Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2010, Vol. 5 Issue (2) : 180-186    https://doi.org/10.1007/s11515-010-0031-8
Research articles
A benzoxazine derivative specifically inhibits cell cycle progression in p53-wild type pulmonary adenocarcinoma cells
Hua SU1,Ling SU1,Qiuxia HE2,Jing ZHAO2,Shangli ZHANG2,Junying MIAO2,Baoxiang ZHAO3,
1.Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China; 2.Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China;The key Laboratory of Experimental Teratology Ministry of Education, Jinan 250012, China; 3.Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
 Download: PDF(296 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A fundamental aspect of cancer development is cancer cell proliferation. Seeking for chemical agents that can interfere with cancer cell growth has been of great interest over the years. In our study, we found that a benzoxazine derivative, (6-tert-butyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-3-yl) methanol (TBM), could inhibit cell growth and caused significant cell cycle arrest in pulmonary adenocarcinoma A549 and H460 cells with wild-type p53, while not affecting the cell cycle distribution in p53-deleted H1299 lung adenocarcinoma cells. Since P53 plays an important role in regulating cell cycle progression, we analyzed the protein level of p53 by Western blot, and detected a significant elevation of p53 level after TBM treatment in A549 and H460 cells. The data suggested that TBM might specifically inhibit the proliferation of p53 wild-type lung adenocarcinoma cells through a p53-dependent cell cycle control pathway. More interestingly, results indicated that TBM might serve as a useful tool for studying the molecular mechanisms of lung cancer cell growth and cell cycle control, especially for the biologic process regulated by P53.
Keywords (6-tert-butyl-3,4-dihydro-2H-benzo[b][1,4]oxazin-3-yl) methanol      lung adenocarcinoma cells      cell cycle arrest      p53      
Issue Date: 01 April 2010
 Cite this article:   
Hua SU,Ling SU,Qiuxia HE, et al. A benzoxazine derivative specifically inhibits cell cycle progression in p53-wild type pulmonary adenocarcinoma cells[J]. Front. Biol., 2010, 5(2): 180-186.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0031-8
https://academic.hep.com.cn/fib/EN/Y2010/V5/I2/180
Berns A (2005). Stem cells for lung cancer? Cell, 121(6): 811–813

doi: 10.1016/j.cell.2005.06.004
Bourlot A S, Sánchez I, Dureng G, Guillaumet G, Massingham R, Monteil A, Winslow E, Pujol M D, Mérour J Y (1998). New substituted 1,4-benzoxazine derivatives with potential intracellular calcium activity. J Med Chem, 41(17): 3142–3158

doi: 10.1021/jm970795t
Burkard M E, Randall C L, Larochelle S, Zhang C, Shokat K M, Fisher R P, Jallepalli P V (2007). Chemical genetics reveals the requirement for Polo-like kinase 1 activity in positioning RhoA and triggeringcytokinesis in human cells. Proc Natl Acad Sci U S A, 104(11): 4383–4388

doi: 10.1073/pnas.0701140104
Capilla A S, Sánchez I, Caignard D H, Renard P, Pujol M D (2001). Antitumor agents. Synthesis and biological evaluation of new compoundsrelated to podophyllotoxin, containing the 2,3-dihydro-1,4-benzodioxinsystem. Eur J Med Chem, 36(4): 389–393

doi: 10.1016/S0223-5234(01)01231-4
Diamandis P, Wildenhain J, Clarke I D, Sacher A G, Graham J, Bellows D S, Ling E K, Ward R J, Jamieson L G, Tyers M, Dirks P B (2007). Chemical genetics reveals a complex functional ground state of neuralstem cells. Nat Chem Biol, 3(5): 268–273

doi: 10.1038/nchembio873
Fraser J A, Hupp T R (2007). Chemical genetics approach to identify peptide ligands that selectivelystimulate DAPK-1 kinase activity. Biochemistry, 46(10): 2655–2673

doi: 10.1021/bi061562j
Jiao P F, Zhao B X, Wang W W, He Q X, Wan M S, Shin D S, Miao J Y (2006). Design, synthesis, and preliminary biological evaluation of 2,3-dihydro-3-hydroxymethyl-1,4-benzoxazinederivatives. Bioorg Med Chem Lett, 16(11): 2862–2867

doi: 10.1016/j.bmcl.2006.03.013
Kajino M, Shibouta Y, Nishikawa K, Meguro K (1991). Synthesis and biological activities of new 2-substituted 1,4-benzoxazine derivatives. Chem Pharm Bull (Tokyo), 39(11): 2896–2905
Kawabe S, Roth J A, Wilson D R, Meyn R E (2000). Adenovirus-mediated p16INK4a gene expression radiosensitizesnon-small cell lung cancer cells in a p53-dependent manner. Oncogene, 19(47): 5359–5366

doi: 10.1038/sj.onc.1203935
Kolev V, Mandinova A, Guinea-Viniegra J, Hu B, Lefort K, Lambertini C, Neel V, Dummer R, Wagner E F, Dotto G P (2008). EGFR signalling as a negative regulatorof Notch1 gene transcription andfunction in proliferating keratinocytes and cancer. Nat Cell Biol, 10(8): 902–911

doi: 10.1038/ncb1750
Larochelle S, Merrick K A, Terret M E, Wohlbold L, Barboza N M, Zhang C, Shokat K M, Jallepalli P V, Fisher R P (2007). Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealedby chemical genetics in human cells. Mol Cell, 25(6): 839–850

doi: 10.1016/j.molcel.2007.02.003
Lian S, Su H, Zhao B X, Liu W Y, Zheng L W, Miao J Y (2009). Synthesis and discovery of pyrazole-5-carbohydrazideN-glycosides as inducer of autophagy in A549 lung cancer cells. Bioorg Med Chem, 17(20): 7085–7092

doi: 10.1016/j.bmc.2009.09.004
Lv X, Su L, Yin D, Sun C, Zhao J, Zhang S, Miao J (2008). Knockdown of integrin beta4 in primary cultured mouse neurons blockssurvival and induces apoptosis by elevating NADPH oxidase activityand reactive oxygen species level. Int J Biochem Cell Biol, 40(4): 689–699

doi: 10.1016/j.biocel.2007.10.006
Merrick K A, Larochelle S, Zhang C, Allen J J, Shokat K M, Fisher R P (2008). Distinct activation pathways confer cyclin-binding specificity on Cdk1 andCdk2 in human cells. Mol Cell, 32(5): 662–672

doi: 10.1016/j.molcel.2008.10.022
Pietsch E C, Sykes S M, McMahon S B, Murphy M E (2008). The p53 family and programmed cell death. Oncogene, 27(50): 6507–6521

doi: 10.1038/onc.2008.315
Shangary S, Wang S (2008). Targeting the MDM2-p53 interaction for cancer therapy. Clin Cancer Res, 14(17): 5318–5324

doi: 10.1158/1078-0432.CCR-07-5136
Thatcher N First- and second-line treatment of advanced metastaticnon-small-cell lung cancer: a global view. BMC Proc 2008; 2 Suppl 2:S3.
Vazquez A, Bond E E, Levine A J, Bond G L (2008). The genetics of the p53 pathway, apoptosis and cancertherapy. Nat Rev Drug Discov, 7(12): 979–987

doi: 10.1038/nrd2656
Vogelstein B, Lane D, Levine A J (2000). Surfing the p53 network. Nature, 408(6810): 307–310

doi: 10.1038/35042675
[1] Parvin Kheradmand, Maede Goudarzi, Mina Tavakoli. Analysis of p53 expression in partial hydatidiform mole and hydropic abortion[J]. Front. Biol., 2017, 12(5): 357-360.
[2] Zhaohui FENG, Rui WU, Meihua LIN, Wenwei HU. Tumor suppressor p53: new functions of an old protein[J]. Front Biol, 2011, 06(01): 58-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed