Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 6 Issue (2) : 109-117    https://doi.org/10.1007/s11515-011-1000-6
REVIEW
Conservation and divergence of the histone H2B monoubiquitination pathway from yeast to humans and plants
Ying CAO, Ligeng MA()
Key Laboratory of Molecular Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050016, China
 Download: PDF(309 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Histone ubiquitination plays a critical role in the regulation of transcription, and histone H2B monoubiquitination (H2Bub1) is mainly associated with transcriptional activation. Recent studies in yeast, humans, and BoldItalic have revealed the conservation of chromatin modification via H2Bub1 during evolution. Rad6-Bre1 and their homologs are responsible for H2B monoubiquitination in diverse eukaryotic organisms, and the PAF complex is required for H2Bub1 to proceed. H2Bub1 is involved in many developmental processes in yeast, humans, and BoldItalic, and it activates gene transcription by regulating the H3K4 methylation state. Notably, the level of H3K4 methylation is entirely dependent on H2Bub1 in yeast and humans, whereas the H3K4 methylation level of only a small number of genes in BoldItalic is dependent on H2Bub1. In this review, we summarize the enzymes involved in H2B monoubiquitination and deubiquitination, and discuss the biologic functions of H2Bub1 in different organisms. In addition, we focus on recent advances in our understanding of the molecular mechanisms that enable H2Bub1 to perform its function.

Keywords H2B monoubiquitination      H2B deubiquitination      H3K4 methylation      PAF complex      transcriptional requlation     
Corresponding Author(s): MA Ligeng,Email:ligeng.ma@mail.hebtu.edu.cn   
Issue Date: 01 April 2011
 Cite this article:   
Ying CAO,Ligeng MA. Conservation and divergence of the histone H2B monoubiquitination pathway from yeast to humans and plants[J]. Front Biol, 2011, 6(2): 109-117.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1000-6
https://academic.hep.com.cn/fib/EN/Y2011/V6/I2/109
H2B ubiquitinationH2B deubiquitination
E2E3
S. cerevisiaeRad6 (Robzyk et al., 2000)Bre1 (Hwang et al., 2003; Wood et al., 2003a)Ubp8 (Henry et al., 2003; Daniel et al., 2004)Ubp10 (Emre et al., 2005; Gardner et al., 2005)
S. pombeRhp6 (Tanny et al., 2007)Brl1, Brl2 (Tanny et al., 2007)
humanhRad6A, hRad6B (Kim et al., 2009)RNF20/hBre1A, RNF40/hBre1B (Zhu et al., 2005b; Kim et al., 2009)Usp22 (Zhang et al., 2008; Zhao et al., 2008)
ArabidopsisUBC1, UBC2 (Cao et al., 2008; Gu et al., 2009; Xu et al., 2009)HUB1, HUB2 (Liu et al., 2007; Fleury et al., 2007; Cao et al., 2008)SUP32/UBP26 (Sridhar et al., 2007)
Tab.1  Enzymes involved in H2B monoubiquitination and deubiquitination in yeast, humans and
Fig.1  H2Bub1 regulates H3K4 methylation in yeast, humans, and . The production of H2Bub1 is conserved among yeast, humans, and . Rad6-Bre1 and their homologs are responsible for H2B monoubiquitination; and the PAF complex is required for H2Bub1 formation. H2Bub1 activates gene expression by promoting H3K4 methylation in different organisms, but the dependency of H3K4 methylation on H2Bub1 is divergent. (A) Yeast H2Bub1 controls the binding of Cps35 (a subunit of the H3K4 methyltransferase COMPASS) to the target chromatin, which is essential for the catalytic activity of COMPASS; thus, H2B monoubiquitination is required for H3K4 methylation in yeast. (B) Human H2Bub1 is also necessary for H3K4 methylation, although the regulatory mechanism is unclear. (C) In , H2B monoubiquitination is required for H3K4 tri-methylation for only a small subset of genes (e.g., , , and ).
Fig.1  H2Bub1 regulates H3K4 methylation in yeast, humans, and . The production of H2Bub1 is conserved among yeast, humans, and . Rad6-Bre1 and their homologs are responsible for H2B monoubiquitination; and the PAF complex is required for H2Bub1 formation. H2Bub1 activates gene expression by promoting H3K4 methylation in different organisms, but the dependency of H3K4 methylation on H2Bub1 is divergent. (A) Yeast H2Bub1 controls the binding of Cps35 (a subunit of the H3K4 methyltransferase COMPASS) to the target chromatin, which is essential for the catalytic activity of COMPASS; thus, H2B monoubiquitination is required for H3K4 methylation in yeast. (B) Human H2Bub1 is also necessary for H3K4 methylation, although the regulatory mechanism is unclear. (C) In , H2B monoubiquitination is required for H3K4 tri-methylation for only a small subset of genes (e.g., , , and ).
1 Briggs S D, Xiao T, Sun Z W, Caldwell J A, Shabanowitz J, Hunt D F, Allis C D, Strahl B D (2002). Gene silencing: trans-histone regulatory pathway in chromatin. Nature , 418(6897): 498
doi: 10.1038/nature00970 pmid:12152067
2 Cao Y, Dai Y, Cui S J, Ma L G (2008). Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis. Plant Cell , 20: 2586-2602
doi: 10.1105/tpc.108.062760 pmid:18849490
3 Chandrasekharan M B, Huang F, Chen Y C, Sun Z W (2010b). Histone H2B C-terminal helix mediates trans-histone H3K4 methylation independent of H2B ubiquitination. Mol Cell Biol , 30(13): 3216-3232
doi: 10.1128/MCB.01008-09 pmid:20439497
4 Chandrasekharan M B, Huang F, Sun Z W (2009). Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability. Proc Natl Acad Sci USA , 106(39): 16686-16691
doi: 10.1073/pnas.0907862106 pmid:19805358
5 Chandrasekharan M B, Huang F, Sun Z W (2010a). Histone H2B ubiquitination and beyond: Regulation of nucleosome stability, chromatin dynamics and the trans-histone H3 methylation. Epigenetics , 5(6): 460-468
doi: 10.4161/epi.5.6.12314 pmid:20523115
6 Daniel J A, Torok M S, Sun Z W, Schieltz D, Allis C D, Yates J R 3rd, Grant P A (2004). Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription. J Biol Chem , 279(3): 1867-1871
doi: 10.1074/jbc.C300494200 pmid:14660634
7 Dhawan R, Luo H, Foerster A M, Abuqamar S, Du H N, Briggs S D, Scheid O M, Mengiste T (2009). HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Plant Cell , 21(3): 1000-1019
doi: 10.1105/tpc.108.062364 pmid:19286969
8 Dover J, Schneider J, Tawiah-Boateng M A, Wood A, Dean K, Johnston M, Shilatifard A (2002). Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem , 277(32): 28368-28371
doi: 10.1074/jbc.C200348200 pmid:12070136
9 Emre N C, Ingvarsdottir K, Wyce A, Wood A, Krogan N J, Henry K W, Li K, Marmorstein R, Greenblatt J F, Shilatifard A, Berger S L (2005). Maintenance of low histone ubiquitylation by Ubp10 correlates with telomere-proximal Sir2 association and gene silencing. Mol Cell , 17(4): 585-594
doi: 10.1016/j.molcel.2005.01.007 pmid:15721261
10 Espinosa J M (2008). Histone H2B ubiquitination: the cancer connection. Genes Dev , 22(20): 2743-2749
doi: 10.1101/gad.1732108 pmid:18923072
11 Ezhkova E, Tansey W P (2004). Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. Mol Cell , 13(3): 435-442
doi: 10.1016/S1097-2765(04)00026-7 pmid:14967150
12 Fleming A B, Kao C F, Hillyer C, Pikaart M, Osley M A (2008). H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation. Mol Cell , 31(1): 57-66
doi: 10.1016/j.molcel.2008.04.025 pmid:18614047
13 Fleury D, Himanen K, Cnops G, Nelissen H, Boccardi T M, Maere S, Beemster G T S, Neyt P, Anami S, Robles P, Micol J L, Inzé D, Van Lijsebettens M (2007). The Arabidopsis thaliana homolog of yeast BRE1 has a function in cell cycle regulation during early leaf and root growth. Plant Cell , 19(2): 417-432
doi: 10.1105/tpc.106.041319 pmid:17329565
14 Gardner R G, Nelson Z W, Gottschling D E (2005). Ubp10/Dot4p regulates the persistence of ubiquitinated histone H2B: distinct roles in telomeric silencing and general chromatin. Mol Cell Biol , 25(14): 6123-6139
doi: 10.1128/MCB.25.14.6123-6139.2005 pmid:15988024
15 Goldknopf I L, Taylor C W, Baum R M, Yeoman L C, Olson M O, Prestayko A W, Busch H (1975). Isolation and characterization of protein A24, a “histone-like” non-histone chromosomal protein. J Biol Chem , 250(18): 7182-7187
pmid:1165239
16 Gu X, Jiang D, Wang Y, Bachmair A, He Y (2009). Repression of the floral transition via histone H2B monoubiquitination. Plant J , 57(3): 522-533
doi: 10.1111/j.1365-313X.2008.03709.x pmid:18980658
17 Hartzog G A, Quan T K (2008). Just the FACTs: histone H2B ubiquitylation and nucleosome dynamics. Mol Cell , 31(1): 2-4
doi: 10.1016/j.molcel.2008.06.012 pmid:18614040
18 Henry K W, Wyce A, Lo W S, Duggan L J, Emre N C T, Kao C F, Pillus L, Shilatifard A, Osley M A, Berger S L (2003). Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev , 17(21): 2648-2663
doi: 10.1101/gad.1144003 pmid:14563679
19 Hwang W W, Venkatasubrahmanyam S, Ianculescu A G, Tong A, Boone C, Madhani H D (2003). A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol Cell , 11(1): 261-266
doi: 10.1016/S1097-2765(02)00826-2 pmid:12535538
20 Ingvarsdottir K, Krogan N J, Emre N C, Wyce A, Thompson N J, Emili A, Hughes T R, Greenblatt J F, Berger S L (2005). H2B ubiquitin protease Ubp8 and Sgf11 constitute a discrete functional module within the Saccharomyces cerevisiae SAGA complex. Mol Cell Biol , 25(3): 1162-1172
doi: 10.1128/MCB.25.3.1162-1172.2005 pmid:15657441
21 Jenuwein T, Allis C D (2001). Translating the histone code. Science , 293(5532): 1074-1080
doi: 10.1126/science.1063127 pmid:11498575
22 Kao C F, Hillyer C, Tsukuda T, Henry K, Berger S, Osley M A (2004). Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. Genes Dev , 18(2): 184-195
doi: 10.1101/gad.1149604 pmid:14752010
23 Kim J, Guermah M, McGinty R K, Lee J S, Tang Z, Milne T A, Shilatifard A, Muir T W, Roeder R G (2009). RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell , 137(3): 459-471
doi: 10.1016/j.cell.2009.02.027 pmid:19410543
24 Kim J, Hake S B, Roeder R G (2005). The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions. Mol Cell , 20(5): 759-770
doi: 10.1016/j.molcel.2005.11.012 pmid:16337599
25 Kornberg R D, Lorch Y (1999). Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell , 98(3): 285-294
doi: 10.1016/S0092-8674(00)81958-3 pmid:10458604
26 Kouzarides T (2007). Chromatin modifications and their function. Cell , 128(4): 693-705
doi: 10.1016/j.cell.2007.02.005 pmid:17320507
27 Krogan N J, Dover J, Wood A, Schneider J, Heidt J, Boateng M A, Dean K, Ryan O W, Golshani A, Johnston M, Greenblatt J F, Shilatifard A (2003). The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol Cell , 11(3): 721-729
doi: 10.1016/S1097-2765(03)00091-1 pmid:12667454
28 Laribee R N, Fuchs S M, Strahl B D (2007a). H2B ubiquitylation in transcriptional control: a FACT-finding mission. Genes Dev , 21(7): 737-743
doi: 10.1101/gad.1541507 pmid:17403775
29 Laribee R N, Shibata Y, Mersman D P, Collins S R, Kemmeren P, Roguev A, Weissman J S, Briggs S D, Krogan N J, Strahl B D (2007b). CCR4/NOT complex associates with the proteasome and regulates histone methylation. Proc Natl Acad Sci USA , 104(14): 5836-5841
doi: 10.1073/pnas.0607996104 pmid:17389396
30 Lee J S, Shukla A, Schneider J, Swanson S K, Washburn M P, Florens L, Bhaumik S R, Shilatifard A (2007). Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell , 131(6): 1084-1096
doi: 10.1016/j.cell.2007.09.046 pmid:18083099
31 Lee K K, Florens L, Swanson S K, Washburn M P, Workman J L (2005). The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex. Mol Cell Biol , 25(3): 1173-1182
doi: 10.1128/MCB.25.3.1173-1182.2005 pmid:15657442
32 Li B, Carey M, Workman J L (2007). The role of chromatin during transcription. Cell , 128(4): 707-719
doi: 10.1016/j.cell.2007.01.015 pmid:17320508
33 Liu Y, Koornneef M, Soppe W J J (2007). The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. Plant Cell , 19(2): 433-444
doi: 10.1105/tpc.106.049221 pmid:17329563
34 Lolas I B, Himanen K, Gr?nlund J T, Lynggaard C, Houben A, Melzer M, Van Lijsebettens M, Grasser K D (2010). The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2. Plant J , 61(4): 686-697
doi: 10.1111/j.1365-313X.2009.04096.x pmid:19947984
35 Luger K, M?der A W, Richmond R K, Sargent D F, Richmond T J (1997). Crystal structure of the nucleosome core particle at 2.8 ? resolution. Nature , 389(6648): 251-260
doi: 10.1038/38444 pmid:9305837
36 Minsky N, Shema E, Field Y, Schuster M, Segal E, Oren M (2008). Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells. Nat Cell Biol , 10(4): 483-488
doi: 10.1038/ncb1712 pmid:18344985
37 Nakanishi S, Lee J S, Gardner K E, Gardner J M, Takahashi Y H, Chandrasekharan M B, Sun Z W, Osley M A, Strahl B D, Jaspersen S L, Shilatifard A (2009). Histone H2BK123 monoubiquitination is the critical determinant for H3K4 and H3K79 trimethylation by COMPASS and Dot1. J Cell Biol , 186(3): 371-377
doi: 10.1083/jcb.200906005 pmid:19667127
38 Ng H H, Dole S, Struhl K (2003). The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B. J Biol Chem , 278(36): 33625-33628
doi: 10.1074/jbc.C300270200 pmid:12876293
39 Oh S, Zhang H, Ludwig P, van Nocker S (2004). A mechanism related to the yeast transcriptional regulator Paf1c is required for expression of the Arabidopsis FLC/MAF MADS box gene family. Plant Cell , 16(11): 2940-2953
doi: 10.1105/tpc.104.026062 pmid:15472079
40 Osley M A (2004). H2B ubiquitylation: the end is in sight. Biochim Biophys Acta , 1677(1-3): 74-78
pmid:15020048
41 Osley M A (2006). Regulation of histone H2A and H2B ubiquitylation. Brief Funct Genomics Proteomics , 5(3): 179-189
doi: 10.1093/bfgp/ell022 pmid:16772277
42 Osley M A, Fleming A B, Kao C F (2006). Histone ubiquitylation and the regulation of transcription. Results Probl Cell Differ , 41: 47-75
doi: 10.1007/400_006 pmid:16909890
43 Pavri R, Zhu B, Li G, Trojer P, Mandal S, Shilatifard A, Reinberg D (2006). Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell , 125(4): 703-717
doi: 10.1016/j.cell.2006.04.029 pmid:16713563
44 Pfluger J, Wagner D (2007). Histone modifications and dynamic regulation of genome accessibility in plants. Curr Opin Plant Biol , 10(6): 645-652
doi: 10.1016/j.pbi.2007.07.013 pmid:17884714
45 Pirngruber J, Shchebet A, Schreiber L, Shema E, Minsky N, Chapman R D, Eick D, Aylon Y, Oren M, Johnsen S A (2009). CDK9 directs H2B monoubiquitination and controls replication-dependent histone mRNA 3¢-end processing. EMBO Rep , 10(8): 894-900
doi: 10.1038/embor.2009.108 pmid: PMID:19575011
46 Robzyk K, Recht J, Osley M A (2000). Rad6-dependent ubiquitination of histone H2B in yeast. Science , 287(5452): 501-504
doi: 10.1126/science.287.5452.501 pmid:10642555
47 Schmitz R J, Tamada Y, Doyle M R, Zhang X, Amasino R M (2009). Histone H2B deubiquitination is required for transcriptional activation of FLOWERING LOCUS C and for proper control of flowering in Arabidopsis. Plant Physiol , 149(2): 1196-1204
doi: 10.1104/pp.108.131508 pmid:19091875
48 Shema E, Tirosh I, Aylon Y, Huang J, Ye C, Moskovits N, Raver-Shapira N, Minsky N, Pirngruber J, Tarcic G, Hublarova P, Moyal L, Gana-Weisz M, Shiloh Y, Yarden Y, Johnsen S A, Vojtesek B, Berger S L, Oren M (2008). The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression. Genes Dev , 22(19): 2664-2676
doi: 10.1101/gad.1703008 pmid:18832071
49 Shukla A, Bhaumik S R (2007). H2B-K123 ubiquitination stimulates RNAPII elongation independent of H3-K4 methylation. Biochem Biophys Res Commun , 359(2): 214-220
doi: 10.1016/j.bbrc.2007.05.105 pmid:17543890
50 Sridhar V V, Kapoor A, Zhang K, Zhu J, Zhou T, Hasegawa P M, Bressan R A, Zhu J K (2007). Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature , 447(7145): 735-738
doi: 10.1038/nature05864 pmid:17554311
51 Sun Z W, Allis C D (2002). Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature , 418(6893): 104-108
doi: 10.1038/nature00883 pmid:12077605
52 Tanny J C, Erdjument-Bromage H, Tempst P, Allis C D (2007). Ubiquitylation of histone H2B controls RNA polymerase II transcription elongation independently of histone H3 methylation. Genes Dev , 21(7): 835-847
doi: 10.1101/gad.1516207 pmid:17374714
53 Turner B M (2002). Cellular memory and the histone code. Cell , 111(3): 285-291
doi: 10.1016/S0092-8674(02)01080-2 pmid:12419240
54 Weake V M, Workman J L (2008). Histone ubiquitination: triggering gene activity. Mol Cell , 29(6): 653-663
doi: 10.1016/j.molcel.2008.02.014 pmid:18374642
55 West M H, Bonner W M (1980). Histone 2B can be modified by the attachment of ubiquitin. Nucleic Acids Res , 8(20): 4671-4680
doi: 10.1093/nar/8.20.4671 pmid:6255427
56 Wood A, Krogan N J, Dover J, Schneider J, Heidt J, Boateng M A, Dean K, Golshani A, Zhang Y, Greenblatt J F, Johnston M, Shilatifard A (2003a). Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. Mol Cell , 11(1): 267-274
doi: 10.1016/S1097-2765(02)00802-X pmid:12535539
57 Wood A, Schneider J, Dover J, Johnston M, Shilatifard A (2003b). The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J Biol Chem , 278(37): 34739-34742
doi: 10.1074/jbc.C300269200 pmid:12876294
58 Wyce A, Henry K W, Berger S L (2004). H2B ubiquitylation and de-ubiquitylation in gene activation. Novartis Found Symp , 259: 63-73 , discussion 73-77 , 163-169
doi: 10.1002/0470862637.ch5 pmid:15171247
59 Wyce A, Xiao T, Whelan K A, Kosman C, Walter W, Eick D, Hughes T R, Krogan N J, Strahl B D, Berger S L (2007). H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex. Mol Cell , 27(2): 275-288
doi: 10.1016/j.molcel.2007.01.035 pmid:17643376
60 Xiao T, Kao C F, Krogan N J, Sun Z W, Greenblatt J F, Osley M A, Strahl B D (2005). Histone H2B ubiquitylation is associated with elongating RNA polymerase II. Mol Cell Biol , 25(2): 637-651
doi: 10.1128/MCB.25.2.637-651.2005 pmid:15632065
61 Xu L, Ménard R, Berr A, Fuchs J, Cognat V, Meyer D, Shen W H (2009). The E2 ubiquitin-conjugating enzymes, AtUBC1 and AtUBC2, play redundant roles and are involved in activation of FLC expression and repression of flowering in Arabidopsis thaliana. Plant J , 57(2): 279-288
doi: 10.1111/j.1365-313X.2008.03684.x pmid:18798874
62 Zhang X Y, Varthi M, Sykes S M, Phillips C, Warzecha C, Zhu W, Wyce A, Thorne A W, Berger S L, McMahon S B (2008). The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. Mol Cell , 29(1): 102-111
doi: 10.1016/j.molcel.2007.12.015 pmid:18206973
63 Zhang Y (2003). Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev , 17(22): 2733-2740
doi: 10.1101/gad.1156403 pmid:14630937
64 Zhao Y, Lang G, Ito S, Bonnet J, Metzger E, Sawatsubashi S, Suzuki E, Le Guezennec X, Stunnenberg H G, Krasnov A, Georgieva S G, Schüle R, Takeyama K, Kato S, Tora L, Devys D (2008). A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol Cell , 29(1): 92-101
doi: 10.1016/j.molcel.2007.12.011 pmid:18206972
65 Zhu B, Mandal S S, Pham A D, Zheng Y, Erdjument-Bromage H, Batra S K, Tempst P, Reinberg D (2005a). The human PAF complex coordinates transcription with events downstream of RNA synthesis. Genes Dev , 19(14): 1668-1673
doi: 10.1101/gad.1292105 pmid:16024656
66 Zhu B, Zheng Y, Pham A D, Mandal S S, Erdjument-Bromage H, Tempst P, Reinberg D (2005b). Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol Cell , 20(4): 601-611
doi: 10.1016/j.molcel.2005.09.025 pmid:16307923
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed