Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2010, Vol. 5 Issue (2) : 123-127    https://doi.org/10.1007/s11515-010-0040-7
Research articles
Neural modulation in inferior colliculus and central auditory plasticity
Huixian MEI1,Qicai CHEN2,
1.College of Life Sciences and Hubei Key Lab of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China;School of Life Sciences, Wuhan University of Science and Technology Zhongnan Branch, Wuhan 430223, China; 2.College of Life Sciences and Hubei Key Lab of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China;
 Download: PDF(113 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The neural modulation in central auditory system plays an important role in perception and processing of sound signal and auditory cognition. The inferior colliculus (IC) is both a relay station in central auditory pathway and a sub-cortical auditory center doing the sound signal processing. IC is also modulated by the descending projections from the cortex and auditory thalamus, medial geniculate body, and these neural modulations not only can affect ongoing sound signal processing but can also induce plastic changes in IC.
Keywords neural modulation      auditory plasticity      inferior colliculus      
Issue Date: 01 April 2010
 Cite this article:   
Huixian MEI,Qicai CHEN. Neural modulation in inferior colliculus and central auditory plasticity[J]. Front. Biol., 2010, 5(2): 123-127.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0040-7
https://academic.hep.com.cn/fib/EN/Y2010/V5/I2/123
Bergan J F, Knudsen E I (2009). Visual modulation of auditory responses in the owl inferiorcolliculus. J Neurophysiol, 101(6): 2924–2933

doi: 10.1152/jn.91313.2008
Blake D T, Heiser M A, Caywood M, Merzenich M M (2006). Experience-dependent adult cortical plasticity requires cognitive association between sensation and reward. Neuron, 52(2): 371–381

doi: 10.1016/j.neuron.2006.08.009
Feldman D E, Brainard M S, Knudsen E I (1996). Newly learned auditory responses mediated by NMDA receptors in the owl inferiorcolliculus. Science, 271(5248): 525–528

doi: 10.1126/science.271.5248.525
Feliciano M, Potashner S J (1995). Evidence for a glutamatergic pathway from the guineapig auditory cortex to the inferior colliculus. J Neurochem, 65(3): 1348–1357
Feliciano M, Saldana E, Mugnaini E (1995). Direct projections from the rat primary auditory neocortex to nucleus sagulum,paralemniscal regions, superior olivary complex and cochlear nuclei. Aud Neurosci, 1: 287–308
Fritz J, Shamma S, Elhilali M, Klein D (2003). Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nat Neurosci, 6(11): 1216–1223

doi: 10.1038/nn1141
Gao E Q, Suga N (2000). Experience-dependent plasticity in the auditory cortex and the inferiorcolliculus of bats: role of the corticofugal system. Proc Natl Acad Sci USA, 97(14): 8081–8086

doi: 10.1073/pnas.97.14.8081
González-Hernández T, Mantolán-Sarmiento B, González-González B, Pérez-González H (1996). Sources of GABAergic input to the inferior colliculus of the rat. J Comp Neurol, 372(2): 309–326

doi: 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E
Han L L, Yang W W, Zhang H, Zhang J P, Sun X D (2008). Corticofugal modulation of direction sensitivity in the mouse inferior colliculus. Acta Biophysica Sinica, 24: 6–14
Hernández O, Rees A, Malmierca M S (2006). A GABAergic component in the commissure of the inferior colliculus in rat. Neuroreport, 17(15): 1611–1614

doi: 10.1097/01.wnr.0000236857.70715.be
Jafari M R, Zhang Y, Yan J (2006). Multiparametric change in the receptive field of cortical auditory neurons induced by thalamicactivation in the mouse. Cere cortex, 17: 71–80
Jen P H S, Chen Q C, Sun X D (1998). Corticofugal regulation of auditory sensitivity in the bat inferior colliculus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 183(6): 683–697
Jen P H S, Chen Q C, Wu F J (2002a). Interaction between excitation and inhibition affects frequency tuning curve, responsesize and latency of neurons in the auditory cortex of the big brownbat, Eptesicus fuscus. Hear Res, 174(1―2): 281–289

doi: 10.1016/S0378-5955(02)00702-5
Jen P H S, Sun X, Chen Q C (2001). An electrophysiological study of neural pathways for corticofugally inhibited neurons in thecentral nucleus of the inferior colliculus of the big brown bat, Eptesicusfuscus. Exp Brain Res, 137(3―4): 292–302
Jen P H S, Wu F J, Chen Q C (2002b). The effect of two-tone stimulation on responses of two simultaneously recorded neurons inthe inferior colliculus of the big brown bat, Eptesicus fuscus. Hear Res, 168(1―2): 139–149

doi: 10.1016/S0378-5955(02)00369-6
Jen P H S, Zhou X M (2003). Corticofugal modulation of amplitude domain processing in the midbrainof the big brown bat, Eptesicus fuscus. Hear Res, 184(1―2): 91–106

doi: 10.1016/S0378-5955(03)00237-5
Ji W, Suga N (2007). Serotonergic modulation of plasticity of the auditory cortex elicitedby fear conditioning. J Neurosci, 27(18): 4910–4918

doi: 10.1523/JNEUROSCI.5528-06.2007
Ma X, Suga N (2008). Corticofugal modulation of the paradoxical latency shifts of inferiorcollicular neurons. J Neurophysiol, 100(2): 1127–1134

doi: 10.1152/jn.90508.2008
Ma X, Suga N (2009). Specific and nonspecific plasticity of the primary auditory cortexelicited by thalamic auditory neurons. J Neurosci, 29(15): 4888–4896

doi: 10.1523/JNEUROSCI.0167-09.2009
Ma X F, Suga N (2001a). Corticofugal modulation of duration-tuned neurons in the midbrainauditory nucleus in bats. Proc Natl Acad Sci USA, 98(24): 14060–14065

doi: 10.1073/pnas.241517098
Ma X F, Suga N (2001b). Plasticity of bat’s central auditory system evoked by focalelectric stimulation of auditory and/or somatosensory cortices. J Neurophysiol, 85(3): 1078–1087
Malmierca M S, Hernández O, Falconi A, Lopez-Poveda E A, Merchán M, Rees A (2003). The commissureof the inferior colliculus shapes frequency response areas in rat:an in vivo study using reversible blockade with microinjection ofkynurenic acid. Exp Brain Res, 153(4): 522–529

doi: 10.1007/s00221-003-1615-1
Malmierca M S, Hernández O, Rees A (2005). Intercollicularcommissural projections modulate neuronal responses in the inferiorcolliculus. Eur J Neurosci, 21(10): 2701–2710

doi: 10.1111/j.1460-9568.2005.04103.x
Malmierca M S , Rees A, Le Beau F E, Bjaalie J G (1995). Laminar organization of frequency-defined local axonswithin and between the inferior colliculi of the guinea pig. J Comp Neurol, 357(1): 124–144

doi: 10.1002/cne.903570112
Mitani A, Shimokouchi M, Nomura S (1983). Effects of stimulation of the primary auditory cortex upon colliculogeniculateneurons in the inferior colliculus of the cat. Neurosci Lett, 42(2): 185–189

doi: 10.1016/0304-3940(83)90404-4
Moore D R, Kotak V C, Sanes D H (1998). Commissural and lemniscal synaptic input to the gerbil inferior colliculus. J Neurophysiol, 80(5): 2229–2236
Saint Marie RL (1996). Glutamatergic connections of the auditory midbrain: selective uptake and axonal transport of D-[3H]aspartate. J Comp Neurol, 373(2): 255–270

doi: 10.1002/(SICI)1096-9861(19960916)373:2<255::AID-CNE8>3.0.CO;2-2
Saldaña E, Merchán M A (1992). Intrinsic and commissural connections of the rat inferiorcolliculus. J Comp Neurol, 319(3): 417–437

doi: 10.1002/cne.903190308
Stiebler I, Ehret G (1985). Inferior colliculus of the house mouse. I. A quantitative study oftonotopic organization, frequency representation, and tone-thresholddistribution. J Comp Neurol, 238(1): 65–76

doi: 10.1002/cne.902380106
Suga N, Ma X (2003). Multiparametric corticofugal modulation and plasticity in the auditorysystem. Nat Rev Neurosci, 4(10): 783–794

doi: 10.1038/nrn1222
Sun X D, Chen Q C, Jen P H S (1996). Corticofugal control of central auditory sensitivity in the big brown bat, Eptesicus fuscus. Neurosci Lett, 212(2): 131–134

doi: 10.1016/0304-3940(96)12788-9
Sun X D, Jen P H S, Sun D X, Zhang S F (1989). Corticofugal influences on the responses of bat inferiorcollicular neurons to sound stimulation. Brain Res, 495(1): 1–8

doi: 10.1016/0006-8993(89)91212-2
Thiel C M (2007). Pharmacological modulation of learning-inducedplasticity in human auditory cortex. Restor Neurol Neurosci, 25(3―4): 435–443
Wang J, Wang X Q (2005). Medial Geniculate Body and Auditory Cortex. In: Wang J, ed. Fundamentals of Hearing Science. (in Chinese). Chinese Science and Technology Press, 269
Wu F J, Chen Q C, Jen P H S (2004b). The effect of inhibitory spectral integration on acoustic intensity sensitivity of neuronsin the inferior colliculus of big brown bat, Eptesicus fuscus. Acta Zool Sinica, 50: 380–388
Wu F J, Chen Q C, Jen P H S, Shen J X (2004a). Effect of frequency-band integration on the sharpeningfrequency tuning of IC neurons in bat, Eptesicus fuscus. Chin Sci Bull, 49: 1026–1031

doi: 10.1007/BF03184032
Wu F J, Jen P H S (2008). GABA-mediated modulation of the discharge pattern andrate-level function of two simultaneously recorded neurons in theinferior colliculus of the big brown bat, Eptesicus fuscus. Chin J Physiol, 51(1): 13–26
Wu Y M, Yan J (2007). Modulation of the receptive fields of midbrain neurons elicited bythalamic electrical stimulation through corticofugal feedback. J Neurosci, 27(40): 10651–10658

doi: 10.1523/JNEUROSCI.1320-07.2007
Xu H, Wang W, Tang Z Q, Xu T L, Chen L (2006). Taurineacts as a glycine receptor agonist in slices of rat inferior colliculus. Hear Res, 220(1―2): 95–105

doi: 10.1016/j.heares.2006.07.005
Yan J, Suga N (1996). Corticofugal modulation of time-domain processing of biosonar informationin bats. Science, 273(5278): 1100–1103

doi: 10.1126/science.273.5278.1100
Yan J, Zhang Y F, Ehret G (2005). Corticofugal shaping of frequency tuning curves in the central nucleus of the inferiorcolliculus of mice. J Neurophysiol, 93(1): 71–83

doi: 10.1152/jn.00348.2004
Yan W, Suga N (1998). Corticofugal modulation of the midbrain frequency map in the batauditory system. Nat Neurosci, 1(1): 54–58

doi: 10.1038/255
Zhang Y, Suga N (2005). Corticofugal feedback for collicular plasticity evoked by electricstimulation of the inferior colliculus. J Neurophysiol, 94(4): 2676–2682

doi: 10.1152/jn.00549.2005
Zhang Y F, Suga N (1997). Corticofugal amplification of subcortical responses to single tonestimuli in the mustached bat. J Neurophysiol, 78(6): 3489–3492
Zhang Y F, Suga N (2000). Modulation of responses and frequency tuning of thalamic and collicularneurons by cortical activation in mustached bats. J Neurophysiol, 84(1): 325–333
Zhang Y F, Suga N, Yan J (1997). Corticofugal modulation of frequency processing in bat auditory system. Nature, 387(6636): 900–903

doi: 10.1038/43180
Zheng W, Knudsen E I (1999). Functional selection of adaptive auditory space mapby GABAA-mediated inhibition. Science, 284(5416): 962–965

doi: 10.1126/science.284.5416.962
Zhou X M, Jen P H S (2000a). Corticofugal inhibition compresses all types of rate-intensityfunctions of inferior collicular neurons in the big brown bat. Brain Res, 881(1): 62–68

doi: 10.1016/S0006-8993(00)02805-5
Zhou X M, Jen P H S (2000b). Brief and short-term corticofugal modulation of subcorticalauditory responses in the big brown bat, Eptesicus fuscus. J Neurophysiol, 84: 3082–3087
[1] Philip H.-S. JEN. The adaptive value of increasing pulse repetition rate during hunting by echolocating bats[J]. Front Biol, 2013, 8(2): 198-215.
[2] MEI Huixian, WU Feijian, CHEN Qicai, GUO Yuping. Masking effect of different durations of forward masker sound on acoustical responses of mouse inferior collicular neurons to probe sound[J]. Front. Biol., 2006, 1(3): 285-289.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed