084–1089 https://doi.org/10.1021/jm00060a016
39
McCrudden M T , Orr D F , Yu Y, Coulter W A, Manning G, Irwin C R , Lundy F T (2013). LL-37 in periodontal health and disease and its susceptibility to degradation by proteinases present in gingival crevicular fluid. J Clin Periodontol, 40(10): 933–941 https://doi.org/10.1111/jcpe.12141
40
Miyakawa H, Honma K, Qi M , Kuramitsu H K (2004). Interaction of Porphyromonas gingivalis with low-density lipoproteins: implications for a role for periodontitis in atherosclerosis. J Periodontal Res, 39(1): 1–9 https://doi.org/10.1111/j.1600-0765.2004.00697.x
41
Nadkarni M A, Chhour K L, Chapple C C, Nguyen K A, Hunter N (2014). The profile of Porphyromonas gingivalis kgp biotype and fimA genotype mosaic in subgingival plaque samples. FEMS Microbiol Lett, 361(2): 190–194 https://doi.org/10.1111/1574-6968.12631
42
Nakayama M, Inoue T, Naito M , Nakayama K , Ohara N (2015). Attenuation of the phosphatidylinositol 3-kinase/Akt signaling pathway by Porphyromonas gingivalis gingipains RgpA, RgpB, and Kgp. J Biol Chem, 290(8): 5190–5202 https://doi.org/10.1074/jbc.M114.591610
43
Nylander M, Lindahl T L, Bengtsson T, Grenegard M (2008). The periodontal pathogen Porphyromonas gingivalis sensitises human blood platelets to epinephrine. Platelets, 19(5): 352–358 https://doi.org/10.1080/09537100802056102
44
Otto H H, Schirmeister T (1997). Cysteine Proteases and Their Inhibitors. Chem Rev, 97(1): 133–172 https://doi.org/10.1021/cr950025u
45
Reynolds M A (2014). Modifiable risk factors in periodontitis: at the intersection of aging and disease. Periodontol 2000, 64(1): 7–19 https://doi.org/10.1111/prd.12047
46
Rubinstein I, Potempa J, Travis J , Gao X P (2001). Mechanisms mediating Porphyromonas gingivalis gingipain RgpA-induced oral mucosa inflammation in vivo. Infect Immun, 69(2): 1199–1201 https://doi.org/10.1128/IAI.69.2.1199-1201.2001
Scheres N, Laine M L, de Vries T J, Everts V, van Winkelhoff A J (2010). Gingival and periodontal ligament fibroblasts differ in their inflammatory response to viable Porphyromonas gingivalis. J Periodontal Res, 45(2): 262–270 https://doi.org/10.1111/j.1600-0765.2009.01229.x
49
Sheets S M, Potempa J, Travis J , Fletcher H M , Casiano C A (2006). Gingipains from Porphyromonas gingivalis W83 synergistically disrupt endothelial cell adhesion and can induce caspase-independent apoptosis. Infect Immun, 74(10): 5667–5678 https://doi.org/10.1128/IAI.01140-05
50
Sher J H, Stracher A, Shafiq S A , Hardy-Stashin J (1981). Successful treatment of murine muscular dystrophy with the proteinase inhibitor leupeptin. Proc Natl Acad Sci USA, 78(12): 7742–7744 https://doi.org/10.1073/pnas.78.12.7742
51
Smalley J W, Birss A J, Szmigielski B, Potempa J (2007). Sequential action of R- and K-specific gingipains of Porphyromonas gingivalis in the generation of the haem-containing pigment from oxyhaemoglobin. Arch Biochem Biophys, 465(1): 44–49 https://doi.org/10.1016/j.abb.2007.05.011
52
Socransky S S , Haffajee A D , Smith C , Duff G W (2000). Microbiological parameters associated with IL-1 gene polymorphisms in periodontitis patients. J Clin Periodontol, 27(11): 810–818 https://doi.org/10.1034/j.1600-051x.2000.027011810.x
53
Suido H, Nakamura M, Mashimo P A , Zambon J J , Genco R J (1986). Arylaminopeptidase activities of oral bacteria. J Dent Res, 65(11): 1335–1340 https://doi.org/10.1177/00220345860650111101
54
Waddington R J , Moseley R , Embery G (2000). Reactive oxygen species: a potential role in the pathogenesis of periodontal diseases. Oral Dis, 6(3): 138–151 https://doi.org/10.1111/j.1601-0825.2000.tb00325.x
55
Ximenez-Fyvie L A , Haffajee A D , Socransky S S (2000). Microbial composition of supra- and subgingival plaque in subjects with adult periodontitis. J Clin Periodontol, 27(10): 722–732 https://doi.org/10.1034/j.1600-051x.2000.027010722.x
56
Yoshimura F, Nishikata M, Suzuki T , Hoover C I , Newbrun E (1984). Characterization of a trypsin-like protease from the bacterium Bacteroides gingivalis isolated from human dental plaque. Arch Oral Biol, 29(7): 559–564 https://doi.org/10.1016/0003-9969(84)90078-5
57
Yun P L, DeCarlo A A, Hunter N (1999). Modulation of major histocompatibility complex protein expression by human gamma interferon mediated by cysteine proteinase-adhesin polyproteins of Porphyromonas gingivalis. Infect Immun, 67: 2986–2995