Siberian plants: untapped repertoire of bioactive endosymbionts
Syed Baker1(), Svetlana V. Prudnikova2, Tatiana Volova3,4
1. Laboratory of Biotechnology of New Materials, Siberian Federal University, 79 Svobodny pr., Krasnoyarsk, 660041, Russia 2. Siberian Federal University, School of Fundamental Biology and Biotechnology, 79 Svobodny pr., Krasnoyarsk, 660041, Russia 3. Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50/50 Akademgorodok, Krasnoyarsk 660036, Russia 4. Siberian Federal University, 79 Svobodny pr., Krasnoyarsk, 660041, Russia
BACKGROUND: Endosymbionts are microorganisms present in all plant species, and constitute the subject of interest among the scientific community. These symbionts have gained considerable attention in recent years, owing to their emerging biological roles. Global challenges, such as antimicrobial resistance, treatment of infectious diseases such as HIV and tuberculosis, cancer, and many genetic disorders, exist. Endosymbionts can help address these challenges by secreting value-added bioactive compounds with various activities.
OBJECTIVE: Herein, we describe the importance of plants inhabiting Siberian niches. These plants are considered to be among the least studied organisms in the plant kingdom worldwide. Barcoding these plants can be of interest for exploring bioactive endosymbionts possessing myriad biological properties.
METHODS: A systematic survey of relevant scientific reports was conducted using the PubMed search engine. The reports were analyzed, and compiled to draft this review.
RESULTS: The literature survey on Siberian plants regarding endosymbionts included a few reports, since extremely few exploratory studies have been conducted on the plants in these regions. Studies on the endosymbionts of these plants are highly valuable, as they report potent endosymbionts possessing numerous biological properties. Based on these considerations, this review aims to create awareness among the global scientific community working on related areas.
CONCLUSION: This review could provide the basis for barcoding novel endosymbionts of Siberian plants and their ecological importance, which can be exploited in various sectors. The main purpose of this review is to create awareness of Siberian plants, which are among the least studied organisms in the plant kingdom, with respect to endosymbionts, among the scientific community.
Abdou R, Scherlach K, Dahse H M, Sattler I, Hertweck C (2010). Botryorhodines A-D, antifungal and cytotoxic depsidones from Botryosphaeria rhodina, an endophyte of the medicinal plant Bidens pilosa. Phytochemistry, 71(1): 110–116 https://doi.org/10.1016/j.phytochem.2009.09.024
pmid: 19913264
2
Abhijeet Singh Y M (2014). Understanding the biodiversity and biological applications of endophytic fungi. J Microb Biochem Technol, s8(01): 004 https://doi.org/10.4172/1948-5948.S8-004
3
Alm T (2004). Ethnobotany of Rhodiola rosea (Crassulaceae) in Norway. SIDA Contrib Bot, 21: 321–344
4
Amna T, Puri S C, Verma V, Sharma J P, Khajuria R K, Musarrat J, Spiteller M, Qazi G N (2006). Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Can J Microbiol, 52(3): 189–196 https://doi.org/10.1139/w05-122
pmid: 16604115
5
Arnold A E (2005). Diversity and ecology of fungal endophytes in tropical forests. 49–68. In: Deshmukh S (Ed.). Current Trends in Mycological Research. New Delhi, Oxford & IBH Publishing Co. Pvt. Ltd.
6
Azevedo J L, Maccheroni W Jr, Pereira J O, De Araújo W L (2000). Endophytic microorganisms: A review on insect control and recent advances on tropical plants. Electron J Biotechnol, 3(1): 40–65 https://doi.org/10.2225/vol3-issue1-fulltext-4
7
Baker S, Kavitha K S, Chinnappa H, Rao Y, Rakshith D, Harini B P, Kumar K, Satish S (2015). Bacterial endo-symbiont inhabiting Tridax procumbens L. and their antimicrobial potential. Zhongguo Shengwuzhipinxue Zazhi, 2015(2): 1473–1476
8
Baker S, Rakshith D, Kavitha K S, Santosh P, Kavitha H U, Rao Y, Satish S (2013). Plants: Emerging as nanofactories towards facile route in synthesis of nanoparticles. Bioimpacts, 3: 111–117
pmid: 24163802
9
Baker S, Satish S (2012). Endophytes: Natural warehouse of bioactive compounds. Drug Invent Today, 4: 548–553
10
Baker S, Satish S (2015). Biosynthesis of gold nanoparticles by Pseudomonas veronii AS41G inhabiting Annona squamosa L. Spectrochim Acta A Mol Biomol Spectrosc, 150: 691–695 https://doi.org/10.1016/j.saa.2015.05.080
pmid: 26093965
11
Banerjee D, Strobel G A, Booth E, Geary B, Sears J, Spakowicz D, Busse S (2010). An endophytic Myrothecium inundatum producing volatile organic compounds. Mycosphere, 1: 229–240
12
Bangera M G, Thomashow L S (1999). Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol, 181(10): 3155–3163
pmid: 10322017
13
Bayoumi M T, Shaer H M E (1994). Impact of halophytes on animal health and nutrition. Halophytes as a resource for livestock and for rehabilitation of degraded lands Tasks for vegetation science, 267–272.
14
Bertozzi S, Padian N S, Wegbreit J, DeMaria L M, Feldman B, Gayle H, Gold J, Grant R, Isbell M T (2006). HIV/AIDS Prevention and Treatment. In: Dis Control Priorities Dev Ctries. 331–370.
15
Castillo U F, Strobel G A, Ford E J, Hess W M, Porter H, Jensen J B, Albert H, Robison R, Condron M A M, Teplow D B, Stevens D, Yaver D (2002). Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology, 148(Pt 9): 2675–2685 https://doi.org/10.1099/00221287-148-9-2675
pmid: 12213914
16
Chikhi I, Allali H, El Amine Dib M, Medjdoub H, Tabti B (2014). Antidiabetic activity of aqueous leaf extract of Atriplex halimus L. (Chenopodiaceae) in streptozotocin-induced diabetic rats. Asian Pac J Trop Dis, 4(3): 181–184 https://doi.org/10.1016/S2222-1808(14)60501-6
17
Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Ait Barka E (2005). Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol, 71(4): 1685–1693 https://doi.org/10.1128/AEM.71.4.1685-1693.2005
pmid: 15811990
18
Deshmukh S K, Mishra P D, Kulkarni-Almeida A, Verekar S, Sahoo M R, Periyasamy G, Goswami H, Khanna A, Balakrishnan A, Vishwakarma R (2009). Anti-inflammatory and anticancer activity of ergoflavin isolated from an endophytic fungus. Chem Biodivers, 6(5): 784–789 https://doi.org/10.1002/cbdv.200800103
pmid: 19479845
19
Dhankhar S, Dhankhar S, Yadav J P (2013). Investigations towards new antidiabetic drugs from fungal endophytes associated with Salvadora oleoides Decne. Med Chem, 9(4): 624–632 https://doi.org/10.2174/1573406411309040017
pmid: 22946533
20
Ding L, Münch J, Goerls H, Maier A, Fiebig H H, Lin W H, Hertweck C (2010). Xiamycin, a pentacyclic indolosesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorg Med Chem Lett, 20(22): 6685–6687 https://doi.org/10.1016/j.bmcl.2010.09.010
pmid: 20880706
21
Dompeipen E J, Srikandace Y, Suharso W P, Cahyana H, Simanjuntak P (2011). Potential endophytic microbes selection for antidiabetic bioactive compounds production. Asian J Biochem, 6(6): 465–471 https://doi.org/10.3923/ajb.2011.465.471
22
Dragoeva A P, Koleva V P, Nanova Z D, Georgiev B P (2015). Allelopathic effects of Adonis vernalis L.: Root growth inhibition and cytogenetic alterations. J Agric Chem Environ, 4: 48–55
23
Ezra D, Castillo U F, Strobel G A, Hess W M, Porter H, Jensen J B, Condron M A, Teplow D B, Sears J, Maranta M, Hunter M, Weber B, Yaver D (2004). Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology, 150(Pt 4): 785–793 https://doi.org/10.1099/mic.0.26645-0
pmid: 15073289
24
Farrar K, Bryant D, Cope-Selby N (2014). Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J, 12(9): 1193–1206 https://doi.org/10.1111/pbi.12279
pmid: 25431199
25
Franke D, Hinz K, Reichert C (2004). Geology of the East Siberian Sea, Russian Arctic, from seismic images: Structures, evolution, and implications for the evolution of the Arctic Ocean Basin. J Geophys Res B Solid Earth, 109(7): 1–19
26
Gaiero J R, McCall C A, Thompson K A, Day N J, Best A S, Dunfield K E (2013). Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot, 100(9): 1738–1750 https://doi.org/10.3732/ajb.1200572
pmid: 23935113
27
Govindappa M, Channabasava R, Sowmya D V, Meenakshi J, Shreevidya M R, Lavanya A, Santoyo G, Sadananda T S (2011). Phytochemical screening, antimicrobial and in vitro anti-inflammatory activity of endophytic extracts from Loranthus sp. Pharmacogn J, 3(25): 82–90 https://doi.org/10.5530/pj.2011.25.15
28
Guan S, Grabley S, Groth I, Lin W, Christner A, Guo D, Sattler I (2005). Structure determination of germacrane-type sesquiterpene alcohols from an endophyte Streptomyces griseus subsp. Magn Reson Chem, 43(12): 1028–1031 https://doi.org/10.1002/mrc.1710
pmid: 16170856
29
Guimarães D O, Borges W S, Kawano C Y, Ribeiro P H, Goldman G H, Nomizo A, Thiemann O H, Oliva G, Lopes N P, Pupo M T (2008). Biological activities from extracts of endophytic fungi isolated from Viguiera arenaria and Tithonia diversifolia. FEMS Immunol Med Microbiol, 52(1): 134–144 https://doi.org/10.1111/j.1574-695X.2007.00354.x
pmid: 18081849
30
Guo B, Dai J R, Ng S, Huang Y, Leong C, Ong W, Carté B K (2000). Cytonic acids A and B: novel tridepside inhibitors of hCMV protease from the endophytic fungus Cytonaema species. J Nat Prod, 63(5): 602–604 https://doi.org/10.1021/np990467r
pmid: 10843568
31
Hale I L, Broders K, Iriarte G (2014). A Vavilovian approach to discovering crop-associated microbes with potential to enhance plant immunity. Front Plant Sci, 5: 492 https://doi.org/10.3389/fpls.2014.00492
pmid: 25278956
32
Hardoim P R, van Overbeek L S, Berg G, Pirttilä A M, Compant S, Campisano A, Döring M, Sessitsch A (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev, 79(3): 293–320 https://doi.org/10.1128/MMBR.00050-14
pmid: 26136581
33
Hilarino M P A, Silveira F A O, Oki Y, Rodrigues L, Santos J C, Correa-Junior A, Fernandes G W, Rosa C A (2011). Distribution of the endophytic fungi community in leaves of Bauhinia brevipes (Fabaceae). Acta Bot Bras, 25(4): 815–821 https://doi.org/10.1590/S0102-33062011000400008
34
Inahashi Y, Iwatsuki M, Ishiyama A, Namatame M, Nishihara-Tsukashima A, Matsumoto A, Hirose T, Sunazuka T, Yamada H, Otoguro K, Takahashi Y, Ōmura S, Shiomi K (2011). Spoxazomicins A-C, novel antitrypanosomal alkaloids produced by an endophytic actinomycete, Streptosporangium oxazolinicum K07-0460(T). J Antibiot (Tokyo), 64(4): 303–307 https://doi.org/10.1038/ja.2011.16
pmid: 21386848
35
Karmakar R, Kumar S, Prakash H S (2013). Fungal endophytes from Garcinia species. Int J Pharm Pharm Sci, 5: 889–897
36
Kavitha K, Baker S, Rakshith D, Kavitha H, Yashwantha Rao H, Harini B, Satish S (2013). Plants as Green source towards synthesis of nanoparticles. Int Res J Biol Sci, 2: 66–76
37
Kharwar R N, Verma V C, Strobel G, Ezra D (2008). The endophytic fungal complex of Catharanthus roseus (L.) G. Don. Curr Sci, 95: 228–233
38
Kim D M, Nam B W (2006). Extracts and essential oil of Ledum palustre L. leaves and their antioxidant and antimicrobial activities. Prev Nutr Food Sci, 11(2): 100–104 https://doi.org/10.3746/jfn.2006.11.2.100
Kokoska L, Polesny Z, Rada V, Nepovim A, Vanek T (2002). Screening of some Siberian medicinal plants for antimicrobial activity. J Ethnopharmacol, 82(1): 51–53 https://doi.org/10.1016/S0378-8741(02)00143-5
pmid: 12169406
Li J Y, Harper J K, Grant D M, Tombe B O, Bashyal B, Hess W M, Strobel G A (2001). Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp. Phytochemistry, 56(5): 463–468 https://doi.org/10.1016/S0031-9422(00)00408-8
pmid: 11261579
43
Liang J, Chen J, Tan Z, Peng J, Zheng X, Nishiura K, Ng J, Wang Z, Wang D, Chen Z, Liu L (2013). Extracts of medicinal herb Sanguisorba officinalisinhibit the entry of human immunodeficiency virus type one. Yao Wu Shi Pin Fen Xi, 21(4): S52–S58
pmid: 25191092
44
Lotocka B, Geszprych A (2004). Anatomy of the vegetative organs and secretory structures of Rhaponticum carthamoides (Asteraceae). Bot J Linn Soc, 144(2): 207–233 https://doi.org/10.1111/j.1095-8339.2003.00251.x
45
Maji A, Banerji P (2015). Chelidonium majus L.(Greater celandine)–A review on its phytochemical and therapeutic perspectives. Int J Herb Med, 3(1): 10–27 https://doi.org/10.22271/flora.2015.v3.i1.03
46
Marchev A S, Dinkova-Kostova A T, Gyrgy Z, Mirmazloum I, Aneva I Y, Georgiev M I (2016). Rhodiola rosea L.: from golden root to green cell factories. Phytochem Rev, 15(4): 515–536 https://doi.org/10.1007/s11101-016-9453-5
47
Miller C M, Miller R V, Garton-Kenny D, Redgrave B, Sears J, Condron M M, Teplow D B, Strobel G A (1998). Ecomycins, unique antimycotics from Pseudomonas viridiflava. J Appl Microbiol, 84(6): 937–944 https://doi.org/10.1046/j.1365-2672.1998.00415.x
pmid: 9717277
48
Nadeem M, Ram M, Alam P, Ahmad M M, Mohammad A, Al-Qurainy F, Khan S, Abdin M Z (2012). Fusarium solani, P1, a new endophytic podophyllotoxin-producing fungus from roots of Podophyllum hexandrum. Afr J Microbiol Res, 6: 2493–2499
49
Nair D N, Padmavathy S (2014). Impact of endophytic microorganisms on plants, environment and humans. Sci World J, 2014: 250693 https://doi.org/10.1155/2014/250693
pmid: 24587715
Opletal L, Sovova M, Dittrich M, Solich P, Dvorak J, Kratky F, Cerovsky J, Hofbauer J (1997). Phytotherapeutic aspects of diseases of the circulatory system. 6. Leuzea carthamoides (WILLD.).
52
Pan J H, Chen Y, Huang Y H, Tao Y W, Wang J, Li Y, Peng Y, Dong T, Lai X M, Lin Y C (2011). Antimycobacterial activity of fusaric acid from a mangrove endophyte and its metal complexes. Arch Pharm Res, 34(7): 1177–1181 https://doi.org/10.1007/s12272-011-0716-9
pmid: 21811925
53
Panossian A, Wikman G, Sarris J (2010). Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine, 17(7): 481–493 https://doi.org/10.1016/j.phymed.2010.02.002
pmid: 20378318
Popov S V, Popova G Y, Nikolaeva S Y, Golovchenko V V, Ovodova R G (2005). Immunostimulating activity of pectic polysaccharide from Bergenia crassifolia (L.) Fritsch. Phytother Res, 19(12): 1052– 1056 https://doi.org/10.1002/ptr.1789
pmid: 16372372
Qin J C, Zhang Y M, Gao J M, Bai M S, Yang S X, Laatsch H, Zhang A L (2009). Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg Med Chem Lett, 19(6): 1572–1574 https://doi.org/10.1016/j.bmcl.2009.02.025
pmid: 19246197
58
Raiklin E (2008). The Chinese challenge to Russia in Siberia and the Russian Far East. J Soc Polit Econ Stud, 33: 145–204
59
Rather M A, Mansoor S, Bhat Z S, Amin S (2016). Evaluation of antimicrobial and antioxidant activities of Swertia petiolata. Adv Biomed Pharma, 5: 272–279
60
Rodrigues-Heerklotz K F, Drandarov K, Heerldotz J, Hesse M, Werner C (2001). Guignardic acid, a novel type of secondary metabolite produced by the endophytic fungus Guignardia sp.: isolation, structure elucidation, and asymmetric synthesis. Helv Chim Acta, 84(12): 3766–3772 https://doi.org/10.1002/1522-2675(20011219)84:12<3766::AID-HLCA3766>3.0.CO;2-Z
Satish S, Raveesha K A, Janardhana G R (1999). Antibacterial activity of plant extracts on phytopathogenic Xanthomonas campestris pathovars. Lett Appl Microbiol, 28(2): 145–147 https://doi.org/10.1046/j.1365-2672.1999.00479.x
64
Schulz B, Boyle C (2006). What are Endophytes? 9:1–14.
65
Schulz B, Haas S, Junker C, Andree N, Schobert M (2015). Fungal endophytes are involved in multiple balanced antagonisms. Curr Sci, 109: 39–45
66
Shikov A N, Pozharitskaya O N, Makarova M N, Makarov V G, Wagner H (2014). Bergenia crassifolia (L.) Fritsch--pharmacology and phytochemistry. Phytomedicine, 21(12): 1534–1542 https://doi.org/10.1016/j.phymed.2014.06.009
pmid: 25442262
67
Singh S B, Jayasuriya H, Dewey R, Polishook J D, Dombrowski A W, Zink D L, Guan Z, Collado J, Platas G, Pelaez F, Felock P J, Hazuda D J (2003). Isolation, structure, and HIV-1-integrase inhibitory activity of structurally diverse fungal metabolites. J Ind Microbiol Biotechnol, 30(12): 721–731 https://doi.org/10.1007/s10295-003-0101-x
pmid: 14714192
68
Song Y C, Li H, Ye Y H, Shan C Y, Yang Y M, Tan R X (2004). Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. FEMS Microbiol Lett, 241(1): 67–72 https://doi.org/10.1016/j.femsle.2004.10.005
pmid: 15556711
69
Srobel G, Li J Y, Sugawara F, Koshino H, Harper J, Hess W M (1999). Oocydin A, a chlorinated macrocyclic lactone with potent anti-oomycete activity from Serratia marcescens. Microbiology, 145(Pt 12): 3557–3564 https://doi.org/10.1099/00221287-145-12-3557
pmid: 10627053
Stierle A, Strobel G, Stierle D, Grothaus P, Bignami G (1995). The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus brevifolia. J Nat Prod, 58(9): 1315–1324 https://doi.org/10.1021/np50123a002
pmid: 7494141
Svidén G A, Tham K, Borell L (2010). Involvement in everyday life for people with a life threatening illness. Palliat Support Care, 8(3): 345–352 https://doi.org/10.1017/S1478951510000143
pmid: 20875178
75
Syed B, Nagendra Prasad M N, Mohan Kumar K, Dhananjaya B L, Satish S (2017). Endo-symbiont mediated synthesis of gold nanobactericides and their activity against human pathogenic bacteria. Environ Toxicol Pharmacol, 52: 143–149 https://doi.org/10.1016/j.etap.2017.03.016
pmid: 28414941
76
Syed B, Nagendra Prasad M N, Satish S (2016). Synthesis and characterization of silver nanobactericides produced by Aneurinibacillus migulanus 141, a novel endophyte inhabiting Mimosa pudica L. Arab J Chem, https://doi.org/10.1016/j.arabjc.2016.01.005
77
Tchebakova N M, Kuzmina N A, Parfenova E I, Senashova V A, Kuzmin S R (2016). Potential climate-induced distributions of Lophodermium needle cast across central Siberia in the 21 century. Web Ecol, 16(1): 37–39 https://doi.org/10.5194/we-16-37-2016
78
Turner J, Bracegirdle T J, Phillips T, Marshall G J, Hosking J S (2012). An initial assessment of antarctic sea ice extent in the CMIP5 models. J Clim, 26(5): 1473–1484 https://doi.org/10.1175/JCLI-D-12-00068.1
79
Vdovitchenko M Y, Kuzovkina I N, Paetz C, Schneider B (2007). Formation of phenolic compounds in the roots of Hedysarum theinum cultured in vitro. Russ J Plant Physiol, 54(4): 536–544 https://doi.org/10.1134/S1021443707040164
80
Xia Y, DeBolt S, Dreyer J, Scott D, Williams M A (2015). Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Front Plant Sci, 6: 490 https://doi.org/10.3389/fpls.2015.00490
pmid: 26217348
81
Xue S Y, Li Z Y, Zhi H J, Sun H F, Zhang L Z, Guo X Q, Qin X M (2012). Metabolic finger printing investigation of Tussilago farfara L. by GC-MS and multivariate data analysis. Biochem Syst Ecol, 41: 6–12 https://doi.org/10.1016/j.bse.2011.11.003
82
Yashina S, Gubin S, Maksimovich S, Yashina A, Gakhova E, Gilichinsky D (2012). Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost. Proc Natl Acad Sci USA, 109(10): 4008–4013 https://doi.org/10.1073/pnas.1118386109
pmid: 22355102
83
You Y H, Yoon H, Kang S M, Shin J H, Choo Y S, Lee I J, Lee J M, Kim J G (2012). Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. J Microbiol Biotechnol, 22(11): 1549–1556 https://doi.org/10.4014/jmb.1205.05010
pmid: 23124347
84
Zabalgogeazcoa (2008). Fungal endophytes and their interactions with plant pathogens. Span J Agric Res 6: 138–146