Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 06 Issue (01) : 40-51    https://doi.org/10.1007/s11515-011-1110-1
REVIEW
Actin organization and regulation during pollen tube growth
Xiuhua XUE, Fei DU, Jinsheng ZHU, Haiyun REN()
Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
 Download: PDF(247 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pollen is the male gametophyte of seed plants and its tube growth is essential for successful fertilization. Mounting evidence has demonstrated that actin organization and regulation plays a central role in the process of its germination and polarized growth. The native structures and dynamics of actin are subtly modulated by many factors among which numerous actin binding proteins (ABPs) are the most direct and significant regulators. Upstream signals such as Ca2+, PIP2 (phosphatidylinositol-4,5-bis-phosphate) and GTPases can also indirectly act on actin organization through several ABPs. Under such elaborate regulation, actin structures show dynamically continuous modulation to adapt to the BoldItalic biologic functions to mediate secretory vesicle transportation and fusion, which lead to normal growth of the pollen tube. Many encouraging progress has been made in the connection between actin regulation and pollen tube growth in recent years. In this review, we summarize different factors that affect actin organization in pollen tube growth and highlight relative research progress.

Keywords pollen tube      tip growth      actin organization      actin-binding protein      signaling pathway     
Corresponding Author(s): REN Haiyun,Email:hren@bnu.edu.cn   
Issue Date: 01 February 2011
 Cite this article:   
Xiuhua XUE,Fei DU,Jinsheng ZHU, et al. Actin organization and regulation during pollen tube growth[J]. Front Biol, 2011, 06(01): 40-51.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1110-1
https://academic.hep.com.cn/fib/EN/Y2011/V06/I01/40
1 Allwood E G, Anthony R G, Smertenko A P, Reichelt S, Dr?bak B K, Doonan J H, Weeds A G, Hussey P J (2002). Regulation of the pollen-specific actin-depolymerizing factor LlADF1. Plant Cell , 14(11): 2915–2927
doi: 10.1105/tpc.005363 pmid:12417710
2 Anderson R A, Boronenkov I V, Doughman S D, Kunz J, Loijens J C (1999). Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J Biol Chem , 274(15): 9907–9910
doi: 10.1074/jbc.274.15.9907 pmid:10187762
3 Andrianantoandro E, Pollard T D (2006). Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell , 24(1): 13–23
doi: 10.1016/j.molcel.2006.08.006 pmid:17018289
4 Bamburg J R, Bernstein B W (2008). ADF/cofilin. Curr Biol , 18(7): R273–R275
doi: 10.1016/j.cub.2008.02.002 pmid:18397729
5 Bar-Sagi D, Hall A (2000). Ras and Rho GTPases: a family reunion. Cell , 103(2): 227–238
doi: 10.1016/S0092-8674(00)00115-X pmid:11057896
6 Bedinger P (1992). The remarkable biology of pollen. Plant Cell , 4(8): 879–887
pmid:1392600
7 Blanchoin L, Pollard T D (1999). Mechanism of interaction of Acanthamoeba actophorin (ADF/Cofilin) with actin filaments. J Biol Chem , 274(22): 15538–15546
doi: 10.1074/jbc.274.22.15538 pmid:10336448
8 Blanchoin L, Staiger C J (2010). Plant formins: diverse isoforms and unique molecular mechanism. Biochim Biophys Acta , 1803(2): 201–206
doi: 10.1016/j.bbamcr.2008.09.015 pmid:18977251
9 Cai G, Cresti M (2008). Organelle motility in the pollen tube: a tale of 20 years. J Exp Bot, Page 1 of 15
10 Cárdenas L, Lovy-Wheeler A, Kunkel J G, Hepler P K (2008). Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. Plant Physiol , 146(4): 1611–1621
doi: 10.1104/pp.107.113035 pmid:18263780
11 Carlier M F, Laurent V, Santolini J, Melki R, Didry D, Xia G X, Hong Y, Chua N H, Pantaloni D (1997). Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol , 136(6): 1307–1322
doi: 10.1083/jcb.136.6.1307 pmid:9087445
12 Chalkia D, Nikolaidis N, Makalowski W, Klein J, Nei M (2008). Origins and evolution of the formin multigene family that is involved in the formation of actin filaments. Mol Biol Evol , 25(12): 2717–2733
doi: 10.1093/molbev/msn215 pmid:18840602
13 Chaudhry F, Guérin C, von Witsch M, Blanchoin L, Staiger C J (2007). Identification of Arabidopsis cyclase-associated protein 1 as the first nucleotide exchange factor for plant actin. Mol Biol Cell , 18(8): 3002–3014
doi: 10.1091/mbc.E06-11-1041 pmid:17538023
14 Chen C Y, Cheung A Y, Wu H M (2003). Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth. Plant Cell , 15(1): 237–249
doi: 10.1105/tpc.007153 pmid:12509534
15 Chen C Y, Wong E I, Vidali L, Estavillo A, Hepler P K, Wu H M, Cheung A Y (2002). The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell , 14(9): 2175–2190
doi: 10.1105/tpc.003038 pmid:12215514
16 Chen H, Bernstein B W, Sneider J M, Boyle J A, Minamide L S, Bamburg J R (2004). In vitro activity differences between proteins of the ADF/cofilin family define two distinct subgroups. Biochemistry , 43(22): 7127–7142
doi: 10.1021/bi049797n pmid:15170350
17 Chen T, Wu X, Chen Y, Li X, Huang M, Zheng M, Baluska F, Samaj J, Lin J (2009). Combined proteomic and cytological analysis of Ca2+-calmodulin regulation in Picea meyeri pollen tube growth. Plant Physiol , 149(2): 1111–1126
doi: 10.1104/pp.108.127514 pmid:19011005
18 Cheung A Y, Duan Q H, Costa S S, de Graaf B H, Di Stilio V S, Feijo J, Wu H M (2008). The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins. Mol Plant , 1(4): 686–702
doi: 10.1093/mp/ssn026 pmid:19825573
19 Cheung A Y, Niroomand S, Zou Y J, Wu H M (2010). A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. Proc Natl Acad Sci USA , 107(37): 16390–16395
doi: 10.1073/pnas.1008527107 pmid:20805480
20 Cheung A Y, Wu H M (2004). Overexpression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane. Plant Cell , 16(1): 257–269
doi: 10.1105/tpc.016550 pmid:14671023
21 Cheung A Y, Wu H M (2007). Structural and functional compartmentalization in pollen tubes. J Exp Bot , 58(1): 75–82
doi: 10.1093/jxb/erl122 pmid:16980593
22 Cheung A Y, Wu H M (2008). Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol , 59(1): 547–572
doi: 10.1146/annurev.arplant.59.032607.092921 pmid:18444907
23 Cooper J A, Sept D (2008). New insights into mechanism and regulation of actin capping protein. Int Rev Cell Mol Biol , 267: 183–206
doi: 10.1016/S1937-6448(08)00604-7 pmid:18544499
24 Cremona O, Di Paolo G, Wenk M R, Lüthi A, Kim W T, Takei K, Daniell L, Nemoto Y, Shears S B, Flavell R A, McCormick D A, De Camilli P (1999). Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell , 99(2): 179–188
doi: 10.1016/S0092-8674(00)81649-9 pmid:10535736
25 Cvrcková F, Rivero F, Bavlnka B (2004). Evolutionarily conserved modules in actin nucleation: lessons from Dictyostelium discoideum and plants. Review article. Protoplasma , 224(1–2): 15–31
pmid:15726806
26 Dawson A P (1997). Calcium signalling: how do IP3 receptors work? Curr Biol , 7(9): R544–R547
doi: 10.1016/S0960-9822(06)00277-6 pmid:9285705
27 de Graaf B H J, Cheung A Y, Andreyeva T, Levasseur K, Kieliszewski M, Wu H M (2005). Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco. Plant Cell , 17(9): 2564–2579
doi: 10.1105/tpc.105.033183 pmid:16100336
28 Deeks M J, Cvrcková F, Machesky L M, Mikitová V, Ketelaar T, Zársky V, Davies B, Hussey P J (2005). Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytol , 168(3): 529–540
doi: 10.1111/j.1469-8137.2005.01582.x pmid:16313636
29 Deeks M J, Rodrigues C, Dimmock S, Ketelaar T, Maciver S K, Malhó R, Hussey P J (2007). Arabidopsis CAP1 – a key regulator of actin organisation and development. J Cell Sci , 120(Pt 15): 2609–2618
doi: 10.1242/jcs.007302 pmid:17635992
30 Derksen J, Rutten T, Van Amstel T, de Win A, Doris F, Steer M (1995). Regulation of pollen tube growth. Acta Bot. Neerl. , 44: 93–119
31 Dhonukshe P, Laxalt A M, Goedhart J, Gadella T W J, Munnik T (2003). Phospholipase d activation correlates with microtubule reorganization in living plant cells. Plant Cell , 15(11): 2666–2679
doi: 10.1105/tpc.014977 pmid:14508002
32 Dowd P E, Coursol S, Skirpan A L, Kao T H, Gilroy S (2006). Petunia phospholipase c1 is involved in pollen tube growth. Plant Cell , 18(6): 1438–1453
doi: 10.1105/tpc.106.041582 pmid:16648366
33 Dr?bak B K, Watkins P A C, Valenta R, Dove S K, Lloyd C W, Staiger C J (1994). Inhibition of plant plasma membrane phosphoinositide phospholipase C by the actin-binding protein, profilin. Plant J , 6(3): 389–400
doi: 10.1046/j.1365-313X.1994.06030389.x
34 Faix J, Grosse R (2006). Staying in shape with formins. Dev Cell , 10(6): 693–706
doi: 10.1016/j.devcel.2006.05.001 pmid:16740473
35 Fan X, Hou J, Chen X, Chaudhry F, Staiger C J, Ren H Y (2004). Identification and characterization of a Ca2+-dependent actin filament-severing protein from lily pollen. Plant Physiol , 136(4): 3979–3989
doi: 10.1104/pp.104.046326 pmid:15557101
36 Franklin-Tong V E (1999). Signaling and the modulation of pollen tube growth. Plant Cell , 11(4): 727–738
doi: 10.1105/tpc.11.4.727 pmid:10213789
37 Franklin-Tong V E, Dr?bak B K, Allan A C, Watkins P A C, Trewavas A J (1996). Growth of pollen tubes of Papaver rhoeas is regulated by a slow moving calcium wave propagated by inositol triphosphate. Plant Cell , 8(8): 1305–1321
doi: 10.1105/tpc.8.8.1305 pmid:12239415
38 Fu Y, Li H, Yang Z (2002). The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell , 14(4): 777–794
doi: 10.1105/tpc.001537 pmid:11971134
39 Fu Y, Wu G, Yang Z (2001). Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J Cell Biol , 152(5): 1019–1032
doi: 10.1083/jcb.152.5.1019 pmid:11238457
40 Geitmann A, Snowman B N, Emons A M C, Franklin-Tong V E (2000). Alterations in the actin cytoskeleton of pollen tubes are induced by the self-incompatibility reaction in Papaver rhoeas. Plant Cell , 12(7): 1239–1251
pmid:10899987
41 Gibbon B C, Kovar D R, Staiger C J (1999). Latrunculin B has different effects on pollen germination and tube growth. Plant Cell , 11(12): 2349–2363
pmid:10590163
42 Gibbon B C, Zonia L E, Kovar D R, Hussey P J, Staiger C J (1998). Pollen profilin function depends on interaction with proline-rich motifs. Plant Cell , 10(6): 981–993
pmid:9634586
43 Goldschmidt-Clermont P J, Machesky L M, Baldassare J J, Pollard T D (1990). The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science , 247(4950): 1575– 1578
doi: 2157283" target="_blank">10.1126/science. pmid:2157283 pmid:2157283
44 Gu Y, Fu Y, Dowd P, Li S, Vernoud V, Gilroy S, Yang Z B (2005). A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J Cell Biol , 169(1): 127–138
doi: 10.1083/jcb.200409140 pmid:15824136
45 Gu Y, Vernoud V, Fu Y, Yang Z (2003). ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. J Exp Bot , 54(380): 93–101
doi: 10.1093/jxb/54.380.93 pmid:12456759
46 Gu Y, Wang Z, Yang Z (2004). ROP/RAC GTPase: an old new master regulator for plant signaling. Curr Opin Plant Biol , 7(5): 527–536
doi: 10.1016/j.pbi.2004.07.006 pmid:15337095
47 Gungabissoon R A, Jiang C J, Dr?bak B K, Maciver S K, Hussey P J (1998). Interaction of maize actin-depolymerising factor with actin and phosphoinositides and its inhibition of plant phospholipase C. Plant J , 16(6): 689–696
doi: 10.1046/j.1365-313x.1998.00339.x
48 Gungabissoon R A, Khan S, Hussey P J, Maciver S K (2001). Interaction of elongation factor 1alpha from Zea mays (ZmEF-1alpha) with F-actin and interplay with the maize actin severing protein, ZmADF3. Cell Motil Cytoskeleton , 49(2): 104–111
doi: 10.1002/cm.1024 pmid:11443740
49 Guo C Q, Ren H Y (2006). Formins: bringing new insights to the organization of actin cytoskeleton. Chin Sci Bull , 51(24): 2937–2943
doi: 10.1007/s11434-006-2214-x
50 Harris E S, Higgs H N (2004). Actin cytoskeleton: formins lead the way. Curr Biol , 14(13): R520–R522
doi: 10.1016/j.cub.2004.06.043 pmid:15242634
51 Harris E S, Rouiller I, Hanein D, Higgs H N (2006). Mechanistic differences in actin bundling activity of two mammalian formins, FRL1 and mDia2. J Biol Chem , 281(20): 14383–14392
doi: 10.1074/jbc.M510923200 pmid:16556604
52 Helling D, Possart A, Cottier S, Klahre U, Kost B (2006). Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell , 18(12): 3519–3534
doi: 10.1105/tpc.106.047373 pmid:17172355
53 Hepler P K, Vidali L, Cheung A Y (2001). Polarized cell growth in higher plants. Annu Rev Cell Dev Biol , 17(1): 159–187
doi: 10.1146/annurev.cellbio.17.1.159 pmid:11687487
54 Higashida C, Miyoshi T, Fujita A, Oceguera-Yanez F, Monypenny J, Andou Y, Narumiya S, Watanabe N (2004). Actin polymerization-driven molecular movement of mDia1 in living cells. Science , 303(5666): 2007–2010
doi: 10.1126/science.1093923 pmid:15044801
55 Holdaway-Clarke T L, Feijo J A, Hackett G R, Kunkel J G, Hepler P K (1997). Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell , 9(11): 1999–2010
doi: 10.1105/tpc.9.11.1999 pmid:12237353
56 Hong Z, Staiculescu M, Sun M, Levitan I, Forgacs G (2009). How phosphatidylinositol 4,5-bisphosphate regulates membrane- cytoskeleton interaction in endothelial cells? Biophysical Journal , 96: 395a
57 Hormanseder K, Obermeyer G, Foissner I (2005). Disturbance of endomembrane trafficking by brefeldin A and calyculin A reorganizes the actin cytoskeleton of Lilium longiflorum pollen tubes. Protoplasma , 227: 25–36
58 Huang S, Blanchoin L, Chaudhry F, Franklin-Tong V E, Staiger C J (2004). A gelsolin-like protein from Papaver rhoeas pollen (PrABP80) stimulates calcium-regulated severing and depolymerization of actin filaments. J Biol Chem , 279(22): 23364–23375
doi: 10.1074/jbc.M312973200 pmid:15039433
59 Huang S, Blanchoin L, Kovar D R, Staiger C J (2003). Arabidopsis capping protein (AtCP) is a heterodimer that regulates assembly at the barbed ends of actin filaments. J Biol Chem , 278(45): 44832–44842
doi: 10.1074/jbc.M306670200 pmid:12947123
60 Huang S, Gao L, Blanchoin L, Staiger C J (2006). Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Mol Biol Cell , 17(4): 1946–1958
doi: 10.1091/mbc.E05-09-0840 pmid:16436516
61 Huang S, Robinson R C, Gao L Y, Matsumoto T, Brunet A, Blanchoin L, Staiger C J (2005). Arabidopsis VILLIN1 generates actin filament cables that are resistant to depolymerization. Plant Cell , 17(2): 486–501
doi: 10.1105/tpc.104.028555 pmid:15659626
62 Hussey P J, Ketelaar T, Deeks M J (2006). Control of the actin cytoskeleton in plant cell growth. Annu Rev Plant Biol , 57(1): 109–125
doi: 10.1146/annurev.arplant.57.032905.105206 pmid:16669757
63 Hwang J U, Vernoud V, Szumlanski A, Nielsen E, Yang Z (2008). A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Curr Biol , 18(24): 1907–1916
doi: 10.1016/j.cub.2008.11.057 pmid:19108776
64 Ingouff M, Fitz Gerald J N, Guérin C, Robert H, S?rensen M B, Van Damme D, Geelen D, Blanchoin L, Berger F (2005). Plant formin AtFH5 is an evolutionarily conserved actin nucleator involved in cytokinesis. Nat Cell Biol , 7(4): 374–380
doi: 10.1038/ncb1238 pmid:15765105
65 Khurana P, Henty J L, Huang S J, Staiger A M, Blanchoin L, Staiger C J (2010). Arabidopsis VILLIN1 and VILLIN3 have overlapping and distinct activities in actin bundle formation and turnover. Plant Cell , 22(8): 2727–2748
doi: 10.1105/tpc.110.076240 pmid:20807878
66 Kim S R, Kim Y W, An G (1993). Molecular cloning and characterization of anther-preferential cDNA encoding a putative actin-depolymerizing factor. Plant Mol Biol , 21(1): 39–45
doi: 10.1007/BF00039616 pmid:8425049
67 Klahre U, Friederich E, Kost B, Louvard D, Chua N H (2000). Villin-like actin-binding proteins are expressed ubiquitously in Arabidopsis. Plant Physiol , 122(1): 35–48
doi: 10.1104/pp.122.1.35 pmid:10631247
68 Kost B (2008). Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol , 18(3): 119–127
doi: 10.1016/j.tcb.2008.01.003 pmid:18280158
69 Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua N H (1999). Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol , 145(2): 317–330
doi: 10.1083/jcb.145.2.317 pmid:10209027
70 Kost B, Spielhofer P, Chua N H (1998). A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J , 16(3): 393–401
doi: 10.1046/j.1365-313x.1998.00304.x pmid:9881160
71 Kovar D R (2006). Molecular details of formin-mediated actin assembly. Curr Opin Cell Biol , 18(1): 11–17
doi: 10.1016/j.ceb.2005.12.011 pmid:16364624
72 Kovar D R, Yang P, Sale W S, Dr?bak B K, Staiger C J (2001). Chlamydomonas reinhardtii produces a profilin with unusual biochemical properties. J Cell Sci , 114(Pt 23): 4293–4305
pmid:11739661
73 Kreis T, Vale R (1999). Guidebook to the cytoskeletal and motor proteins.New York: Oxford University Press
74 Kühtreiber W M, Jaffe L F (1990). Detection of extracellular calcium gradients with a calcium-specific vibrating electrode. J Cell Biol , 110(5): 1565–1573
doi: 10.1083/jcb.110.5.1565 pmid:2335563
75 Lee Y J, Szumlanski A, Nielsen E, Yang Z B (2008). Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J Cell Biol , 181(7): 1155–1168
doi: 10.1083/jcb.200801086 pmid:18591430
76 Li H, Lin Y, Heath R M, Zhu M X, Yang Z (1999). Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell , 11(9): 1731–1742
pmid:10488239
77 Li H, Wu G, Ware D, Davis K R, Yang Z (1998). Arabidopsis Rho-related GTPases: differential gene expression in pollen and polar localization in fission yeast. Plant Physiol , 118(2): 407–417
doi: 10.1104/pp.118.2.407 pmid:9765526
78 Li Y H, Shen Y, Cai C, Zhong C C, Zhu L, Yuan M, Ren H Y (2010). The type II Arabidopsis formin14 interacts with microtubules and microfilaments to regulate cell division. Plant Cell , 22(8): 2710–2726
doi: 10.1105/tpc.110.075507 pmid:20709814
79 Lord E M, Russell S D (2002). The mechanisms of pollination and fertilization in plants. Annu Rev Cell Dev Biol , 18(1): 81–105
doi: 10.1146/annurev.cellbio.18.012502.083438 pmid:12142268
80 Lord E M, Walling L L, Jauh G Y (1996). Cell adhesion in plants and its role in pollination. In: Smallwood M, Knox J P, Bowles D J, eds. Membranes: specialized functions in plants. Oxford, UK: BIOS Scientific Publishers, 21–38
81 Lovy-Wheeler A, Cárdenas L, Kunkel J G, Hepler P K (2007). Differential organelle movement on the actin cytoskeleton in lily pollen tubes. Cell Motil Cytoskeleton , 64(3): 217–232
doi: 10.1002/cm.20181 pmid:17245769
82 Lovy-Wheeler A, Kunkel J G, Allwood E G, Hussey P J, Hepler P K (2006). Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily. Plant Cell , 18(9): 2182–2193
doi: 10.1105/tpc.106.044867 pmid:16920777
83 Lovy-Wheeler A, Wilsen K L, Baskin T I, Hepler P K (2005). Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta , 221(1): 95–104
doi: 10.1007/s00425-004-1423-2 pmid:15747143
84 Maciver S K, Hussey P J (2002). The ADF/cofilin family: actinremodeling proteins. Genome Biol, 3(5): 3007.1–3007.12
85 Malhó R (1998). The role of inositol(1,4,5)triphosphate in pollen tube growth and orientation. Sex Plant Reprod , 11: 231–235
doi: 10.1007/s004970050145
86 Malhó R, Liu Q, Monteiro D, Rato C, Camacho L, Dinis A (2006). Signalling pathways in pollen germination and tube growth. Protoplasma , 228(1–3): 21–30
doi: 10.1007/s00709-006-0162-6 pmid:16937051
87 Malhó R, Read N D, Pais M, Trewavas A J (1994). Role of cytosolic calcium in the reorientation of pollen tube growth. Plant J , 5(3): 331–341
doi: 10.1111/j.1365-313X.1994.00331.x
88 Malhó R, Read N D, Trewavas A J, Pais M S (1995). Calcium channel activity during pollen tube growth and reorientation. Plant Cell , 7(8): 1173–1184
doi: 10.1105/tpc.7.8.1173 pmid:12242402
89 Malhó R, Trewavas A J (1996). Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell , 8(11): 1935–1949
doi: 10.1105/tpc.8.11.1935 pmid:12239370
90 Martin T F J (1998). Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu Rev Cell Dev Biol , 14(1): 231–264
doi: 10.1146/annurev.cellbio.14.1.231 pmid:9891784
91 Mascarenhas J P (1993). Molecular mechanisms of pollen tube growth and differentiation. Plant Cell , 5(10): 1303–1314
doi: 10.1105/tpc.5.10.1303 pmid:12271030
92 Mathur J (2005). Conservation of boundary extension mechanisms between plants and animals. J Cell Biol , 168(5): 679–682
doi: 10.1083/jcb.200411170 pmid:15738261
93 Messerli M, Robinson K R (1997). Tip localized Ca2+ pulses are coincident with peak pulsatile growth rates in pollen tubes of Lilium longiflorum. J Cell Sci , 110(Pt 11): 1269–1278
pmid:9202387
94 Michelot A, Guérin C, Huang S J, Ingouff M, Richard S, Rodiuc N, Staiger C J, Blanchoin L (2005). The formin homology 1 domain modulates the actin nucleation and bundling activity of Arabidopsis FORMIN1. Plant Cell , 17(8): 2296–2313
doi: 10.1105/tpc.105.030908 pmid:15994911
95 Molendijk A J, Bischoff F, Rajendrakumar C S V, Friml J, Braun M, Gilroy S, Palme K (2001). Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J , 20(11): 2779–2788
doi: 10.1093/emboj/20.11.2779 pmid:11387211
96 Monteiro D, Castanho Coelho P, Rodrigues C, Camacho L, Quader H, Malhó R (2005a). Modulation of endocytosis in pollen tube growth by phosphoinositides and phospholipids. Protoplasma , 226(1–2): 31–38
doi: 10.1007/s00709-005-0102-x pmid:16231099
97 Monteiro D, Liu Q, Lisboa S, Scherer G E F, Quader H, Malhó R (2005b). Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+]c and membrane secretion. J Exp Bot , 56(416): 1665–1674
doi: 10.1093/jxb/eri163 pmid:15837704
98 Moseley J B, Goode B L (2005). Differential activities and regulation of Saccharomyces cerevisiae formin proteins Bni1 and Bnr1 by Bud6. J Biol Chem , 280(30): 28023–28033
doi: 10.1074/jbc.M503094200 pmid:15923184
99 Munnik T (2001). Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci , 6(5): 227–233
doi: 10.1016/S1360-1385(01)01918-5 pmid:11335176
100 Nakayasu T, Yokota E, Shimmen T (1998). Purification of an actin-binding protein composed of 115-kDa polypeptide from pollen tubes of lily. Biochem Biophys Res Commun , 249(1): 61–65
doi: 10.1006/bbrc.1998.9088 pmid:9705832
101 O’Luanaigh N, Pardo R, Fensome A, Allen-Baume V, Jones D, Holt M R, Cockcroft S (2002). Continual production of phosphatidic acid by phospholipase D is essential for antigen-stimulated membrane ruffling in cultured mast cells. Mol Biol Cell , 13(10): 3730–3746
doi: 10.1091/mbc.E02-04-0213 pmid:12388770
102 Okreglak V, Drubin D G (2010). Loss of Aip1 reveals a role in maintaining the actin monomer pool and an in vivo oligomer assembly pathway. J Cell Biol , 188(6): 769–777
doi: 10.1083/jcb.200909176 pmid:20231387
103 Perelroizen I, Didry D, Christensen H, Chua N H, Carlier M F (1996). Role of nucleotide exchange and hydrolysis in the function of profilin in action assembly. J Biol Chem , 271(21): 12302–12309
doi: 10.1074/jbc.271.21.12302 pmid:8647830
104 Pierson E S, Miller D D, Callaham D A, Shipley A M, Rivers B A, Cresti M, Hepler P K (1994). Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. Plant Cell , 6(12): 1815–1828
pmid:7866026
105 Pina C, Pinto F, Feijó J A, Becker J D (2005). Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol , 138(2): 744–756
doi: 10.1104/pp.104.057935 pmid:15908605
106 Pollard T D, Blanchoin L, Mullins R D (2000). Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct , 29(1): 545–576
doi: 10.1146/annurev.biophys.29.1.545 pmid:10940259
107 Powner D J, Wakelam M J O (2002). The regulation of phospholipase D by inositol phospholipids and small GTPases. FEBS Lett , 531(1): 62–64
doi: 10.1016/S0014-5793(02)03410-5 pmid:12401204
108 Rathore K S, Cork R J, Robinson K R (1991). A cytoplasmic gradient of Ca2+ is correlated with the growth of lily pollen tubes. Dev Biol , 148(2): 612–619
doi: 10.1016/0012-1606(91)90278-B pmid:1743404
109 Rato C, Monteiro D, Hepler P K, Malhó R (2004). Calmodulin activity and cAMP signalling modulate growth and apical secretion in pollen tubes. Plant J , 38(6): 887–897
doi: 10.1111/j.1365-313X.2004.02091.x pmid:15165182
110 Raucher D, Stauffer T, Chen W, Shen K, Guo S, York J D, Sheetz M P, Meyer T (2000). Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell , 100(2): 221–228
doi: 10.1016/S0092-8674(00)81560-3 pmid:10660045
111 Ren H Y, Xiang Y (2007). The function of actin-binding proteins in pollen tube growth. Protoplasma , 230(3–4): 171–182
doi: 10.1007/s00709-006-0231-x pmid:17458632
112 Ruzicka D R, Kandasamy M K, McKinney E C, Burgos-Rivera B, Meagher R B (2007). The ancient subclasses of Arabidopsis actin depolymerizing factor genes exhibit novel and differential expression. Plant J , 52(3): 460–472
doi: 10.1111/j.1365-313X.2007.03257.x pmid:17877706
113 Sagot I, Klee S K, Pellman D (2002). Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat Cell Biol , 4(1): 42–50
pmid:11740491
114 Snowman B N, Kovar D R, Shevchenko G, Franklin-Tong V E, Staiger C J (2002). Signal-mediated depolymerization of actin in pollen during the self-incompatibility response. Plant Cell , 14(10): 2613–2626
doi: 10.1105/tpc.002998 pmid:12368508
115 Staiger C J, Blanchoin L (2006). Actin dynamics: old friends with new stories. Curr Opin Plant Biol , 9(6): 554–562
doi: 10.1016/j.pbi.2006.09.013 pmid:17011229
116 Staiger C J, Hussey P J (2004). Actin and actin-modulating proteins. In Hussey P J, ed. The Plant Cytoskeleton in Cell Differentiation and Development. Oxford: Blackwell Publishers, pp. 32–80
117 Staiger C J, Poulter N S, Henty J L, Franklin-Tong V E, Blanchoin L (2010). Regulation of actin dynamics by actin-binding proteins in pollen. J Exp Bot , 61(7): 1969–1986
doi: 10.1093/jxb/erq012 pmid:20159884
118 Staiger C J, Sheahan M B, Khurana P, Wang X, McCurdy D W, Blanchoin L (2009). Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array. J Cell Biol , 184(2): 269–280
doi: 10.1083/jcb.200806185 pmid:19171759
119 Steer M W, Steer J M (1989). Pollen tube tip growth. New Phytol , 111(3): 323–358
doi: 10.1111/j.1469-8137.1989.tb00697.x
120 Stevenson J M, Perera I Y, Heilmann I, Persson S, Boss W F (2000). Inositol signaling and plant growth. Trends Plant Sci , 5(6): 252–258
doi: 10.1016/S1360-1385(00)01652-6 pmid:10838616
121 Sweeney D A, Siddhanta A, Shields D (2002). Fragmentation and re-assembly of the Golgi apparatus in vitro. A requirement for phosphatidic acid and phosphatidylinositol 4,5-bisphosphate synthesis. J Biol Chem , 277(4): 3030–3039
doi: 10.1074/jbc.M104639200 pmid:11704660
122 Sze H, Li X, Palmgren M G (1999). Energization of plant cell membranes by H+-pumping ATPases. Regulation and biosynthesis. Plant Cell , 11(4): 677–690
doi: 10.1105/tpc.11.4.677 pmid:10213786
123 Szymanski D B, Cosgrove D J (2009). Dynamic co-ordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Curr Biol , 19(17): 800–811
doi: 10.1016/j.cub.2009.07.056
124 Tao Z H, Ren H Y (2003) Regulation of gelsolin to plant actin filaments and its distribution in pollen. Science in China , 46(4): 379–388
doi: 10.1360/02yc0109
125 Thomas C, Tholl S, Moes D, Dieterle M, Papuga J, Moreau F, Steinmetz A (2009). Actin bundling in plants. Cell Motil Cytoskeleton , 66(11): 940–957
doi: 10.1002/cm.20389 pmid:19504571
126 Thomas S G, Huang S, Li S, Staiger C J, Franklin-Tong V E (2006). Actin depolymerization is sufficient to induce programmed cell death in self-incompatible pollen. J Cell Biol , 174(2): 221–229
doi: 10.1083/jcb.200604011 pmid:16831890
127 Valenta R, Duchêne M, Pettenburger K, Sillaber C, Valent P, Bettelheim P, Breitenbach M, Rumpold H, Kraft D, Scheiner O (1991). Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. Science , 253(5019): 557–560
doi: 1857985" target="_blank">10.1126/science. pmid:1857985 pmid:1857985
128 Valenta R, Ferreira F, Grote M, Swoboda I, Vrtala S, Duchêne M, Deviller P, Meagher R B, McKinney E, Heberle-Bors E (1993). Identification of profilin as an actin-binding protein in higher plants. J Biol Chem , 268(30): 22777–22781
pmid:7693678
129 Vavylonis D, Wu J Q, Hao S, O’Shaughnessy B, Pollard T D (2008). Assembly mechanism of the contractile ring for cytokinesis by fission yeast. Science , 319(5859): 97–100
doi: 10.1126/science.1151086 pmid:18079366
130 Vernoud V, Horton A C, Yang Z, Nielsen E (2003). Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol , 131(3): 1191–1208
doi: 10.1104/pp.013052 pmid:12644670
131 Vidali L, Hepler P K (1997). Characterization and localization of profilin in pollen grains and tubes of Lilium longiflorum. Cell Motil Cytoskeleton , 36(4): 323–338
doi: 10.1002/(SICI)1097-0169(1997)36:4<323::AID-CM3>3.0.CO;2-6 pmid:9096955
132 Vidali L, McKenna S T, Hepler P K (2001). Actin polymerization is essential for pollen tube growth. Mol Biol Cell , 12(8): 2534–2545
pmid:11514633
133 Vidali L, Rounds C M, Hepler P K, Bezanilla M, Baxter I (2009). Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells. PLoS ONE , 4(5): e5744
doi: 10.1371/journal.pone.0005744 pmid:19478943
134 Wang T, Xiang Y, Hou J, Ren H Y (2008). ABP41 is involved in the pollen tube development via fragmenting actin filaments. Mol Plant , 1(6): 1048–1055
doi: 10.1093/mp/ssn073 pmid:19825602
135 Way M, Weeds A (1988). Nucleotide sequence of pig plasma gelsolin. Comparison of protein sequence with human gelsolin and other actin-severing proteins shows strong homologies and evidence for large internal repeats. J Mol Biol , 203(4): 1127–1133
doi: 10.1016/0022-2836(88)90132-5 pmid:2850369
136 Wilsen K L, Lovy-Wheeler A, Voigt B, Menzel D, Kunkel J G, Hepler P K (2006). Imaging the actin cytoskeleton in growing pollen tubes. Sex Plant Reprod , 19(2): 51–62
doi: 10.1007/s00497-006-0021-9
137 Wu G, Gu Y, Li S, Yang Z (2001). A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif-containing proteins that act as Rop GTPase targets. Plant Cell , 13(12): 2841–2856
pmid:11752391
138 Wu W, Yan L F (1997). Identification of gelsolin by western blotting in maize pollen. Chin Sci Bull , 42: 1784–1786
139 Xiang Y, Huang X, Wang T, Zhang Y, Liu Q, Hussey P J, Ren H (2007). ACTIN BINDING PROTEIN 29 from Lilium pollen plays an important role in dynamic actin remodeling. Plant Cell , 19(6): 1930–1946
doi: 10.1105/tpc.106.048413 pmid:17586658
140 Yang Z (2002). Small GTPases: versatile signaling switches in plants. Plant Cell , 14(Suppl): S375–S388
pmid:12045289
141 Ye J, Zheng Y, Yan A, Chen N, Wang Z, Huang S, Yang Z (2009). Arabidopsis Formin3 directs the formation of actin cables and polarized growth in pollen tubes. Plant Cell, 21:3868–3884
doi: 10.1105/tpc.109.068700
142 Yi K X, Guo C Q, Chen D, Zhao B, Yang B, Ren H (2005). Cloning and functional characterization of a formin-like protein (AtFH8) from Arabidopsis. Plant Physiol , 138(2): 1071–1082
doi: 10.1104/pp.104.055665 pmid:15923338
143 Yokota E, Muto S, Shimmen T (2000). Calcium-calmodulin suppresses the filamentous actin-binding activity of a 135-kilodalton actin-bundling protein isolated from lily pollen tubes. Plant Physiol , 123(2): 645–654
doi: 10.1104/pp.123.2.645 pmid:10859194
144 Yokota E, Shimmen K T T, Shimmen T (1998). Actin-bundling protein isolated from pollen tubes of lily. Biochemical and immunocytochemical characterization. Plant Physiol , 116(4): 1421–1429
doi: 10.1104/pp.116.4.1421 pmid:9536060
145 Yokota E, Shimmen T (1999). The 135-kDa actin-bundling protein from lily pollen tubes arranges F-actin into bundles with uniform polarity. Planta , 209(2): 264–266
doi: 10.1007/s004250050631 pmid:10436230
146 Yokota E, Vidali L, Tominaga M, Tahara H, Orii H, Morizane Y, Hepler P K, Shimmen T (2003). Plant 115-kDa actin-filament bundling protein, P-115-ABP, is a homologue of plant villin and is widely distributed in cells. Plant Cell Physiol , 44(10): 1088–1099
doi: 10.1093/pcp/pcg132 pmid:14581634
147 Zhang H, Qu X L, Bao C C, Khurana P, Wang Q N, Xie Y R, Zheng Y Y, Chen N Z, Blanchoin L, Staiger C J, Huang S J (2010). Arabidopsis VILLIN5, an actin filament bundling and severing protein, is necessary for normal pollen tube growth. Plant Cell , 22(8): 2749–2767
doi: 10.1105/tpc.110.076257 pmid:20807879
148 Zheng Z L, Yang Z (2000). The Rrop GTPase switch turns on polar growth in pollen. Trends Plant Sci , 5(7): 298–303
doi: 10.1016/S1360-1385(00)01654-X pmid:10871902
149 Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004). GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol , 136(1): 2621–2632
doi: 10.1104/pp.104.046367 pmid:15375207
[1] YU Guanghui, CHEN Yan. The language of GABA in pollen tube growth and guidance[J]. Front. Biol., 2008, 3(4): 439-442.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed