|
|
|
The applications of induced pluripotent stem (iPS) cells in drug development |
Shulong YANG1, Xuelian WANG2, Jinmiao LIU1, Zhao LIU1, Jiaxue HUANG2,3( ) |
| 1. Life Technologies, Vcanland Holding Group; 2. Union Stem Cell & Gene Engineering Co. LTD, Tianjin 300384, China; 3. School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China |
|
|
|
|
Abstract The introduction of induced pluripotent stem (iPS) cells has been a milestone in the field of regenerative medicine and drug discovery. iPS cells can provide a continuous and individualized source of stem cells and are considered to hold great potential for economically feasible personalized stem cell therapy. Various diseases might potentially be cured by iPS cell-based therapy including Parkinson’s disease, Alzheimer’s disease, Huntington disease, ischemic heart disease, diabetes and so on. Moreover, iPS cells derived from patients suffering from unique incurable diseases can be developed into patient- and disease-specific cell lines. These cells can be used as an effective approach to study the mechanisms of diseases, providing useful tools for drug discovery, development and evaluation. The development of suitable methods for the culture and expansion of iPS cells and their differentiated progenies make feasible modern drug discovery techniques such as high-throughput screening. Furthermore, iPS cells can be applied in the field of toxicological and pharmacokinetics tests. This review focuses on the applications of iPS cells in the field of pharmaceutical industry.
|
| Keywords
induced pluripotent stem (iPS) cells
drug discovery
|
|
Corresponding Author(s):
HUANG Jiaxue,Email:jiaxue@gmail.com
|
|
Issue Date: 01 February 2011
|
|
| 1 |
Barbaric I, Gokhale P J, Andrews P W (2010). High-content screening of small compounds on human embryonic stem cells. Biochem Soc Trans , 38(4): 1046–1050 doi: 10.1042/BST0381046 pmid:20659001
|
| 2 |
Bass A J, Watanabe H, Mermel C H, Yu S, Perner S, Verhaak R G, Kim S Y, Wardwell L, Tamayo P, Gat-Viks I, Ramos A H, Woo M S, Weir B A, Getz G, Beroukhim R, O’Kelly M, Dutt A, Rozenblatt-Rosen O, Dziunycz P, Komisarof J, Chirieac L R, Lafargue C J, Scheble V, Wilbertz T, Ma C, Rao S, Nakagawa H, Stairs D B, Lin L, Giordano T J, Wagner P, Minna J D, Gazdar A F, Zhu C Q, Brose M S, Cecconello I, Jr U R, Marie S K, Dahl O, Shivdasani R A, Tsao M S, Rubin M A, Wong K K, Regev A, Hahn W C, Beer D G, Rustgi A K, Meyerson M (2009). SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet , 41(11): 1238–1242 doi: 10.1038/ng.465 pmid:19801978
|
| 3 |
Baxter M A, Rowe C, Alder J, Harrison S, Hanley K P, Park B K, Kitteringham N R, Goldring C E, Hanley N A (2010). Generating hepatic cell lineages from pluripotent stem cells for drug toxicity screening. Stem Cell Res (Amst) , 5(1): 4–22 doi: 10.1016/j.scr.2010.02.002 pmid:20483202
|
| 4 |
Centofanti M (2010). Models of the stem cell kind. ALS Alert Newsletter, News , http://www.alscenter.org/news/newsletter/2010/November/models_of_the_stem_cell_kind.html
|
| 5 |
Chu L H, Chen B S (2008). Comparisons of robustness and sensitivity between cancer and normal cells by microarray data. Cancer Inform , 6: 165–181 pmid:19259409
|
| 6 |
Crook J M, Kobayashi N R (2008). Human stem cells for modeling neurological disorders: accelerating the drug discovery pipeline. J Cell Biochem , 105(6): 1361–1366 doi: 10.1002/jcb.21967 pmid:18980214
|
| 7 |
Dimos J T, Rodolfa K T, Niakan K K, Weisenthal L M, Mitsumoto H, Chung W, Croft G F, Saphier G, Leibel R, Goland R, Wichterle H, Henderson C E, Eggan K (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science , 321(5893): 1218–1221 doi: 10.1126/science.1158799 pmid:18669821
|
| 8 |
Doss M X, Sachinidis A, Hescheler J (2008). Human ES cell derived cardiomyocytes for cell replacement therapy: a current update. Chin J Physiol , 51(4): 226–229 pmid:19112880
|
| 9 |
Duinsbergen D, Salvatori D, Eriksson M, Mikkers H (2009). Tumors originating from induced pluripotent stem cells and methods for their prevention. Ann N Y Acad Sci , 1176(1): 197–204 doi: 10.1111/j.1749-6632.2009.04563.x pmid:19796248
|
| 10 |
Ebert A D, Svendsen C N (2010). Human stem cells and drug screening: opportunities and challenges. Nat Rev Drug Discov , 9(5): 367–372 doi: 10.1038/nrd3000 pmid:20339370
|
| 11 |
Ebert A D, Yu J, Rose F F Jr, Mattis V B, Lorson C L, Thomson J A, Svendsen C N (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature , 457(7227): 277–280 doi: 10.1038/nature07677 pmid:19098894
|
| 12 |
Foster K W, Frost A R, McKie-Bell P, Lin C Y, Engler J A, Grizzle W E, Ruppert J M (2000). Increase of GKLF messenger RNA and protein expression during progression of breast cancer. Cancer Res , 60(22): 6488–6495 pmid:11103818
|
| 13 |
Gunaseeli I, Doss M X, Antzelevitch C, Hescheler J, Sachinidis A (2010). Induced pluripotent stem cells as a model for accelerated patient- and disease-specific drug discovery. Curr Med Chem , 17(8): 759–766 doi: 10.2174/092986710790514480 pmid:20088756
|
| 14 |
Hanna J, Wernig M, Markoulaki S, Sun C W, Meissner A, Cassady J P, Beard C, Brambrink T, Wu L C, Townes T M, Jaenisch R (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science , 318(5858): 1920–1923 doi: 10.1126/science.1152092 pmid:18063756
|
| 15 |
Heng B C, Richards M, Shu Y, Gribbon P (2009). Induced pluripotent stem cells: a new tool for toxicology screening? Arch Toxicol , 83(7): 641–644 doi: 10.1007/s00204-009-0414-2 pmid:19247633
|
| 16 |
Hochedlinger K, Yamada Y, Beard C, Jaenisch R (2005). Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell , 121(3): 465–477 doi: 10.1016/j.cell.2005.02.018 pmid:15882627
|
| 17 |
Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen A E, Melton D A (2008a). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol , 26(7): 795–797 doi: 10.1038/nbt1418 pmid:18568017
|
| 18 |
Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton D A (2008b). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol , 26(11): 1269–1275 doi: 10.1038/nbt.1502 pmid:18849973
|
| 19 |
Ichida J K, Blanchard J, Lam K, Son E Y, Chung J E, Egli D, Loh K M, Carter A C, Di Giorgio F P, Koszka K, Huangfu D, Akutsu H, Liu D R, Rubin L L, Eggan K (2009). A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell , 5(5): 491–503 doi: 10.1016/j.stem.2009.09.012 pmid:19818703
|
| 20 |
Jeter C R, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C, Calhoun-Davis T, Zaehres H, Daley G Q, Tang D G (2009). Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells , 27(5): 993–1005 doi: 10.1002/stem.29 pmid:19415763
|
| 21 |
Kaitin K I (2008). Obstacles and opportunities in new drug development. Clin Pharmacol Ther , 83(2): 210–212 doi: 10.1038/sj.clpt.6100462 pmid:18202685
|
| 22 |
Lee G, Papapetrou E P, Kim H, Chambers S M, Tomishima M J, Fasano C A, Ganat Y M, Menon J, Shimizu F, Viale A, Tabar V, Sadelain M, Studer L (2009). Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature , 461(7262): 402–406 doi: 10.1038/nature08320 pmid:19693009
|
| 23 |
Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, Lin X, Hahm H S, Hao E, Hayek A, Ding S (2009). A chemical platform for improved induction of human iPSCs . Nat Methods , 6(11): 805–808 doi: 10.1038/nmeth.1393 pmid:19838168
|
| 24 |
Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R, Leibel R L, Melton D A (2009). Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA , 106(37): 15768–15773 doi: 10.1073/pnas.0906894106 pmid:19720998
|
| 25 |
Mauritz C, Schwanke K, Reppel M, Neef S, Katsirntaki K, Maier L S, Nguemo F, Menke S, Haustein M, Hescheler J, Hasenfuss G, Martin U (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation , 118(5): 507–517 doi: 10.1161/CIRCULATIONAHA.108.778795 pmid:18625890
|
| 26 |
Meyer N, Penn L Z (2008). Reflecting on 25 years with MYC. Nat Rev Cancer , 8(12): 976–990 doi: 10.1038/nrc2231 pmid:19029958
|
| 27 |
Nakagawa M, Takizawa N, Narita M, Ichisaka T, Yamanaka S (2010). Promotion of direct reprogramming by transformation-deficient Myc. Proc Natl Acad Sci USA , 107(32): 14152–14157 doi: 10.1073/pnas.1009374107 pmid:20660764
|
| 28 |
Nakao Y, Narazaki G, Hoshino T, Maeda S, Yoshida M, Maejima H, Yamashita J K (2008). Evaluation of antiangiogenic activity of azumamides by the in vitro vascular organization model using mouse induced pluripotent stem (iPS) cells. Bioorg Med Chem Lett , 18(9): 2982–2984 doi: 10.1016/j.bmcl.2008.03.053 pmid:18397826
|
| 29 |
Neveu P, Kye M J, Qis, Buchholz D E, Clegg D O, Sahin M, Park I H, Kim K S, Daley G Q, Kornblum H I, Shraiman B I, Kossk K S (2010). MicroRNA profiling reveals two distinct p53-related human pluripotent stem cells states. Cell Stem Cell , 7(6): 671–681 doi: 10.1016/j.bmcl.2008.03.053 pmid:18397826
|
| 30 |
Schüle B, Pera R A, Langston J W (2009). Can cellular models revolutionize drug discovery in Parkinson’s disease? Biochim Biophys Acta , 1792(11): 1043–1051 pmid:19733239
|
| 31 |
Shi Y, Do J T, Desponts C, Hahm H S, Sch?ler H R, Ding S (2008). A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell , 2(6): 525–528 doi: 10.1016/j.stem.2008.05.011 pmid:18522845
|
| 32 |
Soldner F, Hockemeyer D, Beard C, Gao Q, Bell G W, Cook E G, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009). Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell , 136(5): 964–977 doi: 10.1016/j.cell.2009.02.013 pmid:19269371
|
| 33 |
Sollano J A, Kirsch J M, Bala M V, Chambers M G, Harpole L H (2008). The economics of drug discovery and the ultimate valuation of pharmacotherapies in the marketplace. Clin Pharmacol Ther , 84(2): 263–266 doi: 10.1038/clpt.2008.117 pmid:18547999
|
| 34 |
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell , 131(5): 861–872 doi: 10.1016/j.cell.2007.11.019 pmid:18035408
|
| 35 |
Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell , 126(4): 663–676 doi: 10.1016/j.cell.2006.07.024 pmid:16904174
|
| 36 |
Viswanathan S R, Powers J T, Einhorn W, Hoshida Y, Ng T L, Toffanin S, O’Sullivan M, Lu J, Phillips L A, Lockhart V L, Shah S P, Tanwar P S, Mermel C H, Beroukhim R, Azam M, Teixeira J, Meyerson M, Hughes T P, Llovet J M, Radich J, Mullighan C G, Golub T R, Sorensen P H, Daley G Q (2009). Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet , 41(7): 843–848 doi: 10.1038/ng.392 pmid:19483683
|
| 37 |
Vojnits K, Bremer S (2010). Challenges of using pluripotent stem cells for safety assessments of substances. Toxicology , 270(1): 10–17 doi: 10.1016/j.tox.2009.12.003 pmid:20004228
|
| 38 |
Wernig M, Lengner C J, Hanna J, Lodato M A, Steine E, Foreman R, Staerk J, Markoulaki S, Jaenisch R (2008a). A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol , 26(8): 916–924 doi: 10.1038/nbt1483 pmid:18594521
|
| 39 |
Wernig M, Zhao J P, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008b). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA , 105(15): 5856–5861 doi: 10.1073/pnas.0801677105 pmid:18391196
|
| 40 |
Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science , 318(5858): 1917–1920 doi: 10.1126/science.1151526 pmid:18029452
|
| 41 |
Zhao Y, Yin X, Qin H, Zhu F, Liu H, Yang W, Zhang Q, Xiang C, Hou P, Song Z, Liu Y, Yong J, Zhang P, Cai J, Liu M, Li H, Li Y, Qu X, Cui K, Zhang W, Xiang T, Wu Y, Zhao Y, Liu C, Yu C, Yuan K, Lou J, Ding M, Deng H (2008). Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell , 3(5): 475–479 doi: 10.1016/j.stem.2008.10.002 pmid:18983962
|
| 42 |
Zhou H, Wu S, Joo J Y, Zhu S, Han D W, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Sch?ler H R, Duan L, Ding S (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell , 4(5): 381–384 doi: 10.1016/j.stem.2009.04.005 pmid:19398399
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|