Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    0, Vol. Issue () : 158-179    https://doi.org/10.1007/s11515-009-0012-y
REVIEW
Multi-scale trajectory analysis: powerful conceptual tool for understanding ecological change
László ORLÓCI()
Ecologia Quantitativa, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91540-000, Brazil
 Download: PDF(715 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The model at the basis of trajectory analysis is conceptually simple. When applied to time series vegetation data, the projectile becomes a surrogate for vegetation state, the trajectory for the evolving vegetation process, and the properties of the trajectory for the true process characteristics. Notwithstanding its simplicity, the model is well-defined under natural circumstances and easily adapted to serial vegetation data, irrespective of source. As a major advantage, compared to other models that isolate the elementary processes and probe vegetation dynamics for informative regularities on the elementary level, the trajectory model allows us to probe for regularities on the level of the highest process integrity. Theories and a data analytical methodology developed around the trajectory model are outlined, including many numerical examples. A rich list of key references and volumes of supplementary information supplied in the Web Only Appendices rounds out the presentation.

Keywords attractor migration      determinism      fractal dimension      parallelism      periodicity      phase structure     
Corresponding Author(s): László ORLÓCI   
Issue Date: 05 June 2009
 Cite this article:   
László ORLÓCI. Multi-scale trajectory analysis: powerful conceptual tool for understanding ecological change[J]. Front. Biol., 0, (): 158-179.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-009-0012-y
https://academic.hep.com.cn/fib/EN/Y0/V/I/158
yearBGENCVETMCCPJSRAOS
196357.117.98.6011.60.00.20.04.70.0
196444.025.013.712.20.01.10.23.90.0
196532.734.913.914.30.00.50.03.70.0
196627.536.820.014.10.10.90.20.30.1
196719.746.121.010.80.10.70.40.50.7
196810.754.222.210.60.70.60.40.00.5
19696.7055.723.310.40.32.00.70.10.7
19705.8061.123.76.900.21.20.70.20.3
19719.5057.624.76.600.40.60.40.00.3
19728.4062.123.73.600.31.20.10.00.6
19734.4067.921.33.300.20.60.40.02.0
19748.5058.125.84.700.61.30.70.00.4
19759.2062.224.32.500.60.90.20.00.1
19769.9058.224.93.700.61.10.70.01.0
197719.648.423.55.700.31.20.40.10.9
197812.158.122.74.800.40.40.00.21.3
19799.3065.120.32.700.01.50.10.20.9
19807.3068.221.51.200.51.00.10.10.2
19815.4065.520.84.601.01.60.40.30.6
Tab.1  De Smidt’s Heathland data set after Lippe et al. (1985)
Fig.1  The phase space diagram after Orlóci et al. (2002a, 2006). Top: idealized trajectory, BoldItalicBoldItalic to P (the time dimension). Symbols: BoldItalicBoldItalic: the state, defined by the triplet (XO1, XO2 and XO3) at which the observer’s time begins; BoldItalic: the state of the momentary target called the attractor. Bottom: stereo mapping of the Atlantic Heathland trajectory (Table 1). See details in the text.
location and contact personlatitudelongitudealtitude/mnumber of taxanumber of time stepsperiodcovereda BPregional vegetation formationannual precipitation/cmpotential evapotranspiration/cm
(1) Lagoa das Patas, Amazonas— P. E. Oliveira (Colinvaux et al., 1996)00.16.00 N66.41.00 W300179490-44 569TR>200120-160
(2) Joe Lake, Alaska— P. M. Anderson (1988)66.46.00 N157.13.00 W18390870-43 804T,TA25-50<40
(3) Camel Lake, Florida— E.C. Grimm (Watts et al., 1992)30.16.00 N85.01.00 W201471160-36 658LSC100-15080-120
(4) Hanging Lake, Yukon Territory— L. C. Cwynar (1982)68.28 N138.23 W500m891330-41 134T25-50<40
(5) Jack London Lake, Magadan Oblast, Russia— P. M. Anderson (Lozhkin et al., 1993)62.10.00 N149.30.00 E8207260221-29 876AT,TA25-50<40
(6) Jackson Pond, Kentucky— G. R. Wilkins (Wilkins et al., 1991)37.27.00 N85.43.00 W21271580-20 477TDF100-15080-120
(7) Cambará, Rio Grande do Sul, Brazil— H. Behling (Behling et al., 2004)29.03.09 S50.06.04 W10461641900-42 784ARA,G150-20080-120
(8) Lake Patzcuaro, Michoacán de Ocampo, Mexico— W. A. Watts (Watts and Bradbury, 1982)19.35.00 N101.35.00 W2044536420-44 100XF50-100120-160
(9) Rusaka Swamp, Burundi— R. Bonnefille (Bonnefille et al., 1995)03.26.00 S29.37.00 E2070179141796-11 910 (46 666)TG,TH50-150120-160
(10) Lynch’s Crater, Queensland, Australia— A. P. Kershaw (1994)17.22.00 S145.42.00 E7602244(234)868-40 000(–192 649)EAS50-150120-160
(11) Harberton, Tierra del Fuego— V. Markgraph (no reference given).54.53.00 S67.10.00 W2033810-13 360DS25-5080-120
(12) Lake George, NSW— G. S. Hope (Singh and Geissler, 1985)35.05.00 S149.25.00 E6739330(68)1-40 000(116 711)EASC25-10080-120
(13) Potato Lake, Arizona— R. S. Anderson (1993)34.27.43 N111.20.43 W220577611389-35 271MDSC25-5080-160
(14) Hay Lake, Arizona— B. F. Jacobs (1985)34.00.00 N109.25.30 W27804446106-44 692MDSC25-5080-160
Tab.2  Data sources by location and contact person after Orlóci et al. (2006)
Fig.2  Cwynar’s (1982)palynological spectrum from Hanging Lake, Yukon Territory. Sample and location information are given in Table 2. Graph and accompanied data were downloaded from the Global Pollen Database, 2007 URL address: http://www.ncdc.noaa.gov/paleo/pollen.html and search. Short listed taxa (each taxon represents a different palynomorph named according to their lowest identifiable systematic status) after L. C. Cwynar: 1, Alnus; 2, Betula; 3, Ericaceae; 4, Ericales; 5, Picea; 6, Salix; 7, Artemisia; 8, Asteraceae-Asteroideae; 9, Brassicaceae; 10, Chenopodiacea-Amaranthaceae; 11, Cyperaceae; 12, Fabaceae; 13, Plantago canescens; 14, Poaceae; 15, Rosaceae; 16, Other trees and shrubs; 17, other herbs; bottom scale, pollen counts (%); dark shading, original scale; light shading, 5×exaggerated scale. Black markings on depth scale, dated horizons. Red line demarks a record set called paleorelevé. This is the virtual equivalent of the regional vegetation community 8200 years BP. Interesting to observe the great age of the sediments. From this we can infer that the Hanging Lake site remained essentially undisturbed by glacial ice for at least forty millennia.
Fig.3  Long-term performance of taxa in deviation terms after Orlóci et al. (2006). Taxa are taken from Cwynar’s (1982) Hanging Lake spectrum (Fig. 2, Table 2). Horizontal axis: years before the present; vertical axis: Vostok temperature differences (T) following Petit et al. (2001); SSD: sums of squared deviations; Δ: deviations from random expectation. Random expectation is the imaginary state that we would have if the compositional transitions were ruled completely by chance. Deviations above or below random expectation (the zero line) indicate over or under-performance of the taxon. See Feoli and Orlóci (1985) and Orlóci and Orlóci (1988) for use Δ and SSD graphs in a study of environmental effects in transect based edge detection.
time periodkyr BPindicator taxaformation type
42—19Poaceae, Artemisia, Brassicaceae, Chenopodiaceae/Amaranthaceaedwarf shrub steppe of windswept dry uplands
19—11Pediastrum (alga), Fungi, Salix, Cyperaceae, Picealichen dominated tundra, wetlands expanding
11—0Betula, Alnus incana, Bothrichium, Sphagnum, Picea, Ericales, Equisetum, Vacciniumtaiga uplands and wetland mosaic
Tab.3  Late Quaternary vegetation history of Hanging Lake reconstructed from the sums of squared deviations (SSD) graph (Fig. 3)
Fig.4  Long-term oscillations of distance (D), angle (AN), velocity (V) and acceleration (A) at the Hanging Lake site (Table 2). The Vostok temperature graph (T) is superimposed. The functions are discussed in the text. Data set used covers 89 taxa. See Petit et al. (2001) for temperature details. Diagram adapted from Orlóci et al. (2006).
block size (BS)variablevalues of V and T at time points before the presentr(V,T)
12345678910
1V33566148390.963
1T–1–2344–31506
2V345.563.52.565.560.963
2T–1.50.53.540.5–132.53
3V3.74.75.74.33.74.356.70.996
3T01.73.71.70.7123.7
4V4.354.54.34.8460.934
4T12.221.51.80.83
Tab.4  Error dampening by moving averages
Localityr(V,T)LLULR2f+f-CVFThi
Lagoa das Patas 00.16ºN 6.41ºW0.12–0.010.280.7380.9616.30TR>1.43
Joe Lake 66.46ºN 157.13ºW0.350.300.400.9880.9016.76T1.88
Camel Lake 30.16ºN 85.01ºW0.310.270.350.9875.8420.68LSC1.25
Hanging Lake 68.28ºN 138.23ºW0.630.560.710.9168.6830.22T TA1.88
Jack London L. 62.10ºN 149.30ºE0.110.020.200.9865.0829.16AT TA1.88
Jackson Pond 37.27ºN 85.43ºW0.300.280.320.9857.3138.39TDF1.25
Cambará 29.03ºS 50.06ºW0.530.500.560.9556.6332.77ARA G1.75
Lake Patzcuaro 19.35ºN 101.35ºW0.600.500.700.7852.7941.25XF G0.54
Rusaka Swamp 3.25ºS 29.37ºE0.230.170.240.8646.8439.99TG TH0.71
Lynch's Crater* 17.22ºS 145.42ºE–0.66–0.70–0.620.7442.6255.08EAS0.71
Tierra del Fuego 54.53ºS 67.10ºW–0.25–0.37–0.150.5533.6463.71DS0.36
Lake George* 35.05ºS 149.25ºE–0.48–0.99–0.280.5715.1284.32EASC0.63
Potato Lake 37.27ºN 111.20ºW–0.31–0.42–0.190.8611.1584.91MDSC0.31
Hay Lake 34.00ºN 109.25ºW–0.23–0.34–0.120.854.7493.91MDSC0.31
mean (positive)0.350.290.420.9165.0029.501.39
mean (negative)–0.39–0.56–0.270.7121.4576.390.46
grand mean0.09–0.020.170.8449.4546.251.04
Tab.5  Regression estimates ρ(V,T), f+ and f- in 14 sites
Fig.5  Regression method of estimation using block size (BS) as the scale variable. The site is Hanging Lake (Table 2, Fig. 4). See numerical results in Table 5. Abbreviations: F+ or F, percent frequency of positive or negative correlation values determined in randomized sitting of windows with randomly chosen BS values; y: regression estimate; R2,coefficient of determination; BS: block size in time step units; r(V,T), product moment correlation coefficient. The ‘best estimate’ used is the point on the regression line corresponding to BS=1. Graph adapted from Orlóci et al. (2002a, 2006).
trajectory pair (columns) and statistics (rows)Hanging Lake ´ CambaráHanging Lake ´ Lagoa das PatasCambará ´ Lagoa das PatasLagoa das Patas ´ RNDidenticalsRND ´ RND
observed topological similarity at maximum deviation from random expected0.89910.82600.87010.70191.00000.3438
random expectation (bias) at maximum deviation0.38610.38610.41960.54490.34070.3355
deviation from expectation (unbiased similarity)0.5130.43980.45040.15690.65930.0083
tolerance radius % at maximum deviation605056713536
lower 95% confidence limit0.28130.28130.31670.51110.21050.3123
upper 95% confidence limit0.49090.49090.52250.57880.47090.3586
significancehighhighhighhighvery highnone
Tab.6  Characteristic values of the topological similarity coefficient and related statistics
Fig.6  Top row: graphs of the topological similarity index and the 95% statistical confidence limits; bottom row: the similarity coefficient’s deviation from random expectation determined in Monte Carlo experiments; horizontal scale: the radius of the tolerance sphere (scale variable) extending from 0 to 100% in 1% steps. See method description and references in Web Based Appendix F and numerical results in Table 6. Data transformation to equal time steps is applied (see Web Based Appendix H). Abbreviations: a, topological similarity; b, upper limit of 95% (statistical) confidence interval about random expectation; c, expectation of a under assumption of random compositional transitions; d, lower limit of 95% confidence interval. Localities are identified in Table 2: HL, Hanging Lake, Yukon Territory; CA, Cambará, Rio Grande do Sul; RND, series of random numbers emulating the case of chance driven compositional transitions; identicals, a trajectory and its exact copy. We take as an optimal estimate of parallelism the value of the similarity coefficient at maximum deviation from random expectation. To attain this value about 50% of random variations have to be bridged by the tolerance radius. Any similarity value (points on curve ‘a’) outside the confidence limits is deemed significant at better than 2.5%. Graph adapted from Orlóci et al. (2006).
RF+F
entropy–0.523625.428170.7639
information0.714169.758728.2512
Tab.7  Regression estimates of entropy and information in the Hanging Lake site (Table 2) for BS=1 corresponding to Figs. 7 and 8
Fig.7  Long-term evolution of taxon diversity (H) and information divergence (I) at the Hanging Lake site. Refer to Rényi (1961) and Web Based Appendix G for technique. Vostok temperature graph follows Petit at al. (2001). Site detail is in Table 2.
Fig.8  Regression estimation of the correlation of entropy (H) and information divergence (I) with Vostok temperature (T), and the frequency distribution of the correlation as a function of block size BS at the Hanging Lake site (Table 2). See oscillograms in Fig. 7. F+ or F: percent frequency of positive or negative correlation values; y: regression estimate; R2: coefficient of determination; BS: block size in time step units; r(H,T) or r(I,T): product moment correlation coefficient. Regression estimates at BS=1 are given in Table 7. Note the negative correlation coefficient for entropy and the positive correlation for information divergence. These support the hypothesis that climate warming destabilizes the vegetation.
periodphase type
1963-1969high velocity linear phase under steady proportionality
1969-1981non-linear, turbulent phase, following process occlusion brought on by critically reduced carrying capacity in the site. The process briefly returns to the linear phase around 1976, 1977.
Tab.8  Phase structure in the Atlantic Heathland trajectory (Table 1, Fig. 1)
trajectorytime period/yrstress observedstress expectedvariance of expected stressprobability discriminating against Markovity(1-a)strength of Markov type directedness
Atlantic Heathland1963-19820.2441.06851.41896<0.001intense
1963-19700.1620.80941.32603<0.001intense
1970-19821.4511.42791.590130.635weak
Hanging Lake0-41000 BP1.7881.80350.73826<0.01strong
Lagoa das Patas0-42000 BP1.87218.690.620820.650weak
RND0-10000*2.0002.0000.00001.000nil
Tab.9  Probing the sample trajectories for the intensities of Markov type determinism
trajectorytime period/yrrank correlation observedr(D,BoldItalic)rankcorrelation expectedvariance of expectationprobability a discriminating against rank order type directednessstrength of directedness
Atlantic Heathland1963-19810.58100.00050.0612<0.001intense
1963-19700.92910.00070.0377<0.001intense
1970-19810.2938–0.00690.01420.537moderate
Hanging Lake1-41000BP0.24620.00040.0007<0.01strong
Lagoa das Patas0-42000BP0.0001–0.00010.000040.461low
RND0-10000*–0.02000.00010.40.999nil
Tab.10  Probing sample trajectories for the strength of directedness based on the rank correlation r(D,BoldItalic)
Fig.9  Evolution of disorder-based compositional diversity H, Anand’s structural complexity C, and composition based process velocity V in the Atlantic Heathland site (Table 1). Graphs are scaled for clear viewing. Reference and explanations are found in the text and in Web Based Appendix G.
Fig.10  Long-term evolution of disorder-based compositional diversity H, Anand’s structural complexity C, and composition based process velocity V in the Lagoa das Patas site (Table 2). Graphs are scaled for clearer viewing. Explanations are found in the text and in Web Based Appendix G. Equal time step (100 yr) transformation applies (Web Based Appendix H).
trajectoryintervalr(H,C)r(H,V)r(C,V)
Atlantic Heathland1964-19700.63520.34770.7034
1970-19780.2616–0.0520.6676
1978-19810.00340.9355–0.2701
1964-19810.67580.53640.6351
Tab.11  Product moment correlation coefficient (r) of the Atlantic Heathland graphs H, C, and V in Fig. 9
r(C,V)r(H,V)
Correlation–0.29–0.24
frequency of positive correlation values /%1115
frequency of negative correlation values /%8676
frequency of zeros/%39
Tab.12  values of the product moment correlation (r) of the H, C, V graphs in Fig. 10 for Lagoa das Pata (Table 2)
r11.11.211.331...207.96506
k9706882280187288...8
L(r)=kr97069704.29701.789700.328...1663.7205
Tab.13  Interpretation of the measuring convention L(r)
sitetrue lengthof thetrajectoryrange ofcalliperwidthrtrajectorylength L(r) at upperlimit ofrHausdorffdimensionDsimulated meanHausdorffdimensionMDvariance Vof MDupper limit of simulated 99% confidenceintervallower limit of simulated 99%confidenceinterval
LdP170481-44526741.131.134.07E-061.081.20
AHL17141-1175861.141.171.047E-051.111.25
CMB441711-644051.241.178.72E-041.111.27
RS96721-95519111.241.241.27E-061.221.27
TdF80101-2286861.261.239.06E-061.171.32
HL250641-3683681.291.268.98E-061.151.35
LyC136561-2072071.471.281.48E-051.191.38
Tab.14  Hausdorff (fractal) dimensions of trajectories
stepncalipper width rgraph length L(r)regression coefficient bHausdorff dimension Dcumulative mean of D
11422766
21.1422757.5–2.11E-041.0002111.000211
31.21422755.9–1.26E-041.0001261.000169
41.331422752.2–1.07E-041.0001071.000148
3730.91268416146.5–3.17E-031.0031691.000744
3834.00395414780.2–3.62E-031.0036231.000822
11657565.04402955.3–5.25E-031.0052521.012602
11763321.54379929.3–5.35E-031.0053521.012539
Tab.15  Cumulative averaging of the Hausdorff dimension D for Vostok (Fig. 11)
Fig.11  The Vostok temperature graph after Petit et al. (2001). The Vostok temperature graph spans 3311 readings over 423 thousand years. Relevant statistics are given in Table 15.
Fig.12  Vegetation map of Eastern North America (after Espenshade and Morrison, 1990, modified) and graphs showing the historic expansion of the Eastern Cool Temperate Deciduous Forest over latitudes and time. Statistics in graph follow Orlóci (2008). Second graph is adapted from Delcourt and Delcourt (1987, Fig. 1.4) with modifications. The rates shown for temperature are from Vostok transformed to global mean average surface rates and adjusted to show the effect of the local thermal flax rate (Orlóci, 2008). Compare the projected rates to the actual historic rates to see the wide gap, and the enormity of the likely consequences. Formation symbols: T: tundra; B: Boreal Forest; M: Mixed Conifer-Northern Hardwood Forest; D: Cool-Temperate Deciduous Forest; E: Warm-Temperate South-Eastern Evergreen Forest; S: Subtropical. See Table 18 for warming rates and Braun (1950) for detailed description of D.
upper classlimit for100 yr Vostokinversion level warming rates/°Cupper classlimit for100 yr global averagesurfacewarming rates/°Ccumulativefrequencyfrequencyproportion
–2–4000.0000
–1.6–3.2110.0002
–1.2–2.4760.0014
–0.8–1.625180.0043
–0.4–0.82121870.0442
00223920270.4794
0.40.8400117620.4167
0.81.642012000.0473
1.22.44223220.0052
1.63.2422520.0005
24422830.0007
2.44.8422800.0000
42281.0000
Tab.16  Frequency distribution of 100 yr warming rates based on 4228 steps each 100 yr wide in the complete Vostok set (Fig. 14)
Period/TBP yrwarming during period/°Ccoolingduring period/°Cperiod length/yr100 yr inversion level rate/°C100 yr surface rate /°C
334600-32369510.89109050.09990.20
323695-307005-9.090016690–0.0834–0.17
139643-1285019.92111420.09100.18
128501-108538-9.630019963–0.0883–0.18
16949-139496.2630000.20870.42
13949-135491.7400400–0.4350–0.87
12649-49493.2577450.04200.084
12649-111494.7315000.31530.63
11146-106491.5100497–0.3058–0.612
8619-81352.794840.57641.15
Tab.17  100 yr warming/cooling rates for Vostok (Fig. 11) within periods as identified
vegetationArcticTundraBorealForestMixedConifer-NorthernHardwoodForestCoolTemperateDeciduousForestWarmTemperateEvergreenForestTropicalAlpineTundra (3300 m)TropicalSubalpineVegetation(2000 m)
1climatic stationPort Harrison, Qu.Timmins, OntarioStratford, OntarioNashville, TennesseeMobil, Alabama*Mauna Kea, Hawaii
2N.lat.58°26'48°31'43°22'36°10'31°42'19°49'19°49'
3AMP mm372711773114414395101020
4AMT/°C–7.51.38.315.619.804.4
5TFR2.531.921.51.10.7**0.920.92
6TR9.16.95.53.93.63.323.32
7EAMT1.68.213.819.523.43.327.72
Tab.18  Local thermal flux rates after Orlóci (1994), modified
1 Anand M (1994). Pattern, process and mechanism-The fundamentals of scientific inquiry applied to vegetation science. Coenoses, 9: 81-92
2 Anand M (2000). The fundamentals of vegetation change: complexity rules. Acta Biotheoretica, 48:1-14
3 Anand M, Orlóci L (1996). Complexity in plant communities: the notion and quantification. Journal of Theoretical Biology, 179: 179-186
4 Anand M, Orlóci L (1997). Chaotic dynamics in a multispecies community. Environmental and Ecological Statistics, 4: 337-344
5 Anand M, Orlóci L (2000). On partitioning of an ecological complexity function. Ecological Modelling, 132: 51-62
6 Anderson P M (1988). Late Quaternary pollen records from the Kobuk and Noatak River drainages, northwestern Alaska. Quaternary Research, 29: 263-276
7 Anderson R S (1993). A 35,000 year vegetation and climate history from Potato Lake, Mogollon Rim, Arizona. Quaternary Research, 40: 351-359
8 Bartha S, Czárán T, Scheuring I (1998). Spatio-Temporal scales of non-equilibrium community dynamics in abstract coenostate spaces. Abstracta Botanica, 22: 49-66
9 Behling H, De Patta Pillar V, Orlóci L, Bauermann S G (2004). Late Quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Paleogeography, Paleoclimatology, Paleoecology, 203: 277-297
10 Bonnefille R, Riollet G, Buchet G, Icole M, Lafont R, Arnold M, Jolly D (1995). Glacial/Interglacial record from intertropical Africa, high resolution pollen and carbon data at Rusaka, Burundi. Quaternary Science Reviews, 14: 917-936
11 Braun E L (1950). Deciduous Forests of Eastern North America. Toronto: Blakston
12 Cajander A K (1909). Über Waldtypen. Helsinki: Acta Forestalia Fennica 1
13 Çambel A B (1993). Applied Chaos Theory: a Paradigm for Complexity. New York: Academic Press
14 Clements F E (1916). Plant Succession: an Analysis of the Development of Vegetation. <patent>Publ. No. 242</patent>. Washington: Carnegie Institution
15 Colinvaux P A, de Oliveira P E, Moreno J E, Miller M C, Bush M B (1996). A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science, 274: 85-88
16 Cox D R, Lewis P A W (1968). The Statistical Analysis of Series of Events. London: Methuen
17 Cwynar L C (1982). A Late-Quaternary vegetation history from Hanging Lake, northern Yukon. Ecological Monographs, 52: 1-24
18 Czárán T (1998). Spatiotemporal Models of Population and Community Dynamics. Population and Community Biology Series. <patent>Vol. 21</patent>. London: Chapman and Hall
19 Delcourt P A, Delcourt H R (1987). Long-term Forest Dynamics of the Temperate Zone. New York: Springer-Verlag
20 Diggle P J (1981). Statistical Aalysis of Point Patterns. London: Academic Press
21 Edgington E S (1987). Randomization Tests. <patent>2nd ed</patent>. New York: Marcel Dekker
22 Espenshade E B Jr, Morrison J L, eds. (1990). Good’s World Atlas.18th ed. New York: Rand McNally, 16
23 Fekete G (1985). Terrestrial vegetation succession: theories, models, reality. In: Fekete G, ed. Basic questions of Coenological Succession. Budapest: Akademiai Kiadó, 31-63 (In Magyar)
24 Fekete G, Virágh K, Aszalós R, Orlóci L (1998). Landscape and ecological differentiation of Brachypodium pinnatum grasslands in Hungary. Coenoses, 13: 39-53
25 Feoli E, Orlóci L (1985). Species dispersion profiles of anthropogenic grasslands in the Italian Pre-Alps. Vegetatio, 60: 113-118
26 Gleick J (1987). Chaos: Making a New Science. New York: Penguin Books
27 Goodall D W (1967). Computer simulation of changes in vegetation subject to grazing. Journal of Indian Botanical Society, 46: 56-61
28 Goodall D W (1972). Building and testing ecosystem models. In: Jeffers N R, ed. Mathematical Models in Ecology. Oxford: Blackwell, 173-214
29 Greig-Smith P (1952). The use of random and contiguous quadrats in the study of the structure of plant communities. Annals of Botany, 16: 293-316
30 Greig-Smith P (1957). Quantitative Plant Ecology. London: Butterworths
31 Greig-Smith P (1983). Quantitative Plant Ecology. <patent>3rd ed</patent>. London: Blackwell Scientific
32 Hammerssley J M, Handscom D C (1967). Monte Carlo Methods. London: Methuen
33 He X S, Orlóci L (1999). Anderson Pond revisited: the late Quaternary vegetation process. Abstracta Botanica, 22: 81-93
34 Hill M O, Gauch H G (1980). Detrended correspondence analysis: an improved ordination technique. Vegetatio, 42: 47-58
35 Jacobs B F (1985). A middle Wisconsin pollen record from Hay Lake, Arizona. Quaternary Research, 24: 121-130
36 Kerner von Marilaun A (1863). Das Pflanzenleben der Danauländer. Wagner: Innbruck
37 Kershaw A P (1994). Pleistocene vegetation of the humid tropics of northeastern Queensland, Australia. Palaeogeography, Palaeoclimatology, and Palaeoecology, 109: 399-412
38 Krajina V J (1963). Biogeoclimatic zones on the Hawaiian Islands. Newsletter of the Hawaiian Botanical Society, 7: 93-98
39 Kühler A W (1990). Natural vegetation. In: Espenshade E B Jr, Morrison J L, eds. Good’s World Atlas, 18th ed. New York: Rand McNally, 8-9
40 Legendre P, Legendre L (1983). Numerical Ecology. Amsterdam: Elsevier
41 Lippe E, De Smidt J T, Glen-Lewin D C (1985). Markov models and succession: a test from a heathland in the Netherlands. Journal of Ecology, 73: 775-791
42 Lorenz E N (1963). Deterministic nonperiodic flow. Journal of Atmospheric Science, 20: 130-141
43 Lotka A J (1925). Elements of Physical Biology. Baltimore: Williams and Wilkins
44 Lozhkin A V, Anderson P M, Eisner W R, Ravako L G, Hopkins D M, Brubaker L B, Colinvaux P A, Miller M C (1993). Late Quaternary lacustrine pollen records from southwestern Beringia. Quaternary Research, 39: 314-324
45 Manabe S, Bryan K, Spelman M J (1990). Transient response of a global ocean-atmosphere model to a doubling of atmospheric carbon dioxide. Journal of Physical Oceanography, 20: 722-749
46 Mandelbrot B B (1967). How long is the coast line of Britain? Statistical self similarity and fractional dimension. Science, 156: 636-638
47 Mandelbrot B B (1977). Fractals: form, chance and dimension. San Francisco: Freeman
48 Mandelbrot B B (1983). The fractal geometry of Nature. San Francisco: Freeman
49 Margalef R (1989). On diversity and connectivity as historical expressions of ecosystems. Coenoses, 4: 121-126
50 Mason J (1990). The greenhouse effect and global warming. Information Office, British Coal, C.R.E. Stoke Orchard, Cheltenham, Gloucestershire, U.K. <patent>GL52 4RZ</patent>
51 May R M (1976). Simple mathematical models with very complicated dynamics. Nature, 261: 459-467
52 May R M (1987). Chaos and the dynamics of biological populations. London: Proc. Royal Soc., Series A, 413: 27-44
53 May R M, ed. (1981). Theoretical Ecology. Oxford: Blackwell
54 May R M, Oster G F (1976). Bifurcations and dynamic complexity in simple ecological model. The American Naturalist, 110: 573-599
55 McIntosh R P (1985). The Background of Ecology: Concept and Theory. New York: Cambridge University Press
56 Metropolis N (1987). The beginning of the Monte Carlo method. Los Alamos Science Special Issue, 125–130. available at URL: http://library.lanl.gov/cgi-bin/getfile?00326866.pdf
57 Metropolis N, Ulam S (1949). The Monte Carlo method. Journal of the American Statistical Association, 44: 335-341
58 Mueller-Dombois D (1992). A natural dieback theory, cohort senescence, as an alternative to the decline disease theory. In: Manion P D, Lachance D, eds. Forest Decline Concepts. St. Paul, MN: The Am Phytopath Soc Press, 26-37
59 Orlóci L (1974). On information flow in ordination. Vegetatio, 29: 11-16
60 Orlóci L (1978). Multivariate Analysis in Vegetation Research. The Hague: W. Junk bv
61 Orlóci L (1991a). On character-based community analysis: choice, arrangement, comparison. Coenoses, 6: 103-107
62 Orlóci L (1991b). Entropy and Information. Ecological Computations Series (ECS)<patent>Vol. 3</patent>. The Hague: SPB Academic Publishing bv
63 Orlóci L (1991c). CONAPACK: A program for Canonical Analysis of Classification Tables. Ecological Computations Series: <patent>Vol. 4</patent>. The Hague: SPB Academic Publishing
64 Orlóci L (1993). The complexities and scenarios of ecosystem analysis. In: Patil G P, Rao C R, eds. Multivariate Environmental Statistics. New York: Elsevier Scientific, 423-432
65 Orlóci L (1994). Global warming: the process and its anticipated phytoclimatic effects in temperate and cold zone. Coenoses, 9: 69-74
66 Orlóci L (2001a). Pattern dynamics: an essay concerning principles, techniques, and applications. Community Ecology, 2: 1-15
67 Orlóci L (2001b). Prospects and expectations: reflections on a science in change. Community Ecology, 2: 187-196
68 Orlóci L (2006). Diversity partitions in 3-way sorting: functions, Venn diagram mappings, typical additive series, and examples. Community Ecology, 7: 253-259
69 Orlóci L (2008). Vegetation displacement issues and transition statistics in climate warming cycle. Community Ecology, 9: 83-98
70 Orlóci L, Anand M, He X S (1993). Markov chain: a realistic model for temporal coenosere? Biométrie-Praximétrie, 33: 7-26
71 Orlóci L, Anand M, Pillar V D (2002b). Biodiversity analysis: issues, concepts, techniques. Community Ecology, 3: 217-236
72 Orlóci L, Orlóci M (1988). On recovery, Markov chains and canonical analysis. Ecology, 69: 1260-1265
73 Orlóci L, Pillar V D, Anand M (2006). Multiscale analysis of palynological records: new possibilities. Community Ecology, 7: 53-68
74 Orlóci L, Pillar V D, Anand M, Behling H (2002a). Some interesting characteristics of the vegetation process. Community Ecology, 3: 125-146
75 Petit J R, Jouzel D, Raynaud D, Barkov N I, Barnola J M, Basile I, Bender M, Chappellaz J, Davis J, Delaygue G, Delmotte M, Kotlyakov V M, Legrand M, Lipenkov V, Lorius C, Pepin L, Ritz C, Saltzmann E, Stievenard M (2001). Vostok Ice Core Data for 420,000 years, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series<patent>2001-076</patent>. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA
76 Pielou E C (1977). An Introduction to Mathematical Ecology. New York: Wiley-Interscience
77 Pillar V D, Orlóci L (1996). On randomisation testing in vegetation science: multifactor comparison of relevé groups. Journal of Vegetation Science, 7: 587-592
78 Podani J (1994). Multivariate Analysis in Ecology and Systematics. The Hague: SPB Publishing
79 Rényi A (1961). On measures of entropy and information. In: Neyman J, ed. Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 547-561
80 Reyner J N (1971). An Introduction to Spectral Analysis. London: Pion Limited
81 Ripley B D (1981). Spatial Statistics. New York: Wiley & Sons
82 Schroeder M (1991). Fractals, Chaos, Power laws. New York: Freeman
83 Schweingruber F H (1996). Tree Rings and Environment Dendroecology. Swiss Federal Institute for Forests Snow and Landscape Research, Bern: Birmensdorf and Paul Haupt
84 Shugart H H, ed. (1977). Time Series and Ecological Processes. Philadelphia: SIAM
85 Singh G, Geissler E A (1985). Late Cainozoic history of vegetation, fire, lake levels and climate at Lake George, New South Wales, Australia. Philosophical Transactions of the Royal Society of London Series B, 311: 379-447
86 Sukachev V N (1913). Introduction to the Study of Plant Communities. Bibl. St. Petersburg: Natur (In Russian)
87 Trewartha G T (1990). Climatic regions. In: Espenchade E B Jr, Morrison J Leds. Rand McNally Good’s World Atlas. 18th ed. New York: Rand McNally, 8-9
88 Trewartha G T (2001). Global Mechanism of UNCCD, Via del Serafico 107, 00142 Rome, Italy. Web address: www.gm-unccd.org/English/ Field/aridity.htm
89 Usher M B (1981). Modelling ecological succession with particular reference to Markovian models. Vegetation, 46: 11-18
90 Usher M B (1992). Statistical models of succession. In: Glenn-Lewin D C, Peet R K, Veblen T T, eds. Plant Succession: Theory and Prediction. London: Chapman and Hall, 215-248
91 van Hulst R (1992). From population dynamics to community dynamics: modelling succession as a species replacement process. In: Glenn-Lewin D C, Peet R K, Veblen T T, eds. Plant Succession: Theory and Prediction. London: Chapman and Hall, 188-214
92 van Hulst R (2000). Vegetation dynamics and plant constraints: separating generalities and specific. Community Ecology, 1: 5-12
93 Volterra V (1926). ‘Variazioni e fluttuazioni del numero d’individui in specie d’animali conviventi’, Mem. Acad. <patent>Lincei, Vol. 2, No. VI. 31-113</patent>. Reprinted: 409-448 in Chapman, R.N. 1931. Animal Ecology. McGraw-Hill, NY
94 von Post L (1946). The prospect for pollen analysis in the study of the earth climatic history. New Phytologist, 45: 193-217
95 Walter H, Harnickell E, Mueller-Dombois D (1975). Climate Diagram Maps. New York: Springer-Verlag
96 Watts W A, Bradbury J P (1982). Paleoecological studies at Lake Patzcuaro on the west-central Mexican Plateau and at Chalco in the Basin of Mexico. Quaternary Research, 17: 56-70
97 Watts W A, Hansen B C S, Grimm E C (1992). Camel Lake: A 40,000-yr record of vegetational and forest history from northwest Florida. Ecology, 73: 1056-1066
98 Wilkins G R, Delcourt P A, Delcourt H R, Harrison F W, Turner M R (1991). Paleoecology of central Kentucky since the last glacial maximum. Quaternary Research, 36: 224-239
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed