Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 06 Issue (01) : 69-75    https://doi.org/10.1007/s11515-011-0990-4
REVIEW
Gold glitters everywhere: nucleus microRNAs and their functions
Rui TANG(), Ke ZEN()
School of Life Sciences, Nanjing University, Nanjing 210093, China
 Download: PDF(234 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As a highly conserved class of endogenous small (~22 nucleotides) non-coding RNAs, microRNAs (miRNAs) regulate a broad spectrum of biological processes. Increasing evidences suggested that miRNAs generally regulated gene expression at the posttranscriptional stage via inhibiting the translational process or degrading mRNA. Recent studies have also revealed that there is extensive amount of miRNA, as well as miRNA function-related proteins, in the cell nucleus. Although the molecular basis underneath the biogenesis and function of nucleus miRNAs remains largely unknown, the presence of various miRNAs and miRNA function-related proteins in the nucleus strongly argue that miRNAs may execute their role throughout the whole gene expression pathway. Here we review the recent advances in the researches about the nucleus miRNAs, including the biosynthesis pathways, biological functions and potential regulation machinery of nucleus miRNAs.

Keywords nucleus miRNA      nucleus RISC      Argonaute family      Exportins      nucleus-cytoplasm shutting      gene regulatory network     
Corresponding Author(s): TANG Rui,Email:rui@uga.edu; ZEN Ke,Email:kzen@nju.edu.cn   
Issue Date: 01 February 2011
 Cite this article:   
Rui TANG,Ke ZEN. Gold glitters everywhere: nucleus microRNAs and their functions[J]. Front Biol, 2011, 06(01): 69-75.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-0990-4
https://academic.hep.com.cn/fib/EN/Y2011/V06/I01/69
Fig.1  Predicted trafficking pathways and potential functions of nucleus miRNAs.
Fig.1  Predicted trafficking pathways and potential functions of nucleus miRNAs.
1 Ambros V (2004). The functions of animal microRNAs. Nature , 431(7006): 350–355
doi: 10.1038/nature02871 pmid:15372042
2 Bartel D P (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell , 116(2): 281–297
doi: 10.1016/S0092-8674(04)00045-5 pmid:14744438
3 Berezhna S Y, Supekova L, Supek F, Schultz P G, Deniz A A (2006). siRNA in human cells selectively localizes to target RNA sites. Proc Natl Acad Sci USA , 103(20): 7682–7687
doi: 10.1073/pnas.0600148103 pmid:16684885
4 Castanotto D, Lingeman R, Riggs A D, Rossi J J (2009). CRM1 mediates nuclear-cytoplasmic shuttling of mature microRNAs. Proc Natl Acad Sci USA , 106(51): 21655–21659
doi: 10.1073/pnas.0912384106 pmid:19955415
5 Emmerth S, Schober H, Gaidatzis D, Roloff T, Jacobeit K, Bühler M (2010). Nuclear retention of fission yeast dicer is a prerequisite for RNAi-mediated heterochromatin assembly. Dev Cell , 18(1): 102–113
doi: 10.1016/j.devcel.2009.11.011 pmid:20152181
6 F?ldes-Papp Z, K?nig K, Studier H, Bückle R, Breunig H G, Uchugonova A, Kostner G M (2009). Trafficking of mature miRNA-122 into the nucleus of live liver cells. Curr Pharm Biotechnol , 10(6): 569–578
doi: 10.2174/138920109789069332 pmid:19619125
7 Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki T, Takami Y, Nakayama T, Oshimura M (2004). Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol , 6(8): 784–791
doi: 10.1038/ncb1155 pmid:15247924
8 Guang S, Bochner A F, Pavelec D M, Burkhart K B, Harding S, Lachowiec J, Kennedy S (2008). An Argonaute transports siRNAs from the cytoplasm to the nucleus. Science , 321(5888): 537–541
doi: 10.1126/science.1157647 pmid:18653886
9 Hwang H W, Wentzel E A, Mendell J T (2007). A hexanucleotide element directs microRNA nuclear import. Science , 315(5808): 97–100
doi: 10.1126/science.1136235 pmid:17204650
10 Janowski B A, Huffman K E, Schwartz J C, Ram R, Nordsell R, Shames D S, Minna J D, Corey D R (2006). Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nat Struct Mol Biol , 13(9): 787–792
doi: 10.1038/nsmb1140 pmid:16936728
11 Janowski B A, Younger S T, Hardy D B, Ram R, Huffman K E, Corey D R (2007). Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol , 3(3): 166–173
doi: 10.1038/nchembio860 pmid:17259978
12 Jeffries C D, Fried H M, Perkins D O (2010). Additional layers of gene regulatory complexity from recently discovered microRNA mechanisms. Int J Biochem Cell Biol , 42(8): 1236–1242
doi: 10.1016/j.biocel.2009.02.006 pmid:20460095
13 Kawasaki H, Taira K (2004). Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature , 431(7005): 211–217
doi: 10.1038/nature02889 pmid:15311210
14 Kim D H, Saetrom P, Sn?ve O Jr, Rossi J J (2008). MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA , 105(42): 16230–16235
doi: 10.1073/pnas.0808830105 pmid:18852463
15 Li L C, Okino S T, Zhao H, Pookot D, Place R F, Urakami S, Enokida H, Dahiya R (2006). Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA , 103(46): 17337–17342
doi: 10.1073/pnas.0607015103 pmid:17085592
16 Liao J Y, Ma L M, Guo Y H, Zhang Y C, Zhou H, Shao P, Chen Y Q, Qu L H, Xu S (2010). Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3' trailers. PLoS ONE , 5(5): e10563
doi: 10.1371/journal.pone.0010563 pmid:20498841
17 Lund E, Güttinger S, Calado A, Dahlberg J E, Kutay U (2004). Nuclear export of microRNA precursors. Science , 303(5654): 95–98
doi: 10.1126/science.1090599 pmid:14631048
18 Marcon E, Babak T, Chua G, Hughes T, Moens P B (2008). miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosome Res , 16(2): 243–260
doi: 10.1007/s10577-007-1190-6 pmid:18204908
19 Meister G, Landthaler M, Dorsett Y, Tuschl T (2004a). Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA , 10(3): 544–550
doi: 10.1261/rna.5235104 pmid:14970398
20 Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004b). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell , 15(2): 185–197
doi: 10.1016/j.molcel.2004.07.007 pmid:15260970
21 Noto T, Kurth H M, Kataoka K, Aronica L, DeSouza L V, Siu K W, Pearlman R E, Gorovsky M A, Mochizuki K (2010). The Tetrahymena argonaute-binding protein Giw1p directs a mature argonaute-siRNA complex to the nucleus. Cell , 140(5): 692–703
doi: 10.1016/j.cell.2010.02.010 pmid:20211138
22 Ohrt T, Mütze J, Staroske W, Weinmann L, H?ck J, Crell K, Meister G, Schwille P (2008). Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res , 36(20): 6439–6449
doi: 10.1093/nar/gkn693 pmid:18842624
23 Okada C, Yamashita E, Lee S J, Shibata S, Katahira J, Nakagawa A, Yoneda Y, Tsukihara T (2009). A high-resolution structure of the pre-microRNA nuclear export machinery. Science , 326(5957): 1275–1279
doi: 10.1126/science.1178705 pmid:19965479
24 Onodera Y, Haag J R, Ream T, Nunes P C, Pontes O, Pikaard C S (2005). Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell , 120(5): 613–622
doi: 10.1016/j.cell.2005.02.007 pmid:15766525
25 Pal-Bhadra M, Leibovitch B A, Gandhi S G, Rao M, Bhadra U, Birchler J A, Elgin S C (2004). Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science , 303(5658): 669–672
doi: 10.1126/science.1092653 pmid:14752161
26 Place R F, Li L C, Pookot D, Noonan E J, Dahiya R (2008). MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA , 105(5): 1608–1613
doi: 10.1073/pnas.0707594105 pmid:18227514
27 Politz J C, Hogan E M, Pederson T (2009). MicroRNAs with a nucleolar location. RNA , 15(9): 1705–1715
doi: 10.1261/rna.1470409 pmid:19628621
28 Politz J C, Zhang F, Pederson T (2006). MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleolus and cytoplasm of rat myogenic cells. Proc Natl Acad Sci USA , 103(50): 18957–18962
doi: 10.1073/pnas.0609466103 pmid:17135348
29 Robb G B, Brown K M, Khurana J, Rana T M (2005). Specific and potent RNAi in the nucleus of human cells. Nat Struct Mol Biol , 12(2): 133–137
doi: 10.1038/nsmb886 pmid:15643423
30 Shibata S, Sasaki M, Miki T, Shimamoto A, Furuichi Y, Katahira J, Yoneda Y (2006). Exportin-5 orthologues are functionally divergent among species. Nucleic Acids Res , 34(17): 4711–4721
doi: 10.1093/nar/gkl663 pmid:16963774
31 Volpe T A, Kidner C, Hall I M, Teng G, Grewal S I, Martienssen R A (2002). Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science , 297(5588): 1833–1837
doi: 10.1126/science.1074973 pmid:12193640
32 Wassenegger M, Heimes S, Riedel L, S?nger H L (1994). RNA-directed de novo methylation of genomic sequences in plants. Cell , 76(3): 567–576
doi: 10.1016/0092-8674(94)90119-8 pmid:8313476
33 Weinmann L, H?ck J, Ivacevic T, Ohrt T, Mütze J, Schwille P, Kremmer E, Benes V, Urlaub H, Meister G (2009). Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell , 136(3): 496–507
doi: 10.1016/j.cell.2008.12.023 pmid:19167051
34 Winter J, Jung S, Keller S, Gregory R I, Diederichs S (2009). Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol , 11(3): 228–234
doi: 10.1038/ncb0309-228 pmid:19255566
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed