Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2010, Vol. 5 Issue (5) : 407-416    https://doi.org/10.1007/s11515-010-0850-7
REVIEW
Identification of cancer stem cells: from leukemia to solid cancers
Yinghui HUANG1(), Xiaoxue QIU2, Ji-Long CHEN2()
1. China-Japan Union Hospital of Jilin University, Changchun 130033, China; 2. CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
 Download: PDF(291 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cancer stem cells (CSCs) are widely considered to be a small cell population in leukemia and many solid cancers with the properties including self-renewal and differentiation to non-tumorigenic cancer cells. Identification and isolation of CSCs significantly depend on the special surface markers of CSCs. Aberrant gene expression and signal transduction contribute to malignancies of CSCs, which result in cancer initiation, progression and recurrence. The inefficient therapy of cancers is mainly attributed to the failure of elimination of the malignant CSCs. However, CSCs have not been detected in all cancers and hierarchical organization of tumors might challenge cancer stem cell models. Additionally, opinions about the validity of the CSC hypothesis, the biological properties of CSCs, and the relevance of CSCs to cancer therapy differ widely. In this review, we discuss the debate of cancer stem cell model, the parameters by which CSCs can or cannot be defined, and the advances in the therapy of CSCs.

Keywords Cancer stem cell      leukemia      solid tumor      signal transduction      therapy     
Corresponding Author(s): HUANG Yinghui,Email:yhuang@jlu.edu.cn; CHEN Ji-Long,Email:chenjl@im.ac.cn   
Issue Date: 01 October 2010
 Cite this article:   
Yinghui HUANG,Xiaoxue QIU,Ji-Long CHEN. Identification of cancer stem cells: from leukemia to solid cancers[J]. Front Biol, 2010, 5(5): 407-416.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0850-7
https://academic.hep.com.cn/fib/EN/Y2010/V5/I5/407
Fig.1  Two tumor growth models. A: In the cancer stem cell (CSC) model, only the CSC (pink), differentiates and contributes completely to tumor growth, and hence represents the only relevant target for therapy. B: In the clonal evolution model, tumor cells acquire stem cell characteristics (orange and yellow) during the developmental stages of cancer, due to genetic and/or epigenetic changes plus environmental influences, and hence therapy must attempt to eliminate all the cell types.
Fig.1  Two tumor growth models. A: In the cancer stem cell (CSC) model, only the CSC (pink), differentiates and contributes completely to tumor growth, and hence represents the only relevant target for therapy. B: In the clonal evolution model, tumor cells acquire stem cell characteristics (orange and yellow) during the developmental stages of cancer, due to genetic and/or epigenetic changes plus environmental influences, and hence therapy must attempt to eliminate all the cell types.
Fig.2  The development of cancer stem cells (CSC) and cancers in human. The normal cells or stem cells have the potential to be transformed by certain virus and exogenous carcinogens, leading to initiation of CSCs (dark blue) or common cancer cells (light blue). Consequently, these malignant cells breach the basement membrane to undergo invasion and metastasis. Many cancer cells may not be able to escape the fate of drug-induced apoptosis, whereas CSCs are able to survive continuously. Therefore, CSCs are thought to have significant effects on progression and recurrence of cancers including leukemia and many other solid tumors.
Fig.2  The development of cancer stem cells (CSC) and cancers in human. The normal cells or stem cells have the potential to be transformed by certain virus and exogenous carcinogens, leading to initiation of CSCs (dark blue) or common cancer cells (light blue). Consequently, these malignant cells breach the basement membrane to undergo invasion and metastasis. Many cancer cells may not be able to escape the fate of drug-induced apoptosis, whereas CSCs are able to survive continuously. Therefore, CSCs are thought to have significant effects on progression and recurrence of cancers including leukemia and many other solid tumors.
Fig.3  Aberrant signal pathways in leukemia cells and leukemia stem cells. Shown are several signaling pathways associated to cellular survival and antiapoptosis. These pathways are constitutively activated by leukemic oncoproteins shown in purple color, leading to cellular transformation and tumorigenesis of LSCs. The grey rectangles represent signal inhibitors including Axin, Pten and SOCS proteins. Signal inhibitors including Pten and SOCS are frequently altered in leukemia cells and LSCs. The aberrant signal transduction facilitates the progression of leukemia such as chronic myelogenous (or myeloid) leukemia (CML) and acute myelogenous (or myeloid) leukemia (AML). PIP: phosphatidylinositol-4,5-bisphosphate; PIP: phosphatidylinositol-3,4,5-trisphosphate; Pten: phosphatase and tensin homolog; JAK: Janus kinase; SOCS: suppressor of cytokine signaling; PI3K: phosphatidylinositol 3-kinase; STAT: signal transducers and activators of transcription; LEF: lymphoid enhancer factor; TCF: T-cell factor.
Fig.3  Aberrant signal pathways in leukemia cells and leukemia stem cells. Shown are several signaling pathways associated to cellular survival and antiapoptosis. These pathways are constitutively activated by leukemic oncoproteins shown in purple color, leading to cellular transformation and tumorigenesis of LSCs. The grey rectangles represent signal inhibitors including Axin, Pten and SOCS proteins. Signal inhibitors including Pten and SOCS are frequently altered in leukemia cells and LSCs. The aberrant signal transduction facilitates the progression of leukemia such as chronic myelogenous (or myeloid) leukemia (CML) and acute myelogenous (or myeloid) leukemia (AML). PIP: phosphatidylinositol-4,5-bisphosphate; PIP: phosphatidylinositol-3,4,5-trisphosphate; Pten: phosphatase and tensin homolog; JAK: Janus kinase; SOCS: suppressor of cytokine signaling; PI3K: phosphatidylinositol 3-kinase; STAT: signal transducers and activators of transcription; LEF: lymphoid enhancer factor; TCF: T-cell factor.
1 Abraham B K, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H (2005). Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res , 11(3): 1154–1159
2 Al-Hajj M, Wicha M S, Benito-Hernandez A, Morrison S J, Clarke M F (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A , 100(7): 3983–3988
doi: 10.1073/pnas.0530291100
3 Bissell M J, Labarge M A (2005). Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell , 7(1): 17–23
4 Blair A, Hogge D E, Ailles L E, Lansdorp P M, Sutherland H J (1997). Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood , 89(9): 3104–3112
5 Bonnet D, Dick J E (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med , 3(7): 730–737
doi: 10.1038/nm0797-730
6 Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T (2005). Opinion: migrating cancer stem cells- an integrated concept of malignant tumour progression. Nat Rev Cancer , 5(9): 744–749
doi: 10.1038/nrc1694
7 Bruce W R, Van Der Gaag H (1963). A Quantitative Assay for the Number of Murine Lymphoma Cells Capable of Proliferation in Vivo. Nature , 199: 79–80
doi: 10.1038/199079a0
8 Bui M R, Hodson V, King T, Leopold D, Dai S, Fiolkoski V, Oakes S, Duke R, Apelian D, Franzusoff A, DeGregori J (2010). Mutation-specific control of BCR-ABL T315I positive leukemia with a recombinant yeast-based therapeutic vaccine in a murine model. Vaccine , 28(37): 6028–6035
doi: 10.1016/j.vaccine.2010.06.085
9 Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep , 9(6): 582–589
doi: 10.1038/embor.2008.74
10 Campbell L L, Polyak K (2007). Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle , 6(19): 2332–2338
doi: 10.4161/cc.6.19.4914
11 Carpten J D, Faber A L, Horn C, Donoho G P, Briggs S L, Robbins C M, Hostetter G, Boguslawski S, Moses T Y, Savage S, Uhlik M, Lin A, Du J, Qian Y W, Zeckner D J, Tucker-Kellogg G, Touchman J, Patel K, Mousses S, Bittner M, Schevitz R, Lai M H, Blanchard K L, Thomas J E (2007). A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature , 448(7152): 439–444
doi: 10.1038/nature05933
12 Chen J L, Limnander A, Rothman P B (2008). Pim-1 and Pim-2 kinases are required for efficient pre-B-cell transformation by v-Abl oncogene. Blood , 111(3): 1677–1685
doi: 10.1182/blood-2007-04-083808
13 Clarke M F, Dick J E, Dirks P B, Eaves C J, Jamieson C H, Jones D L, Visvader J, Weissman I L, Wahl G M (2006). Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res , 66, 9339–9344
doi: 10.1158/0008-5472.CAN-06-3126
14 Collins A T, Berry P A, Hyde C, Stower M J, Maitland N J (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res , 65(23): 10946–10951
doi: 10.1158/0008-5472.CAN-05-2018
15 Deininger M W, Goldman J M, Melo J V (2000). The molecular biology of chronic myeloid leukemia. Blood , 96(10): 3343–3356
16 Druker B J, Talpaz M, Resta D J, Peng B, Buchdunger E, Ford J M, Lydon N B, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers C L (2001). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med , 344(14): 1031–1037
doi: 10.1056/NEJM200104053441401
17 Fang D, Nguyen T K, Leishear K, Finko R, Kulp A N, Hotz S, Van Belle P A, Xu X, Elder D E, Herlyn M (2005). A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res , 65(20): 9328–9337
doi: 10.1158/0008-5472.CAN-05-1343
18 Ginestier C, Hur M H, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer C G, Liu S, Schott A, Hayes D, Birnbaum D, Wicha M S, Dontu G (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell , 1(5): 555–567
doi: 10.1016/j.stem.2007.08.014
19 Gregory M A, Phang T L, Neviani P, Alvarez-Calderon F, Eide C A, O’Hare T, Zaberezhnyy V, Williams R T, Druker B J, Perrotti D, Degregori J (2010). Wnt/Ca2+/NFAT signaling maintains survival of Ph+ leukemia cells upon inhibition of Bcr-Abl. Cancer Cell , 18(1): 74–87
doi: 10.1016/j.ccr.2010.04.025
20 Gregory P A, Bracken C P, Bert A G, Goodall G J (2008). MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle , 7(20): 3112–3118
21 Guo G, Qiu X, Wang S, Chen Y, Rothman P B, Wang Z, Chen Y, Wang G, Chen J L (2010). Oncogenic E17K mutation in the pleckstrin homology domain of AKT1 promotes v-Abl-mediated pre-B-cell transformation and survival of Pim-deficient cells. Oncogene , 29(26): 3845–3853
doi: 10.1038/onc.2010.149
22 Gutierrez A, Sanda T, Grebliunaite R, Carracedo A, Salmena L, Ahn Y, Dahlberg S, Neuberg D, Moreau L A, Winter S S, Larson R, Zhang J, Protopopov A, Chin L, Pandolfi P P, Silverman L B, Hunger S P, Sallan S E, Look A T (2009). High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood , 114(3): 647–650
doi: 10.1182/blood-2009-02-206722
23 Guzman M L, Jordan C T (2004). Considerations for targeting malignant stem cells in leukemia. Cancer Control , 11(2): 97–104
24 Haan S, Wüller S, Kaczor J, Rolvering C, N?cker T, Behrmann I, Haan C (2009). SOCS-mediated downregulation of mutant Jak2 (V617F, T875N and K539L) counteracts cytokine-independent signaling. Oncogene , 28(34): 3069–3080
doi: 10.1038/onc.2009.155
25 Hemmati H D, Nakano I, Lazareff J A, Masterman-Smith M, Geschwind D H, Bronner-Fraser M, Kornblum H I (2003). Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A , 100(25): 15178–15183
doi: 10.1073/pnas.2036535100
26 Herman S E, Gordon A L, Wagner A J, Heerema N A, Zhao W, Flynn J M, Jones J, Andritsos L, Puri K D, Lannutti B J, Giese N A, Zhang X, Wei L, Byrd J C, Johnson A J (2010). The phosphatidylinositol 3-kinase-{delta} inhibitor CAL-101 demonstrates promising pre-clinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood , 2010(Jun): 3 (Epub ahead of print)
27 Hermann P C, Huber S L, Herrler T, Aicher A, Ellwart J W, Guba M, Bruns C J, Heeschen C (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell , 1(3): 313–323
doi: 10.1016/j.stem.2007.06.002
28 Hu Z, Pan X F, Wu F Q, Ma L Y, Liu D P, Liu Y, Feng T T, Meng F Y, Liu X L, Jiang Q L, Chen X Q, Liu J L, Liu P, Chen Z, Chen S J, Zhou G B (2009). Synergy between proteasome inhibitors and imatinib mesylate in chronic myeloid leukemia. PLoS One , 4(7): e6257
doi: 10.1371/journal.pone.0006257
29 Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y, Rosenblatt J, Avigan D E, Teruya-Feldstein J, Pandolfi P P (2008). PML targeting eradicates quiescent leukaemia-initiating cells. Nature , 453(7198): 1072–1078
doi: 10.1038/nature07016
30 Jabbour E, Cortes J, Kantarjian H (2010). Nilotinib for the treatment of chronic myeloid leukemia: An evidence-based review. Core Evid , 4: 207–213
31 Jamieson C H, Ailles L E, Dylla S J, Muijtjens M, Jones C, Zehnder J L, Gotlib J, Li K, Manz M G, Keating A, Sawyers C L, Weissman I L (2004). Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med , 351(7): 657–667
doi: 10.1056/NEJMoa040258
32 Jiang X, Forrest D, Nicolini F, Turhan A, Guilhot J, Yip C, Holyoake T, Jorgensen H, Lambie K, Saw K M, Pang E, Vukovic R, Lehn P, Ringrose A, Yu M, Brinkman R R, Smith C, Eaves A, Eaves C (2010). Properties of CD34+ CML stem/progenitor cells that correlate with different clinical responses to imatinib mesylate. Blood , 116(12): 2112–2121
doi: 10.1182/blood-2009-05-222471
33 Jordan C T, Upchurch D, Szilvassy S J, Guzman M L, Howard D S, Pettigrew A L, Meyerrose T, Rossi R, Grimes B, Rizzieri D A, Luger S M, Phillips G L (2000). The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia , 14(10): 1777–1784
doi: 10.1038/sj.leu.2401903
34 J?rgensen H G, Holyoake T L (2007). Characterization of cancer stem cells in chronic myeloid leukaemia. Biochem Soc Trans , 35(Pt 5): 1347–1351
35 Karnoub A E, Dash A B, Vo A P, Sullivan A, Brooks M W, Bell G W, Richardson A L, Polyak K, Tubo R, Weinberg R A (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature , 449(7162): 557–563
doi: 10.1038/nature06188
36 Kelly P N, Dakic A, Adams J M, Nutt S L, Strasser A (2007). Tumor growth need not be driven by rare cancer stem cells. Science , 317(5836): 337
doi: 10.1126/science.1142596
37 Kharas M G, Okabe R, Ganis J J, Gozo M, Khandan T, Paktinat M, Gilliland D G, Gritsman K (2010). Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood , 115(7): 1406–1415
doi: 10.1182/blood-2009-06-229443
38 Kim C F, Jackson E L, Woolfenden A E, Lawrence S, Babar I, Vogel S, Crowley D, Bronson R T, Jacks T (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell , 121(6): 823–835
39 Kim K Y, Kim S U, Leung P C, Jeung E B, Choi K C (2010). Influence of the prodrugs 5-fluorocytosine and CPT-11 on ovarian cancer cells using genetically engineered stem cells: tumor-tropic potential and inhibition of ovarian cancer cell growth. Cancer Sci , 101(4): 955–962
doi: 10.1111/j.1349-7006.2009.01485.x
40 Krause D S, Lazarides K, von Andrian U H, Van Etten R A (2006). Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med , 12(10): 1175–1180
doi: 10.1038/nm1489
41 Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, Chambon P, Huber M, Hohl D, Cano A, Birchmeier W, Huelsken J (2008). Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature , 452(7187): 650–653
doi: 10.1038/nature06835
42 Mani S A, Guo W, Liao M J, Eaton E N, Ayyanan A, Zhou A Y, Brooks M, Reinhard F, Zhang C C, Shipitsin M, Campbell L L, Polyak K, Brisken C, Yang J, Weinberg R A (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell , 133(4): 704–715
43 Mantovani A (2009). Cancer: Inflaming metastasis. Nature , 457(7225): 36–37
doi: 10.1038/457036b
44 Moshaver B, van Rhenen A, Kelder A, van der Pol M, Terwijn M, Bachas C, Westra A H, Ossenkoppele G J, Zweegman S, Schuurhuis G J (2008). Identification of a small subpopulation of candidate leukemia initiating cells in the side population (sp) of patients with acute myeloid leukemia. Stem Cells .
45 Murray P J (2007). The JAK-STAT signaling pathway: input and output integration. J Immunol , 178(5): 2623–2629
46 Nasr R, Guillemin M C, Ferhi O, Soilihi H, Peres L, Berthier C, Rousselot P, Robledo-Sarmiento M, Lallemand-Breitenbach V, Gourmel B, Vitoux D, Pandolfi P P, Rochette-Egly C, Zhu J, de Thé H (2008). Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat Med , 14(12): 1333–1342
doi: 10.1038/nm.1891
47 Nusse R (2003). Wnts and Hedgehogs: lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development , 130(22): 5297–5305
doi: 10.1242/dev.00821
48 O’Brien C A, Pollett A, Gallinger S, Dick J E (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature , 445(7123): 106–110
doi: 10.1038/nature05372
49 Peng C, Chen Y, Yang Z, Zhang H, Osterby L, Rosmarin A G, Li S (2010). PTEN is a tumor suppressor in CML stem cells and BCR-ABL-induced leukemias in mice. Blood , 115(3): 626–635
doi: 10.1182/blood-2009-06-228130
50 Piccirillo S G, Reynolds B A, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F, Vescovi A L (2006). Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature , 444(7120): 761–765
doi: 10.1038/nature05349
51 Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti M A, Daidone M G (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res , 65(13): 5506–5511
doi: 10.1158/0008-5472.CAN-05-0626
52 Pradhan A, Lambert Q T, Reuther G W (2007). Transformation of hematopoietic cells and activation of JAK2-V617F by IL-27R, a component of a heterodimeric type I cytokine receptor. Proc Natl Acad Sci U S A , 104(47): 18502–18507
doi: 10.1073/pnas.0702388104
53 Quintana E, Shackleton M, Sabel M S, Fullen D R, Johnson T M, Morrison S J (2008). Efficient tumour formation by single human melanoma cells. Nature , 456(7222): 593–598
doi: 10.1038/nature07567
54 Reya T, Duncan A W, Ailles L, Domen J, Scherer D C, Willert K, Hintz L, Nusse R, Weissman I L (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature , 423(6938): 409–414
doi: 10.1038/nature01593
55 Reya T, Morrison S J, Clarke M F, Weissman I L (2001). Stem cells, cancer, and cancer stem cells. Nature , 414(6859): 105–111
doi: 10.1038/35102167
56 Savona M, Talpaz M (2008). Getting to the stem of chronic myeloid leukaemia. Nat Rev Cancer , 8(5): 341–350
doi: 10.1038/nrc2368
57 Singh S K, Hawkins C, Clarke I D, Squire J A, Bayani J, Hide T, Henkelman R M, Cusimano M D, Dirks P B (2004). Identification of human brain tumour initiating cells. Nature , 432(7015): 396–401
doi: 10.1038/nature03128
58 Szotek P P, Pieretti-Vanmarcke R, Masiakos P T, Dinulescu D M, Connolly D, Foster R, Dombkowski D, Preffer F, Maclaughlin D T, Donahoe P K (2006). Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci U S A , 103(30): 11154–11159
doi: 10.1073/pnas.0603672103
59 Thiery J P (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer , 2(6): 442–454
doi: 10.1038/nrc822
60 Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy J D Jr (2003). The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med , 349(26): 2483–2494
doi: 10.1056/NEJMoa030847
61 van der Pol M A, Feller N, Roseboom M, Moshaver B, Westra G, Broxterman H J, Ossenkoppele G J, Schuurhuis G J (2003). Assessment of the normal or leukemic nature of CD34+ cells in acute myeloid leukemia with low percentages of CD34 cells. Haematologica , 88(9): 983–993
62 van Noort M, Meeldijk J, van der Zee R, Destree O, Clevers H (2002). Wnt signaling controls the phosphorylation status of beta-catenin. J Biol Chem , 277(20): 17901–17905
doi: 10.1074/jbc.M111635200
63 Venturini L, Battmer K, Castoldi M, Schultheis B, Hochhaus A, Muckenthaler M U, Ganser A, Eder M, Scherr M (2007). Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood , 109(10): 4399–4405
doi: 10.1182/blood-2006-09-045104
64 Viswanathan S R, Daley G Q, Gregory R I (2008). Selective blockade of microRNA processing by Lin28. Science , 320(5872): 97–100
doi: 10.1126/science.1154040
65 Wang J C, Dick J E (2005). Cancer stem cells: lessons from leukemia. Trends Cell Biol , 15(9): 494–501
doi: 10.1016/j.tcb.2005.07.004
66 Wang Y, Krivtsov A V, Sinha A U, North T E, Goessling W, Feng Z, Zon L I, Armstrong S A (2010). The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science , 327(5973): 1650–1653
doi: 10.1126/science.1186624
67 Williams R T, den Besten W, Sherr C J (2007). Cytokine-dependent imatinib resistance in mouse BCR-ABL+, Arf-null lymphoblastic leukemia. Genes Dev , 21(18): 2283–2287
doi: 10.1101/gad.1588607
68 Wong D J, Liu H, Ridky T W, Cassarino D, Segal E, Chang H Y (2008). Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell , 2(4): 333–344
doi: 10.1016/j.stem.2008.02.009
69 Wuchter C, Ratei R, Spahn G, Schoch C, Harbott J, Schnittger S, Haferlach T, Creutzig U, Sperling C, Karawajew L, Ludwig W D (2001). Impact of CD133 (AC133) and CD90 expression analysis for acute leukemia immunophenotyping. Haematologica , 86(2): 154–161
70 Yang Y M, Chang J W (2008). Current status and issues in cancer stem cell study. Cancer Invest , 26(7): 741–755
doi: 10.1080/07357900801901856
71 Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell , 131(6): 1109–1123
72 Zhang B, Strauss A C, Chu S, Li M, Ho Y, Shiang K D, Snyder D S, Huettner C S, Shultz L, Holyoake T, Bhatia R (2010). Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell , 17(5): 427–442
doi: 10.1016/j.ccr.2010.03.011
73 Zhao C, Blum J, Chen A, Kwon H Y, Jung S H, Cook J M, Lagoo A, Reya T (2007). Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell , 12(6): 528–541
doi: 10.1016/j.ccr.2007.11.003
[1] Jalali, Seyyed Mostafa, Morteza Abdollahi, Atiyeh Hosseini, Dehghani Kari Bozorg, Ajami, Marjan Azadeh, Kimia Moiniafshar. The positive effects of Mediterranean-neutropenic diet on nutritional status of acute myeloid leukemia patients under chemotherapy[J]. Front. Biol., 2018, 13(6): 475-480.
[2] Dingcheng Gao, Vivek Mittal, Yi Ban, Ana Rita Lourenco, Shira Yomtoubian, Sharrell Lee. Metastatic tumor cells – genotypes and phenotypes[J]. Front. Biol., 2018, 13(4): 277-286.
[3] Soumya Nair, Sandra Suresh, Arya Kaniyassery, Panchami Jaya, Jayanthi Abraham. A review on melatonin action as therapeutic agent in cancer[J]. Front. Biol., 2018, 13(3): 180-189.
[4] Ali Amin Asnafi,Elahe Khodadi,Neda Golchin,Arash Alghasi,Yousef Tavakolifar,Najmaldin Saki. Association between microRNA-21, microRNA-150, and microRNA-451 expression and clinical outcome of patients with acute lymphoblastic leukemia[J]. Front. Biol., 2017, 12(1): 63-70.
[5] Sahar Al Seesi,Alok Das Mohapatra,Arpita Pawashe,Ion I. Mandoiu,Fei Duan. Finding neoepitopes in mouse models of personalized cancer immunotherapy[J]. Front. Biol., 2016, 11(5): 366-375.
[6] Shirin Ferdowsi,Shirin Azizidoost,Nasim Ghafari,Najmaldin Saki. Cytogenetic changes of mesenchymal stem cells in the neoplastic bone marrow niche in leukemia[J]. Front. Biol., 2016, 11(4): 305-310.
[7] Jian Li,Chun Guo,Nickolas Steinauer,Jinsong Zhang. New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins[J]. Front. Biol., 2016, 11(4): 285-304.
[8] Farzaneh Tavakoli,Kaveh Jaseb,Mohammad Ali Jalali Far,Masoud Soleimani,Elahe Khodadi,Najmaldin Saki. Evaluation of microRNA-146a expression in acute lymphoblastic leukemia[J]. Front. Biol., 2016, 11(1): 53-58.
[9] Kai Jiang,Jianhang Jia. Smoothened regulation in response to Hedgehog stimulation[J]. Front. Biol., 2015, 10(6): 475-486.
[10] Annalisa Zecchin,Aleksandra Brajic,Peter Carmeliet. Targeting endothelial cell metabolism: new therapeutic prospects?[J]. Front. Biol., 2015, 10(2): 125-140.
[11] Vipul SHUKLA,Runqing LU. IRF4 and IRF8: governing the virtues of B lymphocytes[J]. Front. Biol., 2014, 9(4): 269-282.
[12] Qingguo ZHAO,Fei LIU. Mesenchymal stem cells in progression and treatment of cancers[J]. Front. Biol., 2014, 9(3): 186-194.
[13] Chaohong LIU, Margaret K. FALLEN, Heather MILLER, Arpita UPADHYAYA, Wenxia SONG. The actin cytoskeleton coordinates the signal transduction and antigen processing functions of the B cell antigen receptor[J]. Front Biol, 2013, 8(5): 475-485.
[14] Li ZUO, Allison H. HALLMAN, Marvin K. YOUSIF, Michael T. CHIEN. Oxidative stress, respiratory muscle dysfunction, and potential therapeutics in chronic obstructive pulmonary disease[J]. Front Biol, 2012, 7(6): 506-513.
[15] Stephen FRAUSTO, Emily LEE, Hengli TANG. Targeting host cofactors to inhibit viral infection[J]. Front Biol, 2012, 7(5): 445-458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed