Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2008, Vol. 3 Issue (4) : 414-418    https://doi.org/10.1007/s11515-008-0065-3
Technological exploration of BAC-FISH on mitotic chromosomes of maize
TAO Yongsheng1, ZHANG Zuxin2, CHEN Yonglin3, LI Lijia3, ZHENG Yonglian4
1.National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University;College of Agronomy, Hebei Agricultural University; 2.College of Agronomy, Hebei Agricultural University; 3.Key Laboratory of MOE for Plant Developmental Biology, Wuhan University; 4.National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University
 Download: PDF(185 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The rice BAC-DNA was used as probes and fluorescence in situ hybridization (FISH) was applied to the interphase and metaphase mitotic chromosomes of maize. To optimize the BAC-FISH technique, we respectively assayed the effect of several factors, including maize or rice genomic Cot DNA used as blocking reagent of DNA, washing temperatures and FAD concentration in the washing buffer and in the hybrid solution. The results show that Cot DNA of maize genome blocked the repetitive sequence of the rice BAC-DNA when the Cot value was below 50. Meanwhile, it was necessary to adjust the Cot value according to the different probes and their ratios. Decreasing the concentration of FAD in the hybridization mixtures, adjusting the washing rate after hybridization, and most especially, blocking the rice-specific repetitive sequences of BAC-DNA could improve the positive signals of BAC-FISH.
Issue Date: 05 December 2008
 Cite this article:   
ZHANG Zuxin,TAO Yongsheng,LI Lijia, et al. Technological exploration of BAC-FISH on mitotic chromosomes of maize[J]. Front. Biol., 2008, 3(4): 414-418.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-008-0065-3
https://academic.hep.com.cn/fib/EN/Y2008/V3/I4/414
1 Chen C C, Chen C M, Hsu F C, Wang C J, Yang J T, Kao Y Y (2000). The pachytene chromosomes of maize as revealed by fluorescencein situ hybridization with repetitive DNA sequences, Theor Appl Genet, 101: 30–36.
doi:10.1007/s001220051445
2 Clark R, Linton E, Messing J, Doebley J F (2004). Patterns of diversity in the genomic region near themaize domestication gene tb1. Proc Natl Acad Sci USA, 101: 700–707.
doi:10.1073/pnas.2237049100
3 Doyle J J, Doyle J L (1990). Isolationof plant DNA from fresh tissue. Focus, 12: 13–15
4 Gustafson J P, Dille J E (1992). Chromosomelocation of Oryza sativa recombinationlinkage groups. Proc Natl Acad Sci USA, 89: 8646–8650.
doi:10.1073/pnas.89.18.8646
5 Haberer G, Young S, Bharti A K, Gundlach H, Raymond C, Fuks G, Butler E, Wing R A, Rounsley S, Birren B, Nusbaum C, Mayer K F X, Messing J (2005). Structure and architectureof the maize genome. Plant Physiol, 139: 1612–1624.
doi:10.1104/pp.105.068718
6 International Rice Genome Sequencing Project. (2005). The map-based sequence of the ricegenome, Nature, 436(7052): 793–800.
doi:10.1038/nature03895
7 Jiang J, Gill B, Wang G, Ronald P C, Ward D C (1995). Metaphase and interphasefluorescence in situ hybridizationmapping of the rice genome with bacterial artificial chromosomes, Proc Natl Acad Sci USA92(10): 4487–4491
8 Koumbaris G, Bass H (2003). A newsingle-locus cytogenetic mapping system for maize (Zea mays L.): overcoming FISH detection limitswith marker-selected sorghum (S. propinquum L) BAC clones. Plant J, 35: 647–659.
doi:10.1046/j.1365-313X.2003.01829.x
9 Lai J, Dey N, Kim C S, Bharti A K, Rudd S, Mayer K F X, Larkins B A, Becraft P, Messing J (2004). Characterization of the maize endosperm transcriptomeand its comparison to the rice genome. Genome Res, 14: 1932–1937.
doi:10.1101/gr.2780504
10 McConaughy B L, Laird C D, McCarthy B J (1969). Nucleic acid reassociation in formamide. Biochemistry, 8(8): 3289–3295.
doi:10.1021/bi00836a024
11 Ning S B, Jin W W, Ding Y, Song R C (2000). Sequence homology analysis of maize and rice genome using GISH. Chinese Science Bulletin, 45(22): 2431–2433 (in Chinese)
12 Ren N, Song Y C, Bi X Z, Ding Y, Liu L H (1997). The physical locationof genes cdc2 and prh1 in maize (Zeamays L.). Hereditas, 126(3): 211–217.
doi:10.1111/j.1601-5223.1997.00211.x
13 Sambrook J, Fritsch E, Maniatis T (1989). Molecular Cloning: A Laboratory Manual.2nd ed.New York: Cold Spring Harbor LaboratoryPress
14 Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, ZhaiW X, Zhu L H, Fauquet C, Ronald P (1995). A receptorkinase-like protein encoded by the rice disease resistance gene Xa21, Science, 270: 1804–1806.
doi:10.1126/science.270.5243.1804
15 Wang C J, Chen C C (2005). Cytogeneticmapping in maize, Cytogenet Genome Res, 109: 63–69.
doi:10.1159/000082383
16 Yoshido A, Bando H, Yasukochi Y, Sahara K (2005). The Bombyx mori karyotype andthe assignment of linkage groups. Genetics, 170(2): 675–85.
doi:10.1534/genetics.104.040352
17 Zhang P, Li W, Friebe B, Gill B S (2004). Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. Genome. 47(5): 979–987.
doi:10.1139/g04-042
18 Zwick M, Hanson R, Mcknight T (1997). A rapid procedure for the isolationof Cot-1DNA from plants. Genome, 40(2): 138–142.
doi:10.1139/g97-020
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed