Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol Chin    2009, Vol. 4 Issue (2) : 129-136    https://doi.org/10.1007/s11515-008-0096-9
REVIEW
Acyl-coenzyme A: cholesterol acyltransferase family
Yali LIU, Zhanyun GUO()
Institute of Protein Research, College of Life Science and Technology, Tongji University, Shanghai 200092, China
 Download: PDF(364 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The enzymes of the acyl-coenzyme A: cholesterol acyltransferase (ACAT) family are responsible for the in vivo synthesis of neutral lipids. They are potential drug targets for the intervention of atherosclerosis, hyperlipidemia, obesity, type II diabetes and even Alzheimer’s disease. ACAT family enzymes are integral endoplasmic reticulum (ER) membrane proteins and can be divided into ACAT branch and acyl-coenzyme A: diacylglycerol acyltransferase 1 (DGAT1) branch according to their substrate specificity. The ACAT branch catalyzes synthesis of cholesteryl esters using long-chain fatty acyl-coenzyme A and cholesterol as substrates, while the DGAT1 branch catalyzes synthesis of triacylglycerols using fatty acyl-coenzyme A and diacylglycerol as substrates. In this review, we mainly focus on the recent progress in the structural research of ACAT family enzymes, including their disulfide linkage, membrane topology, subunit interaction and catalysis mechanism.

Keywords lipid      acyl-coenzyme A: cholesterol acyltransferase (ACAT)      acyl-coenzyme A: diacylglycerol acyltransferase 1 (DGAT1)      acyltransferase      catalysis     
Corresponding Author(s): GUO Zhanyun,Email:zhan-yun.guo@mail.tongji.edu.cn   
Issue Date: 05 June 2009
 Cite this article:   
Yali LIU,Zhanyun GUO. Acyl-coenzyme A: cholesterol acyltransferase family[J]. Front Biol Chin, 2009, 4(2): 129-136.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-008-0096-9
https://academic.hep.com.cn/fib/EN/Y2009/V4/I2/129
Fig.1  Amino acid sequence alignment of human ACAT1, human ACAT2, and human DGAT1. The possible transmembrane domains (TMDs) are shaded. The conserved residues are shown in red, and the cysteine residues are shown in blue.
Fig.2  A general ER membrane topology model for ACAT family enzymes. The possible cholesterol/diacyglycerol-binding region (TMD7) is shown in red, and other TMDs are shown in blue. The possible acyl-coenzyme A-binding regions (the loop between TMD6 and TMD7 and the loop between TMD4 and TMD5) are shown in green. The position of the active site His in TMD7 is indicated by a white star.
Fig.3  Structure of ACAT family enzymes. A: two distinct functional sides of TMD7 of ACAT1. Residues critical for enzyme activity are shown in red; residues involved in subunit interaction are shown in blue. B: A proposed tunnel model for ACAT family enzymes. The TMDs form a tunnel structure in the center. Only TMD7 and TMD8 are shown. Other TMDs, the N-terminal domain and the loops are omitted.
1 Anderson R A, Joyce C, Davis M, Reagan J W, Clark M, Shelness G S, Rudel L L (1998). Identification of a form of acyl-CoA:cholesterol acyltransferase specific to liver and intestine in nonhuman primates. J Biol Chem , 273: 26747-26754
doi: 10.1074/jbc.273.41.26747
2 Beck B, Drevon C A (1978). Properties and subcellular distribution of acyl-CoA: cholesterol acyltransferase (ACAT) in guinea-pig liver. Scand J Gastroenterol , 13: 97-105
3 Buhman K F, Accad M, Farese R V (2000). Mammalian acyl-CoA: cholesterol acyltransferases. Biochim Biophys Acta , 1529: 142-154
4 Cadigan K M, Chang C C, Chang T Y (1989). Isolation of Chinese hamster ovary cell lines expressing human acyl-coenzyme A/cholesterol acyltransferase activity. J Cell Biol , 108: 2201-2210
doi: 10.1083/jcb.108.6.2201
5 Cadigan K M, Heider J G, Chang T Y (1988). Isolation and characterization of Chinese hamster ovary cell mutants deficient in acyl-coenzyme A: cholesterol acyltransferase activity. J Biol Chem , 263: 274-282
6 Cases S, Novak S, Zheng Y W, Myers H M, Lear S R, Sande E, Welch C B, Lusis A J, Spencer T A, Krause B R, Erickson S K, Farese R V Jr (1998a). ACAT-2, a second mammalian acyl-CoA: cholesterol acyltransferase. Its cloning, expression, and characterization. J Biol Chem , 273: 26755-26764
doi: 10.1074/jbc.273.41.26755
7 Cases S, Smith S J, Zheng Y W, Myers H M, Lear S R, Sande E, Novak S, Collins C, Welch C B, Lusis A J, Erickson S K, Farese R V Jr (1998b). Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA , 95: 13018-13023
doi: 10.1073/pnas.95.22.13018
8 Cases S, Stone S J, Zhou P, Yen E, Tow B, Lardizabal K D, Voelker T, Farese R V Jr (2001). Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J Biol Chem , 276: 38870-38876
doi: 10.1074/jbc.M106219200
9 Chang C, Dong R, Miyazaki A, Sakashita N, Zhang Y, Liu J, Guo M, Li B L, Chang T Y (2006). Human acyl-CoA: cholesterol acyltransferase (ACAT) and its potential as a target for pharmaceutical intervention against atherosclerosis. Acta Biochim Biophys Sin (Shanghai) , 38: 151-156
doi: 10.1111/j.1745-7270.2006.00154.x
10 Chang C C, Chen J, Thomas MA, Cheng D, Del Priore V A, Newton R S, Pape M E, Chang T Y (1995). Regulation and immunolocalization of acyl-coenzyme A: cholesterol acyltransferase in mammalian cells as studied with specific antibodies. J Biol Chem , 270: 29532-29540
doi: 10.1074/jbc.270.49.29532
11 Chang C C, Huh H Y, Cadigan K M, Chang T Y (1993). Molecular cloning and functional expression of human acyl-coenzyme A: cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells. J Biol Chem , 268: 20747-20755
12 Chang C C, Lee C Y, Chang E T, Cruz J C, Levesque M C, Chang T Y (1998). Recombinant acyl-CoA: cholesterol acyltransferase-1 (ACAT-1) purified to essential homogeneity utilizes cholesterol in mixed micelles or in vesicles in a highly cooperative manner. J Biol Chem , 273: 35132-35141
doi: 10.1074/jbc.273.52.35132
13 Chang C C, Sakashita N, Ornvold K, Lee O, Chang E T, Dong R, Lin S, Lee C Y, Strom S C, Kashyap R, Fung J J, Farese R V Jr, Patoiseau J F, Delhon A, Chang T Y (2000). Immunological quantitation and localization of ACAT-1 and ACAT-2 in human liver and small intestine. J Biol Chem , 275: 28083-28092
14 Chang T Y, Chang C C, Cheng D (1997). Acyl-coenzyme A: cholesterol acyltransferase. Annu Rev Biochem , 66: 613-638
doi: 10.1146/annurev.biochem.66.1.613
15 Chang T Y, Chang C C, Lin S, Yu C, Li B L, Miyazaki A (2001a). Roles of acyl-coenzyme A:cholesterol acyltransferase-1 and-2. Curr Opin Lipidol , 12: 289-296
doi: 10.1097/00041433-200106000-00008
16 Chang T Y, Chang C C, Lu X, Lin S (2001b). Catalysis of ACAT may be completed within the plane of the membrane: a working hypothesis. J Lipid Res , 42: 1933-1938
17 Chen H C, Farese R V Jr (2000). DGAT and triglyceride synthesis: a new target for obesity treatment? Trends Cardiovasc Med , 10: 188-192
doi: 10.1016/S1050-1738(00)00066-9
18 Chen H C, Farese R V Jr (2005). Inhibition of triglyceride synthesis as a treatment strategy for obesity: lessons from DGAT1-deficient mice. Arterioscler Thromb Vasc Biol , 25: 482-486
doi: 10.1161/01.ATV.0000151874.81059.ad
19 Chen H C, Jensen D R, Myers H M, Eckel R H, Farese R V Jr (2003a). Obesity resistance and enhanced glucose metabolism in mice transplanted with white adipose tissue lacking acyl CoA:diacylglycerol acyltransferase 1. J Clin Invest , 111: 1715-1722
20 Chen H C, Ladha Z, Smith S J, Farese R V Jr (2003b). Analysis of energy expenditure at different ambient temperatures in mice lacking DGAT1. Am J Physiol Endocrinol Metab , 284: E213-218
21 Chen H C, Smith S J, Ladha Z, Jensen D R, Ferreira L D, Pulawa L K, McGuire J G, Pitas R E, Eckel R H, Farese R V Jr (2002a). Increased insulin and leptin sensitivity in mice lacking acyl CoA: diacylglycerol acyltransferase 1. J Clin Invest , 109: 1049-1055
22 Chen H C, Stone S J, Zhou P, Buhman K K, Farese R V Jr (2002b). Dissociation of obesity and impaired glucose disposal in mice overexpressing acyl coenzyme a: diacylglycerol acyltransferase 1 in white adipose tissue. Diabetes , 51: 3189-3195
doi: 10.2337/diabetes.51.11.3189
23 Chen N, Liu L, Zhang Y, Ginsberg H N, Yu Y H (2005). Whole-body insulin resistance in the absence of obesity in FVB mice with overexpression of Dgat1 in adipose tissue. Diabetes , 54: 3379-3386
doi: 10.2337/diabetes.54.12.3379
24 Cheng D, Chang C C, Qu X, Chang T Y (1995). Activation of acyl-coenzyme A: cholesterol acyltransferase by cholesterol or by oxysterol in a cell-free system. J Biol Chem , 270: 685-695
doi: 10.1074/jbc.270.2.685
25 Cheng D, Meegalla R L, He B, Cromley D A, Billheimer J T, Young P R (2001). Human acyl-CoA: diacylglycerol acyltransferase is a tetrameric protein. Biochem J , 359: 707-714
doi: 10.1042/0264-6021:3590707
26 Drevon C A, Norum K R (1975). Cholesterol esterification and lipids in plasma and liver from newborn and young guinea pigs raised on milk and non-milk diet. Nutr Metab , 18: 137-151
doi: 10.1159/000175588
27 Farese R V Jr (1998). Acyl CoA: cholesterol acyltransferase genes and knockout mice. Curr Opin Lipidol , 9: 119-123
doi: 10.1097/00041433-199804000-00007
28 Fazio S, Linton M (2006). Failure of ACAT inhibition to retard atherosclerosis. N Engl J Med , 354: 1307-1309
doi: 10.1056/NEJMe068012
29 Guo Z Y, Chang C C, Chang T Y (2007). Functionality of the seventh and eighth transmembrane domains of acyl-coenzyme A: cholesterol acyltransferase 1. Biochemistry , 46: 10063-10071
doi: 10.1021/bi7011367
30 Guo Z Y, Chang C C, Lu X, Chen J, Li B L, Chang T Y (2005a). The disulfide linkage and the free sulfhydryl accessibility of acyl-coenzyme A: cholesterol acyltransferase 1 as studied by using mPEG5000-maleimide. Biochemistry , 44: 6537-6546
doi: 10.1021/bi047409b
31 Guo Z Y, Lin S, Heinen J A, Chang C C, Chang T Y (2005b). The active site His-460 of human acyl-coenzyme A: cholesterol acyltransferase 1 resides in a hitherto undisclosed transmembrane domain. J Biol Chem , 280: 37814-37826
doi: 10.1074/jbc.M508384200
32 Haugen R, Norum K R (1976). Coenzyme-A-dependent esterification of cholesterol in rat intestinal mucosa. Scand J Gastroenterol , 11: 615-621
33 Hofmann K (2000). A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. Trends Biochem Sci , 25: 111-112
doi: 10.1016/S0968-0004(99)01539-X
34 Hutter-Paier B, Huttunen H J, Puglielli L, Eckman C B, Kim D Y, Hofmeister A, Moir R D, Domnitz S B, Frosch M P, Windisch M, Kovacs D M (2004). The ACAT inhibitor CP-113,818 markedly reduces amyloid pathology in a mouse model of Alzheimer's disease. Neuron , 44: 227-238
doi: 10.1016/j.neuron.2004.08.043
35 Huttunen HJ, Greco C, Kovacs DM (2007). Knockdown of ACAT-1 reduces amyloidogenic processing of APP. FEBS Lett , 581: 1688-1692
doi: 10.1016/j.febslet.2007.03.056
36 Joyce C W, Shelness G S, Davis M A, Lee R G, Skinner K, Anderson R A, Rudel L L (2000). ACAT1 and ACAT2 membrane topology segregates a serine residue essential for activity to opposite sides of the endoplasmic reticulum membrane. Mol Biol Cell , 11: 3675-3687
37 Katzen F, Beckwith J (2003). Role and location of the unusual redox-active cysteines in the hydrophobic domain of the transmembrane electron transporter DsbD. Proc Natl Acad Sci USA , 100: 10471-10476
doi: 10.1073/pnas.1334136100
38 Khelef N, Buton X, Beatini N, Wang H, Meiner V, Chang T Y, Farese R V Jr, Maxfield F R, Tabas I (1998). Immunolocalization of acyl-coenzyme A: cholesterol O-acyltransferase in macrophages. J Biol Chem , 273: 11218-11224
doi: 10.1074/jbc.273.18.11218
39 Kosolapov A., Deutsch C (2003). Folding of the voltage-gated K+ channel T1 recognition domain. J Biol Chem , 287: 4305-4313
doi: 10.1074/jbc.M209422200
40 Lee O, Chang C C, Lee W, Chang T Y (1998). Immunodepletion experiments suggest that acyl-coenzyme A: cholesterol acyltransferase-1 (ACAT-1) protein plays a major catalytic role in adult human liver, adrenal gland, macrophages, and kidney, but not in intestines. J Lipid Res , 39: 1722-1727
41 Lee R G, Willingham M C, Davis M A, Skinner K A, Rudel L L (2000). Differential expression of ACAT1 and ACAT2 among cells within liver, intestine, kidney, and adrenal of nonhuman primates. J Lipid Res , 41: 1991-2001
42 Lin S, Cheng D, Liu M S, Chen J, Chang T Y (1999). Human acyl-CoA: cholesterol acyltransferase-1 in the endoplasmic reticulum contains seven transmembrane domains. J Biol Chem , 274: 23276-23285
doi: 10.1074/jbc.274.33.23276
43 Lin S, Lu X, Chang C C, Chang T Y (2003). Human acyl-coenzyme A: cholesterol acyltransferase expressed in Chinese hamster ovary cells: membrane topology and active site location. Mol Biol Cell , 14: 2447-2460
doi: 10.1091/mbc.E02-11-0725
44 Liu J, Chang C C, Westover E J, Covey D F, Chang T Y (2005). Investigating the allosterism of acyl-CoA: cholesterol acyltransferase (ACAT) by using various sterols: in vitro and intact cell studies. Biochem J , 391: 389-397
doi: 10.1042/BJ20050428
45 Lu X, Lin S, Chang C C, Chang T Y (2002). Mutant acyl-coenzyme A: cholesterol acyltransferase 1 devoid of cysteine residues remains catalytically active. J Biol Chem , 277: 711-718
doi: 10.1074/jbc.M109427200
46 Lu J, Deutsch C (2001). Pegylation: a method for assessing the topology accessibility in Kv1.3. Biochemistry , 40: 13288-13301
doi: 10.1021/bi0107647
47 Matynia A, Anagnostaras S G, Wiltgen B J, Lacuesta M, Fanselow M S, Silva A J (2008). A high through-put reverse genetic screen identifies two genes involved in remote memory in mice. PLoS ONE , 3: e2121
doi: 10.1371/journal.pone.0002121
48 Meiner V L, Cases S, Myers H M, Sande E R, Bellosta S, Schambelan M, Pitas R E, McGuire J, Herz J, Farese R V Jr (1996). Disruption of the acyl-CoA: cholesterol acyltransferase gene in mice: evidence suggesting multiple cholesterol esterification enzymes in mammals. Proc Natl Acad Sci USA , 93: 14041-14046
doi: 10.1073/pnas.93.24.14041
49 Miyazaki A, Kanome T, Watanabe T (2005). Inhibitors of acyl-coenzyme a: cholesterol acyltransferase. Curr Drug Targets Cardiovasc Haematol Disord , 5: 463-469
doi: 10.2174/156800605774962040
50 Miyazaki A, Sakashita N, Lee O, Takahashi K, Horiuchi S, Hakamata H, Morganelli P M, Chang C C, Chang T Y (1998). Expression of ACAT-1 protein in human atherosclerotic lesions and cultured human monocytes-macrophages. Arterioscler Thromb Vasc Biol , 18: 1568-1574
51 Nissen S E, Tuzcu E M, Brewer H B, Sipahi I, Nicholls S J, Ganz P, Schoenhagen P, Waters D D, Pepine C J, Crowe T D, Davidson M H, Deanfield J E, Wisniewski L M, Hanyok J J, Kassalow L M; ACAT Intravascular Atherosclerosis Treatment Evaluation (ACTIVATE) Investigators (2006). Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med , 354: 1253-1263 (Erratum in: N Engl J Med, 355: 638)
doi: 10.1056/NEJMoa054699
52 Norum K R, Lilljeqvist A C, Drevon C A (1977). Coenzyme-A-dependent esterification of cholesterol in intestinal mucosa from guinea-pig. Influence of diet on the enzyme activity. Scand J Gastroenterol , 12: 281-288
53 Oelkers P, Behari A, Cromley D, Billheimer J T, Sturley S L (1998). Characterization of two human genes encoding acyl coenzyme A: cholesterol acyltransferase-related enzymes. J Biol Chem , 273: 26765-26771
doi: 10.1074/jbc.273.41.26765
54 Orland M D, Anwar K, Cromley D, Chu C H, Chen L, Billheimer J T, Hussain M M, Cheng D (2005). Acyl coenzyme A dependent retinol esterification by acyl coenzyme A: diacylglycerol acyltransferase 1. Biochim Biophys Acta , 1737: 76-82
55 Puglielli L, Konopka G, Pack-Chung E, Ingano L A, Berezovska O, Hyman B T, Chang T Y, Tanzi R E, Kovacs D M (2001). Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat Cell Biol , 3: 905-912
doi: 10.1038/ncb1001-905
56 Rudel L L, Lee R G, Cockman T L (2001). Acyl coenzyme A: cholesterol acyltransferase types 1 and 2: structure and function in atherosclerosis. Curr Opin Lipidol , 12: 121-127
doi: 10.1097/00041433-200104000-00005
57 Sakashita N, Miyazaki A, Takeya M, Horiuchi S, Chang C C, Chang T Y, Takahashi K (2000). Localization of human acyl-coenzyme A: cholesterol acyltransferase-1 (ACAT-1) in macrophages and in various tissues. Am J Pathol , 156: 227-236
58 Smith S J, Cases S, Jensen D R, Chen H C, Sande E, Tow B, Sanan D A, Raber J, Eckel R H, Farese R V Jr (2000). Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat Genet , 25: 87-90
doi: 10.1038/75651
59 Tardif J C, Grégoire J, L'Allier P L, Anderson T J, Bertrand O, Reeves F, Title L M, Alfonso F, Schampaert E, Hassan A, McLain R, Pressler M L, Ibrahim R, Lespérance J, Blue J, Heinonen T, Rodés-Cabau J; Avasimibe and Progression of Lesions on UltraSound (A-PLUS) Investigators (2004). Effects of the acyl coenzyme A: cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation , 110: 3372-3377
doi: 10.1161/01.CIR.0000147777.12010.EF
60 Turkish A R, Henneberry A L, Cromley D, Padamsee M, Oelkers P, Bazzi H, Christiano A M, Billheimer J T, Sturley S L (2005). Identification of two novel human acyl-CoA wax alcohol acyltransferases: members of the diacylglycerol acyltransferase 2 (DGAT2) gene superfamily. J Biol Chem , 280: 14755-14764
doi: 10.1074/jbc.M500025200
61 Uelmen PJ, Oka K, Sullivan M, Chang C C, Chang T Y, Chan L (1995). Tissue-specific expression and cholesterol regulation of acylcoenzyme A: cholesterol acyltransferase (ACAT) in mice. Molecular cloning of mouse ACAT cDNA, chromosomal localization, and regulation of ACAT in vivo and in vitro. J Biol Chem , 270: 26192-26201
doi: 10.1074/jbc.270.44.26192
62 Wongsiriroj N, Piantedosi R, Palczewski K, Goldberg I J, Johnston T P, Li E, Blaner W S (2008). The molecular basis of retinoid absorption: a genetic dissection. J Biol Chem , 283: 13510-13519
doi: 10.1074/jbc.M800777200
63 Yang H, Bard M, Bruner DA, Gleeson A, Deckelbaum R J, Aljinovic G, Pohl T M, Rothstein R, Sturley S L (1996). Sterol esterification in yeast: a two-gene process. Science , 272: 1353-1356
doi: 10.1126/science.272.5266.1353
64 Yen C L, Monetti M, Burri B J, Farese R V Jr (2005). The triacylglycerol synthesis enzyme DGAT1 also catalyzes the synthesis of diacylglycerols, waxes, and retinyl esters. J Lipid Res , 46: 1502-1511
doi: 10.1194/jlr.M500036-JLR200
65 Yu C, Chen J, Lin S, Liu J, Chang C C, Chang T Y (1999). Human acyl-CoA: cholesterol acyltransferase-1 is a homotetrameric enzyme in intact cells and in vitro. J Biol Chem , 274: 36139-36145
doi: 10.1074/jbc.274.51.36139
66 Yu C, Kennedy N J, Chang C C, Rothblatt J A (1996). Molecular cloning and characterization of two isoforms of Saccharomyces cerevisiae acyl-CoA: sterol acyltransferase. J Biol Chem , 271: 24157-24163
doi: 10.1074/jbc.271.39.24157
67 Yu C, Zhang Y, Lu X, Chen J, Chang C C, Chang T Y (2002). Role of the N-terminal hydrophilic domain of acyl-coenzyme A: cholesterol acyltransferase 1 on the enzyme's quaternary structure and catalytic efficiency. Biochemistry , 41: 3762-3769
doi: 10.1021/bi0120188
68 Zhang Y, Yu C, Liu J, Spencer T A, Chang C C, Chang T Y (2003). Cholesterol is superior to 7-ketocholesterol or 7 alpha-hydroxycholesterol as an allosteric activator for acyl-coenzyme A: cholesterol acyltransferase 1. J Biol Chem , 278: 11642-11647
doi: 10.1074/jbc.M211559200
69 Zhao G, Souers A J, Voorbach M, Falls H D, Droz B, Brodjian S, Lau Y Y, Iyengar R R, Gao J, Judd A S, Wagaw S H, Ravn M M, Engstrom K M, Lynch J K, Mulhern M M, Freeman J, Dayton B D, Wang X, Grihalde N, Fry D, Beno D W, Marsh K C, Su Z, Diaz G J, Collins C A, Sham H, Reilly R M, Brune M E, Kym P R (2008). Validation of diacyl glycerolacyltransferase I as a novel target for the treatment of obesity and dyslipidemia using a potent and selective small molecule inhibitor. J Med Chem , 51: 380-383
doi: 10.1021/jm7013887
[1] Karimeh Haghani, Pouyan Asadi, Gholamreza Taheripak, Ali Noori-Zadeh, Shahram Darabi, Salar Bakhtiyari. Association of mitochondrial dysfunction and lipid metabolism with type 2 diabetes mellitus: A review of literature[J]. Front. Biol., 2018, 13(6): 406-417.
[2] Karim Mowla, Elham Rajaei, Mohammad Taha Jalali, Zeinab Deris Zayeri. Threatening biomarkers in lupus pregnancy: Biochemistry and genetic challenges[J]. Front. Biol., 2018, 13(1): 28-35.
[3] Anatoly I. Bozhkov,Natalia G. Menzyanova,Vadim V. Davydov,Natalia I. Kurguzova,Vadim I. Sidorov,Anastasia S. Vasilieva. Liver regeneration is associated with lipid reorganization in membranes of the endoplasmic reticulum[J]. Front. Biol., 2016, 11(5): 396-403.
[4] Kai Jiang,Jianhang Jia. Smoothened regulation in response to Hedgehog stimulation[J]. Front. Biol., 2015, 10(6): 475-486.
[5] Sharath BALAKRISHNA,Asmita A. PRABHUNE. Gamma-glutamyl transferases: A structural, mechanistic and physiological perspective[J]. Front. Biol., 2014, 9(1): 51-65.
[6] FoSheng HSU, Yuxin MAO. The Sac domain-containing phosphoinositide phosphatases: structure, function, and disease[J]. Front Biol, 2013, 8(4): 395-407.
[7] Catherine C. Y. CHANG, Jie SUN, Ta-Yuan CHANG. Membrane-bound O-acyltransferases (MBOAT)[J]. Front Biol, 2011, 6(3): 177-182.
[8] Guanghou SHUI. Systems level analysis of lipidome[J]. Front Biol, 2011, 6(3): 183-189.
[9] Karlheinz GRILLITSCH, Günther DAUM. Triacylglycerol lipases of the yeast[J]. Front Biol, 2011, 6(3): 219-230.
[10] George M. CARMAN. The discovery of the fat-regulating phosphatidic acid phosphatase gene[J]. Front Biol, 2011, 6(3): 172-176.
[11] WU Junlin, GAO Xuehong, ZHANG Sheqi. Effect of laser pretreatment on germination and membrane lipid peroxidation of Chinese pine seeds under drought stress[J]. Front. Biol., 2007, 2(3): 314-317.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed