Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol Chin    0, Vol. Issue () : 117-123    https://doi.org/10.1007/s11515-008-0086-y
RESEARCH ARTICLE
Quantitative method for identifying networks of minimum priority sites for protection of rare and endangered plant species in Guangdong, China
Benyang Wang1, Fuhe Luo1, Xuening Zhen1, Shixiao Yu2()
1. College of Forestry, South China Agricultural University; 2. Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University
 Download: PDF(163 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The approaches to enlarge the protected areas are deeply embedded in the conservation planning. In practice, however, even in some sites of top conservation priority, there exist problems of inefficient conservation for lack of funding, to say nothing of assisting all species under threat from the viewpoint of conservationists. Identifying priority sites for conservation and establishing networks of minimum priority sites (NOMPS) are helpful for promoting the transition from number and size oriented, to quality and effectiveness oriented practices of biological conservation, and for realizing the target of biodiversity conservation with the most benefits for the least costs. Based on heuristic algorithm and integer linear programming (ILP), we propose a refined method of heuristic integer linear programming (HILP) for quantitative identification of the NOMPS to protect rare and endangered plant species (REPS) in Guangdong Province, China. The results indicate that there are 19 priority sites which are essential for protecting all of the 107 REPS distributed in 83 sites in Guangdong. These should be the paramount targets of financing and management. Compared with the ILP, which uses minimum number of sites as the only constraint, HILP takes into consideration of the effect of species richness, and is thus more suitable for conservation practices though with a little more number of priority sites selected. It is suggested that ILP and HILP are both effective quantitative methods for identifying NOMPS and can yield important information for decision making, especially when economic factors are constraints for biological conservation.

Keywords biodiversity      biological conservation      nature reserve      optimization      priority sites     
Corresponding Author(s): Yu Shixiao,Email:lssysx@mail.sysu.edu.cn   
Issue Date: 05 March 2009
 Cite this article:   
Benyang Wang,Fuhe Luo,Xuening Zhen, et al. Quantitative method for identifying networks of minimum priority sites for protection of rare and endangered plant species in Guangdong, China[J]. Front Biol Chin, 0, (): 117-123.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-008-0086-y
https://academic.hep.com.cn/fib/EN/Y0/V/I/117
species numbersite numberspecies
12345678rangerarity
S11111110170.14
S21111000150.20
S31101110050.20
S41110001150.20
S51111001050.20
S61000111040.25
S71011000030.33
S81110000030.33
S90100100020.50
S100010000011.00
species richness8775433340
rarity score1.91.82.41.11.10.60.70.5
Tab0  Simplified species by site data for identifying networks of minimum priority sites
Fig0  Sketch map of the network of minimum priority sites for the protection of rare and endangered plant species in Guangdong, China
1 AckeryP R, Vane-WrightR I (1984). Milkweed butterflies: their cladistic and biology. London: British Museum of Natural History; and Ithaca, N.Y.: Cornell University Press, 448
2 BalmfordA, GastonK J, BlythS, JamesA, KaposV (2003). Global variation in conservation costs, conservation benefits, and unmet conservation needs. Proceedings of the National Academy of Sciences of the United States of America , 100(3): 1046–1050
doi: 10.1073/pnas.0236945100
3 BalmfordA, GastonK J, RodriguesA S L, JamesA (2000). Integrating costs of conservation into international priority setting. Conservation Biology , 14(3): 597–605
doi: 10.1046/j.1523-1739.2000.00000-i2.x
4 BrooksT, BalmfordA (1996). Atlantic forest extinctions. Nature , 380(6570): 115
doi: 10.1038/380115a0
5 ChenL E, YuS X, MiaoR H (1997). Rare and endangered plants and their distribution in Guangdong. Journal of Tropical and Subtropical Botany , 5(4): 1–7 (in Chinese)
6 ChengK W, ZangR G (2004). Advances in species endangerment assessment. Biodiversity Science , 12: 534–540 (in Chinese)
7 ChurchR L, StomsD M, DavisF W (1996). Reserve selection as a maximal covering location problem. Biological Conservation , 76: 105–112
doi: 10.1016/0006-3207(95)00102-6
8 DirzoR, RavenP H (2003). Global state of biodiversity and loss. Annual Review of Environment and Resources , 28(1): 137–167
doi: 10.1146/annurev.energy.28.050302.105532
9 FahrigL (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution and Systematics , 34: 487–515
doi: 10.1146/annurev.ecolsys.34.011802.132419
10 FieldB C, FieldM K (2001). Nature Resources Economics: an Introduction, 3rd ed. Columbus: McGraw-Hill
11 FuL G, JinJ M (1992). The Red Data Book of China's Plant: Rare and Endangered Plants. Beijing: Science Press
12 GareyM R, JohnsonD S (1979). Computers and intractability: a guide to the theory of NP-completeness. New York, NY, USA: W. H. Freeman & Co.
13 HoekstraJ M, BoucherT M, RickettsT H, RobertsC (2005). Confronting a biome crisis: global disparities of habitat loss and protection. Ecology Letters , 8(1): 23–29
doi: 10.1111/j.1461-0248.2004.00686.x
14 HugheyK F D, CullenR, MoranE (2003). Integrating economics into priority setting and evaluation in conservation management. Conservation Biology , 17: 93–103
doi: 10.1046/j.1523-1739.2003.01317.x
15 JiangZ G, FanE Y (2003). Exploring the endangered species criteria: rethinking the IUCN Red List Criteria. Biodiversity Science , 11(5): 383–392 (in Chinese)
16 Kamden-TohamA, AdelekeA W, BurgessN D, CarrollR, D'AmicoJ, DinersteinE, OlsonD M, SomeL (2003). Forest conservation in the Congo Basin. Science , 299: 346
doi: 10.1126/science.299.5605.346
17 KirkpatrickJ B (1983). An iterative method for establishing priorities for selection of nature reserves: an example from Tasmania. Biological Conservation , 25: 127–134
doi: 10.1016/0006-3207(83)90056-3
18 LindenmayerD B, FranklinJ F, FischerJ (2006). General management principles and a checklist of strategies to guide forest biodiversity conservation. Biological Conservation , 131: 433–445
doi: 10.1016/j.biocon.2006.02.019
19 LiraR, VillaseňorJ L, OrtízE (2002). A proposal for the conservation of the family Cucurbitaceae in Mexico. Biodiversity and Conservation , 11(10): 1699–1720
doi: 10.1023/A:1020303905416
20 MaK M, BaiX (2006). Economics in biological conservation. Biodiversity Science , 14(3): 265–273 (in Chinese)
doi: 10.1360/biodiv.050137
21 MarrisE (2004). Ecologists attack plans for rare-species act. Nature , 432(7018): 661
doi: 10.1038/432661a
22 McNeelyJ A, MillerK R, ReidW V, MittermeierR, WernerT B (1990). Conserving the World's Biological Diversity. International Union for Conservation of Nature and Natural Resources, Gland, Switzerland; World Resources Institute, Conservation International, World Wildlife Fund US and the World Bank, Washington, D.C.
23 MyersN, MittermeierR A, MittermeierC G, da FonsecaG A B, KentJ (2000). Biodiversity hotspots for conservation priorities. Nature , 403: 853–858
doi: 10.1038/35002501
24 OuyangZ Y, WangX K, MiaoH, HanN Y (2002). Problems of management system of China's nature preservation zones and their solutions. Science and Technology Review , 1: 49–56 (in Chinese)
25 PimmS L, RavenP (2000). Extinction by numbers. Nature , 403: 843–845
doi: 10.1038/35002708
26 PimmS L, RussellG J, GittlemanJ L, RooksT M (1995). The future of biodiversity. Science , 269: 347–350
doi: 10.1126/science.269.5222.347
27 PossinghamH P, BallI R, AndelmanS (2000). Mathematical methods for identifying representative reserve networks. In: Ferson S, Burgman M A, eds. Quantitative Methods for Conservation Biology , New York: Springer-Verlag, 291–306
28 PossinghamH P, WilsonK A (2005). Turning up the heat on hotspots. Nature , 436: 919–920
doi: 10.1038/436919a
29 PresseyR L, HumphriesC J, MargulesC R, Vane-WrightR I, WilliamsP H (1993). Beyond opportunism: key principles for systematic reserve selection. Trends in Ecology and Evolution , 8(4): 124–128
doi: 10.1016/0169-5347(93)90023-I
30 RebeloA G (1994). Iterative selection procedures: centers of endemism and optimal placement of reserves. Strelitzia , 1: 231–257
31 SouléM E (1991). Conservation: tactics for a constant crisis. Science , 253: 744–750
doi: 10.1126/science.253.5021.744
32 SutherlandW J (1998). Conservation Science and Action. Oxford, UK: Blackwell Science
33 Vane-WrightR I, HumphriesC J, WilliamsP H (1991). What to protect? - Systematics and the agony of choice. Biological Conservation , 55: 235–254
doi: 10.1016/0006-3207(91)90030-D
34 VillaseňorJ L, IbarraG, OcaňaD (1998). Strategies for the conservation of Asteraceae in Mexico. Conservation Biology , 12: 1066–1075
doi: 10.1046/j.1523-1739.1998.97171.x
35 WangF G, YeH G, YeY S, ZhouL X (2004). Geographical distribution of rare and endangered plants in Guangdong. Journal of Tropical and Subtropical Botany , 12: 21–28 (in Chinese)
36 WilkieD S, CarpenterJ F, ZhangQ (2001). The under-financing of protected areas in the Congo Basin: so many parks and so little willingness-to-pay. Biodiversity and Conservation , 10, 691–709
doi: 10.1023/A:1016662027017
37 YuW G, LuoY B, JinZ Q (2006). Study on species diversity and priority area of wild orohids in Hainan Island. Journal of Plant Ecology , 30(6): 911–918 (in Chinese)
[1] Sanjeeb Kumar Mandal, Nupur Ojha, Nilanjana Das. Process optimization of benzo[ghi]perylene biodegradation by yeast consortium in presence of ZnO nanoparticles and produced biosurfactant using Box-Behnken design[J]. Front. Biol., 2018, 13(6): 418-424.
[2] Moni Philip Jacob Kizhakedathil, Subathra Devi Chandrasekaran. Media optimization for extracellular amylase production by Pseudomonas balearica vitps19 using response surface methodology[J]. Front. Biol., 2018, 13(2): 123-129.
[3] Dhamodharan Duraikannu, Subathra Devi Chandrasekaran. Optimization and modeling studies on the production of a new fibrinolytic protease using Streptomyces radiopugnans_VITSD8[J]. Front. Biol., 2018, 13(1): 70-77.
[4] Teetam Ghosal, Nikita Augustine, Ashwini Siddapur, Vaishnavi Babu, Merlyn Keziah Samuel, Subathra Devi Chandrasekaran. Strain improvement, optimization and purification studies for enhanced production of streptokinase from Streptococcus uberis TNA-M1[J]. Front. Biol., 2017, 12(5): 376-384.
[5] R. FOSSION, D. A. HARTASáNCHEZ, O. RESENDIS-ANTONIO, A. FRANK. Criticality, adaptability and early-warning signals in time series in a discrete quasispecies model[J]. Front Biol, 2013, 8(2): 247-259.
[6] Huyin HUAI, Alan HAMILTON. Characteristics and functions of traditional homegardens: a review[J]. Front Biol Chin, 2009, 4(2): 151-157.
[7] Hon-Hing HO. The genus Pythium in Taiwan, China (1) – a synoptic review[J]. Front Biol Chin, 2009, 4(1): 15-28.
[8] TAO Jianping, SONG Lixia, WANG Yongjian, ZHANG Weiyin. Response of clonal plasticity of to different canopy conditions of subalpine coniferous forest[J]. Front. Biol., 2008, 3(4): 463-469.
[9] FENG Wei, PAN Genxing, QIANG Sheng, LI Ruhai, WEI Jiguang. Influence of long-term different fertilization on soil weed seed bank diversity of a paddy soil under rice/rape rotation[J]. Front. Biol., 2008, 3(3): 320-327.
[10] YANG Xiaohui, CI Longjun, ZHANG Kebin, HOU Ruiping. Exclusion effects on vegetation characteristics and their correlation to soil factors in the semi-arid rangeland of Mu Us Sandland, China[J]. Front. Biol., 2007, 2(2): 210-217.
[11] ZENG Zhigao, SONG Yanling, MA Yingtai, WANG Xifeng, WU Xuntao, XIE Zhenfeng, SHAO Jianbin, LI Chunning. Fauna characteristics and ecological distribution of Carnivora and Artiodactyla in Niubeiliang National Nature Reserve, China[J]. Front. Biol., 2007, 2(1): 92-99.
[12] YAN Ming, ZHONG Zhangcheng, LIU Jinchun. Habitat fragmentation impacts on biodiversity of evergreen broadleaved forests in Jinyun Mountains, China[J]. Front. Biol., 2007, 2(1): 62-68.
[13] Xu Xiaohong, Wu Min, Cao Yi, Wu Yuehong, Zhang Ting. Isolation and Phylogenetic Analysis of Halophilic Archaeon AJ6[J]. Front. Biol., 2006, 1(1): 29-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed