Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    0, Vol. Issue () : 52-57    https://doi.org/10.1007/s11515-011-0940-1
REVIEW
The applications of induced pluripotent stem (iPS) cells in drug development
Shulong YANG1, Xuelian WANG2, Jinmiao LIU1, Zhao LIU1, Jiaxue HUANG2,3()
1. Life Technologies, Vcanland Holding Group; 2. Union Stem Cell & Gene Engineering Co. LTD, Tianjin 300384, China; 3. School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(124 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The introduction of induced pluripotent stem (iPS) cells has been a milestone in the field of regenerative medicine and drug discovery. iPS cells can provide a continuous and individualized source of stem cells and are considered to hold great potential for economically feasible personalized stem cell therapy. Various diseases might potentially be cured by iPS cell-based therapy including Parkinson’s disease, Alzheimer’s disease, Huntington disease, ischemic heart disease, diabetes and so on. Moreover, iPS cells derived from patients suffering from unique incurable diseases can be developed into patient- and disease-specific cell lines. These cells can be used as an effective approach to study the mechanisms of diseases, providing useful tools for drug discovery, development and evaluation. The development of suitable methods for the culture and expansion of iPS cells and their differentiated progenies make feasible modern drug discovery techniques such as high-throughput screening. Furthermore, iPS cells can be applied in the field of toxicological and pharmacokinetics tests. This review focuses on the applications of iPS cells in the field of pharmaceutical industry.

Keywords induced pluripotent stem (iPS) cells      drug discovery     
Corresponding Author(s): HUANG Jiaxue,Email:jiaxue@gmail.com   
Issue Date: 01 February 2011
 Cite this article:   
Shulong YANG,Xuelian WANG,Jinmiao LIU, et al. The applications of induced pluripotent stem (iPS) cells in drug development[J]. Front Biol, 0, (): 52-57.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-0940-1
https://academic.hep.com.cn/fib/EN/Y0/V/I/52
Drug research processConventional approachesiPS cells approaches
Symptom identificationObservationPossible to predict appearance of a disease
Mechanism explorationUndirected research, evidence basedDisease specific cells can be used to compare with normal cells and mechanism can be easily revealed.
Target identificationSearch and find is the basic approachLimited comparison
Target confirmationLoss and Gain approaches must be usedComplementary approach may serve the purpose
Rational design of compoundsStructure basedNo applicable
Drug screeningAnimal models, rodent cell lines, immortalized human cell linesDisease and patient specific normal cells
Functional intervention of drug candidatesMolecular, cellular and animal models do not accurately represent diseasesDisease-specific cells better reflect what happens in human body
Preclinical test for efficacy and metabolismMolecular, cellular and animal models have diverse physiological processesHuman cells have similar biologic processes, but cellular levels give only limited information on efficacy and metabolism
Toxicological testAnimal models can reflect overall effect, but may not reflect what happens in human body.iPS cells give limited information on toxicological tests
Tab.1  Approaches at key stages in drug development
1 Barbaric I, Gokhale P J, Andrews P W (2010). High-content screening of small compounds on human embryonic stem cells. Biochem Soc Trans , 38(4): 1046–1050
doi: 10.1042/BST0381046 pmid:20659001
2 Bass A J, Watanabe H, Mermel C H, Yu S, Perner S, Verhaak R G, Kim S Y, Wardwell L, Tamayo P, Gat-Viks I, Ramos A H, Woo M S, Weir B A, Getz G, Beroukhim R, O’Kelly M, Dutt A, Rozenblatt-Rosen O, Dziunycz P, Komisarof J, Chirieac L R, Lafargue C J, Scheble V, Wilbertz T, Ma C, Rao S, Nakagawa H, Stairs D B, Lin L, Giordano T J, Wagner P, Minna J D, Gazdar A F, Zhu C Q, Brose M S, Cecconello I, Jr U R, Marie S K, Dahl O, Shivdasani R A, Tsao M S, Rubin M A, Wong K K, Regev A, Hahn W C, Beer D G, Rustgi A K, Meyerson M (2009). SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet , 41(11): 1238–1242
doi: 10.1038/ng.465 pmid:19801978
3 Baxter M A, Rowe C, Alder J, Harrison S, Hanley K P, Park B K, Kitteringham N R, Goldring C E, Hanley N A (2010). Generating hepatic cell lineages from pluripotent stem cells for drug toxicity screening. Stem Cell Res (Amst) , 5(1): 4–22
doi: 10.1016/j.scr.2010.02.002 pmid:20483202
4 Centofanti M (2010). Models of the stem cell kind. ALS Alert Newsletter, News , http://www.alscenter.org/news/newsletter/2010/November/models_of_the_stem_cell_kind.html
5 Chu L H, Chen B S (2008). Comparisons of robustness and sensitivity between cancer and normal cells by microarray data. Cancer Inform , 6: 165–181
pmid:19259409
6 Crook J M, Kobayashi N R (2008). Human stem cells for modeling neurological disorders: accelerating the drug discovery pipeline. J Cell Biochem , 105(6): 1361–1366
doi: 10.1002/jcb.21967 pmid:18980214
7 Dimos J T, Rodolfa K T, Niakan K K, Weisenthal L M, Mitsumoto H, Chung W, Croft G F, Saphier G, Leibel R, Goland R, Wichterle H, Henderson C E, Eggan K (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science , 321(5893): 1218–1221
doi: 10.1126/science.1158799 pmid:18669821
8 Doss M X, Sachinidis A, Hescheler J (2008). Human ES cell derived cardiomyocytes for cell replacement therapy: a current update. Chin J Physiol , 51(4): 226–229
pmid:19112880
9 Duinsbergen D, Salvatori D, Eriksson M, Mikkers H (2009). Tumors originating from induced pluripotent stem cells and methods for their prevention. Ann N Y Acad Sci , 1176(1): 197–204
doi: 10.1111/j.1749-6632.2009.04563.x pmid:19796248
10 Ebert A D, Svendsen C N (2010). Human stem cells and drug screening: opportunities and challenges. Nat Rev Drug Discov , 9(5): 367–372
doi: 10.1038/nrd3000 pmid:20339370
11 Ebert A D, Yu J, Rose F F Jr, Mattis V B, Lorson C L, Thomson J A, Svendsen C N (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature , 457(7227): 277–280
doi: 10.1038/nature07677 pmid:19098894
12 Foster K W, Frost A R, McKie-Bell P, Lin C Y, Engler J A, Grizzle W E, Ruppert J M (2000). Increase of GKLF messenger RNA and protein expression during progression of breast cancer. Cancer Res , 60(22): 6488–6495
pmid:11103818
13 Gunaseeli I, Doss M X, Antzelevitch C, Hescheler J, Sachinidis A (2010). Induced pluripotent stem cells as a model for accelerated patient- and disease-specific drug discovery. Curr Med Chem , 17(8): 759–766
doi: 10.2174/092986710790514480 pmid:20088756
14 Hanna J, Wernig M, Markoulaki S, Sun C W, Meissner A, Cassady J P, Beard C, Brambrink T, Wu L C, Townes T M, Jaenisch R (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science , 318(5858): 1920–1923
doi: 10.1126/science.1152092 pmid:18063756
15 Heng B C, Richards M, Shu Y, Gribbon P (2009). Induced pluripotent stem cells: a new tool for toxicology screening? Arch Toxicol , 83(7): 641–644
doi: 10.1007/s00204-009-0414-2 pmid:19247633
16 Hochedlinger K, Yamada Y, Beard C, Jaenisch R (2005). Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell , 121(3): 465–477
doi: 10.1016/j.cell.2005.02.018 pmid:15882627
17 Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen A E, Melton D A (2008a). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol , 26(7): 795–797
doi: 10.1038/nbt1418 pmid:18568017
18 Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton D A (2008b). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol , 26(11): 1269–1275
doi: 10.1038/nbt.1502 pmid:18849973
19 Ichida J K, Blanchard J, Lam K, Son E Y, Chung J E, Egli D, Loh K M, Carter A C, Di Giorgio F P, Koszka K, Huangfu D, Akutsu H, Liu D R, Rubin L L, Eggan K (2009). A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell , 5(5): 491–503
doi: 10.1016/j.stem.2009.09.012 pmid:19818703
20 Jeter C R, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C, Calhoun-Davis T, Zaehres H, Daley G Q, Tang D G (2009). Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells , 27(5): 993–1005
doi: 10.1002/stem.29 pmid:19415763
21 Kaitin K I (2008). Obstacles and opportunities in new drug development. Clin Pharmacol Ther , 83(2): 210–212
doi: 10.1038/sj.clpt.6100462 pmid:18202685
22 Lee G, Papapetrou E P, Kim H, Chambers S M, Tomishima M J, Fasano C A, Ganat Y M, Menon J, Shimizu F, Viale A, Tabar V, Sadelain M, Studer L (2009). Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature , 461(7262): 402–406
doi: 10.1038/nature08320 pmid:19693009
23 Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, Lin X, Hahm H S, Hao E, Hayek A, Ding S (2009). A chemical platform for improved induction of human iPSCs . Nat Methods , 6(11): 805–808
doi: 10.1038/nmeth.1393 pmid:19838168
24 Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R, Leibel R L, Melton D A (2009). Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA , 106(37): 15768–15773
doi: 10.1073/pnas.0906894106 pmid:19720998
25 Mauritz C, Schwanke K, Reppel M, Neef S, Katsirntaki K, Maier L S, Nguemo F, Menke S, Haustein M, Hescheler J, Hasenfuss G, Martin U (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation , 118(5): 507–517
doi: 10.1161/CIRCULATIONAHA.108.778795 pmid:18625890
26 Meyer N, Penn L Z (2008). Reflecting on 25 years with MYC. Nat Rev Cancer , 8(12): 976–990
doi: 10.1038/nrc2231 pmid:19029958
27 Nakagawa M, Takizawa N, Narita M, Ichisaka T, Yamanaka S (2010). Promotion of direct reprogramming by transformation-deficient Myc. Proc Natl Acad Sci USA , 107(32): 14152–14157
doi: 10.1073/pnas.1009374107 pmid:20660764
28 Nakao Y, Narazaki G, Hoshino T, Maeda S, Yoshida M, Maejima H, Yamashita J K (2008). Evaluation of antiangiogenic activity of azumamides by the in vitro vascular organization model using mouse induced pluripotent stem (iPS) cells. Bioorg Med Chem Lett , 18(9): 2982–2984
doi: 10.1016/j.bmcl.2008.03.053 pmid:18397826
29 Neveu P, Kye M J, Qis, Buchholz D E, Clegg D O, Sahin M, Park I H, Kim K S, Daley G Q, Kornblum H I, Shraiman B I, Kossk K S (2010). MicroRNA profiling reveals two distinct p53-related human pluripotent stem cells states. Cell Stem Cell , 7(6): 671–681
doi: 10.1016/j.bmcl.2008.03.053 pmid:18397826
30 Schüle B, Pera R A, Langston J W (2009). Can cellular models revolutionize drug discovery in Parkinson’s disease? Biochim Biophys Acta , 1792(11): 1043–1051
pmid:19733239
31 Shi Y, Do J T, Desponts C, Hahm H S, Sch?ler H R, Ding S (2008). A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell , 2(6): 525–528
doi: 10.1016/j.stem.2008.05.011 pmid:18522845
32 Soldner F, Hockemeyer D, Beard C, Gao Q, Bell G W, Cook E G, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009). Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell , 136(5): 964–977
doi: 10.1016/j.cell.2009.02.013 pmid:19269371
33 Sollano J A, Kirsch J M, Bala M V, Chambers M G, Harpole L H (2008). The economics of drug discovery and the ultimate valuation of pharmacotherapies in the marketplace. Clin Pharmacol Ther , 84(2): 263–266
doi: 10.1038/clpt.2008.117 pmid:18547999
34 Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell , 131(5): 861–872
doi: 10.1016/j.cell.2007.11.019 pmid:18035408
35 Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell , 126(4): 663–676
doi: 10.1016/j.cell.2006.07.024 pmid:16904174
36 Viswanathan S R, Powers J T, Einhorn W, Hoshida Y, Ng T L, Toffanin S, O’Sullivan M, Lu J, Phillips L A, Lockhart V L, Shah S P, Tanwar P S, Mermel C H, Beroukhim R, Azam M, Teixeira J, Meyerson M, Hughes T P, Llovet J M, Radich J, Mullighan C G, Golub T R, Sorensen P H, Daley G Q (2009). Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet , 41(7): 843–848
doi: 10.1038/ng.392 pmid:19483683
37 Vojnits K, Bremer S (2010). Challenges of using pluripotent stem cells for safety assessments of substances. Toxicology , 270(1): 10–17
doi: 10.1016/j.tox.2009.12.003 pmid:20004228
38 Wernig M, Lengner C J, Hanna J, Lodato M A, Steine E, Foreman R, Staerk J, Markoulaki S, Jaenisch R (2008a). A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol , 26(8): 916–924
doi: 10.1038/nbt1483 pmid:18594521
39 Wernig M, Zhao J P, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008b). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA , 105(15): 5856–5861
doi: 10.1073/pnas.0801677105 pmid:18391196
40 Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science , 318(5858): 1917–1920
doi: 10.1126/science.1151526 pmid:18029452
41 Zhao Y, Yin X, Qin H, Zhu F, Liu H, Yang W, Zhang Q, Xiang C, Hou P, Song Z, Liu Y, Yong J, Zhang P, Cai J, Liu M, Li H, Li Y, Qu X, Cui K, Zhang W, Xiang T, Wu Y, Zhao Y, Liu C, Yu C, Yuan K, Lou J, Ding M, Deng H (2008). Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell , 3(5): 475–479
doi: 10.1016/j.stem.2008.10.002 pmid:18983962
42 Zhou H, Wu S, Joo J Y, Zhu S, Han D W, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Sch?ler H R, Duan L, Ding S (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell , 4(5): 381–384
doi: 10.1016/j.stem.2009.04.005 pmid:19398399
[1] Sharangdhar S. PHATAK, Hoang T. TRAN, Shuxing ZHANG. Novel computational biology methods and their applications to drug discovery[J]. Front Biol, 2011, 6(4): 289-299.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed