Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 6 Issue (3) : 190-196    https://doi.org/10.1007/s11515-011-1143-5
REVIEW
Sterol-binding proteins and endosomal cholesterol transport
Ximing DU, Hongyuan YANG()
School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia
 Download: PDF(253 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Endosomal compartments sort and deliver exogenous lipoprotein-derived cholesterol to the endoplasmic reticulum for regulating cellular cholesterol homeostasis. A large number of studies have focused on the removal of endosomal cholesterol, since its accumulation leads to devastating human diseases. Recent studies suggest that cytoplasmic sterol-binding proteins may be involved in endosomal cholesterol transport. In particular, endosome/lysosome-localized or-associated cholesterol-binding proteins may serve as key mediators of cholesterol removal in a non-vesicular manner. Further characterization of these cholesterol-binding proteins will shed light on the molecular mechanisms that regulate endosomal cholesterol sorting.

Keywords NPC1      NPC2      OSBP/ORP      StAR protein      endosomal cholesterol transport     
Corresponding Author(s): YANG Hongyuan,Email:h.rob.yang@unsw.edu.au   
Issue Date: 01 June 2011
 Cite this article:   
Ximing DU,Hongyuan YANG. Sterol-binding proteins and endosomal cholesterol transport[J]. Front Biol, 2011, 6(3): 190-196.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1143-5
https://academic.hep.com.cn/fib/EN/Y2011/V6/I3/190
Fig.1  Endosomal transport of low-density lipoprotein (LDL)-derived cholesterol to the endoplasmic reticulum (ER). LDL particles bound to LDL-receptors are internalized and delivered to early and late endosome/lysosome. Cholesteryl ester carried by LDL is hydrolyzed by acid lipase in the late endosome/lysosome. The released free cholesterol is transported to the ER through a process mediated by NPC1, NPC2 and other unknown proteins. In the ER, LDL-derived cholesterol exert its regulatory effects by: 1) inhibiting SCAP/SREBP pathway thereby decreasing cholesterol uptake from LDL and synthesis by HMG-CoA reductase; 2) activating cholesterol esterification by ACAT thereby converting cholesterol back to cholesteryl ester stored in cytosolic lipid droplet. ACAT, acyl-coenzyme A:cholesterol acyltransferase; HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; NPC, Niemann-Pick type C; SREBP, sterol-regulatory element binding protein; SCAP, SREBP cleavage activating protein.
Fig.1  Endosomal transport of low-density lipoprotein (LDL)-derived cholesterol to the endoplasmic reticulum (ER). LDL particles bound to LDL-receptors are internalized and delivered to early and late endosome/lysosome. Cholesteryl ester carried by LDL is hydrolyzed by acid lipase in the late endosome/lysosome. The released free cholesterol is transported to the ER through a process mediated by NPC1, NPC2 and other unknown proteins. In the ER, LDL-derived cholesterol exert its regulatory effects by: 1) inhibiting SCAP/SREBP pathway thereby decreasing cholesterol uptake from LDL and synthesis by HMG-CoA reductase; 2) activating cholesterol esterification by ACAT thereby converting cholesterol back to cholesteryl ester stored in cytosolic lipid droplet. ACAT, acyl-coenzyme A:cholesterol acyltransferase; HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; NPC, Niemann-Pick type C; SREBP, sterol-regulatory element binding protein; SCAP, SREBP cleavage activating protein.
Fig.2  Domain structures of human OSBP, ORP5 and ORP8. PH, pleckstrin homology; FFAT, diphenylalanine in an acidic tract; ORD, OSBP-related domain; TM, transmembrane domain.
Fig.2  Domain structures of human OSBP, ORP5 and ORP8. PH, pleckstrin homology; FFAT, diphenylalanine in an acidic tract; ORD, OSBP-related domain; TM, transmembrane domain.
Fig.3  A hypothetical model for cholesterol transport at an endosome-ER junction. ORP5 or other ORPs effieicntly move cholesterol from endosome/lysosome to the ER by forming a complex with membrane lipids, NPC1, putative receptors and junction proteins. Upon completion of cholesterol transfer, the AAA ATPase VPS4/SKD1 disrupts the complex and recycles the ORPs.
Fig.3  A hypothetical model for cholesterol transport at an endosome-ER junction. ORP5 or other ORPs effieicntly move cholesterol from endosome/lysosome to the ER by forming a complex with membrane lipids, NPC1, putative receptors and junction proteins. Upon completion of cholesterol transfer, the AAA ATPase VPS4/SKD1 disrupts the complex and recycles the ORPs.
1 Alpy F, Stoeckel M E, Dierich A, Escola J M, Wendling C, Chenard M P, Vanier M T, Gruenberg J, Tomasetto C, Rio M C (2001). The steroidogenic acute regulatory protein homolog MLN64, a late endosomal cholesterol-binding protein. J Biol Chem , 276(6): 4261-4269
doi: 10.1074/jbc.M006279200 pmid:11053434
2 Beh C T, Cool L, Phillips J, Rine J (2001). Overlapping functions of the yeast oxysterol-binding protein homologues. Genetics , 157(3): 1117-1140
pmid:11238399
3 Bishop N, Woodman P (2000). ATPase-defective mammalian VPS4 localizes to aberrant endosomes and impairs cholesterol trafficking. Mol Biol Cell , 11(1): 227-239
pmid:10637304
4 Brown M S, Goldstein J L (1986). A receptor-mediated pathway for cholesterol homeostasis. Science , 232(4746): 34-47
doi: 3513311" target="_blank">10.1126/science. pmid:3513311 pmid:3513311
5 Brown M S, Goldstein J L (2009). Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL. J Lipid Res , 50(Suppl): S15-S27
doi: 10.1194/jlr.R800054-JLR200 pmid:18974038
6 Carstea E D, Morris J A, Coleman K G, Loftus S K, Zhang D, Cummings C, Gu J, Rosenfeld M A, Pavan W J, Krizman D B, Nagle J, Polymeropoulos M H, Sturley S L, Ioannou Y A, Higgins M E, Comly M, Cooney A, Brown A, Kaneski C R, Blanchette-Mackie E J, Dwyer N K, Neufeld E B, Chang T Y, Liscum L, Strauss J F 3rd, Ohno K, Zeigler M, Carmi R, Sokol J, Markie D, O’Neill R R, van Diggelen O P, Elleder M, Patterson M C, Brady R O, Vanier M T, Pentchev P G, Tagle D A (1997). Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science , 277(5323): 228-231
doi: 10.1126/science.277.5323.228 pmid:9211849
7 Chang T Y, Chang C C, Ohgami N, Yamauchi Y (2006). Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol , 22(1): 129-157
doi: 10.1146/annurev.cellbio.22.010305.104656 pmid:16753029
8 Charman M, Kennedy B E, Osborne N, Karten B (2010). MLN64 mediates egress of cholesterol from endosomes to mitochondria in the absence of functional Niemann-Pick Type C1 protein. J Lipid Res , 51(5): 1023-1034
doi: 10.1194/jlr.M002345 pmid:19965586
9 Davies J P, Ioannou Y A (2000). Topological analysis of Niemann-Pick C1 protein reveals that the membrane orientation of the putative sterol-sensing domain is identical to those of 3-hydroxy-3-methylglutaryl-CoA reductase and sterol regulatory element binding protein cleavage-activating protein. J Biol Chem , 275(32): 24367-24374
doi: 10.1074/jbc.M002184200 pmid:10821832
10 Du X, Kumar J, Ferguson C, Schulz T A, Ong Y S, Hong W, Prinz W A, Parton R G, Brown A J, Yang H (2011). A role for oxysterol-binding protein-related protein 5 in endosomal cholesterol trafficking. J Cell Biol , 192(1): 121-135
doi: 10.1083/jcb.201004142 pmid:21220512
11 Goldstein J L, DeBose-Boyd R A, Brown M S (2006). Protein sensors for membrane sterols. Cell , 124(1): 35-46
doi: 10.1016/j.cell.2005.12.022 pmid:16413480
12 Harrison K D, Miao R Q, Fernandez-Hernándo C, Suárez Y, Dávalos A, Sessa W C (2009). Nogo-B receptor stabilizes Niemann-Pick type C2 protein and regulates intracellular cholesterol trafficking. Cell Metab , 10(3): 208-218
doi: 10.1016/j.cmet.2009.07.003 pmid:19723497
13 Holtta-Vuori M, Ikonen E (2006). Endosomal cholesterol traffic: vesicular and non-vesicular mechanisms meet. Biochem Soc Trans , 34(Pt 3): 392-394
doi: 10.1042/BST0340392 pmid:16709170
14 Ikonen E (2008). Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol , 9(2): 125-138
doi: 10.1038/nrm2336 pmid:18216769
15 Im Y J, Raychaudhuri S, Prinz W A, Hurley J H (2005). Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature , 437(7055): 154-158
doi: 10.1038/nature03923 pmid:16136145
16 Infante R E, Abi-Mosleh L, Radhakrishnan A, Dale J D, Brown M S, Goldstein J L (2008a). Purified NPC1 protein. I. Binding of cholesterol and oxysterols to a 1278-amino acid membrane protein. J Biol Chem , 283(2): 1052-1063
doi: 10.1074/jbc.M707943200 pmid:17989073
17 Infante R E, Radhakrishnan A, Abi-Mosleh L, Kinch L N, Wang M L, Grishin N V, Goldstein J L, Brown M S (2008b). Purified NPC1 protein: II. Localization of sterol binding to a 240-amino acid soluble luminal loop. J Biol Chem , 283(2): 1064-1075
doi: 10.1074/jbc.M707944200 pmid:17989072
18 Infante R E, Wang M L, Radhakrishnan A, Kwon H J, Brown M S, Goldstein J L (2008c). NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc Natl Acad Sci USA , 105(40): 15287-15292
doi: 10.1073/pnas.0807328105 pmid:18772377
19 Kwon H J, Abi-Mosleh L, Wang M L, Deisenhofer J, Goldstein J L, Brown M S, Infante R E (2009). Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell , 137(7): 1213-1224
doi: 10.1016/j.cell.2009.03.049 pmid:19563754
20 Lavigne P, Najmanivich R, Lehoux J G (2010). Mammalian StAR-related lipid transfer (START) domains with specificity for cholesterol: structural conservation and mechanism of reversible binding. Subcell Biochem , 51: 425-437
doi: 10.1007/978-90-481-8622-8_15 pmid:20213553
21 Lehto M, Laitinen S, Chinetti G, Johansson M, Ehnholm C, Staels B, Ikonen E, Olkkonen V M (2001). The OSBP-related protein family in humans. J Lipid Res , 42(8): 1203-1213
pmid:11483621
22 Lev S (2010). Non-vesicular lipid transport by lipid-transfer proteins and beyond. Nat Rev Mol Cell Biol , 11(10): 739-750
doi: 10.1038/nrm2971 pmid:20823909
23 Lingwood D, Simons K (2010). Lipid rafts as a membrane-organizing principle. Science , 327(5961): 46-50
doi: 10.1126/science.1174621 pmid:20044567
24 Liu B, Turley S D, Burns D K, Miller A M, Repa J J, Dietschy J M (2009). Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1-/- mouse. Proc Natl Acad Sci USA , 106(7): 2377-2382
doi: 10.1073/pnas.0810895106 pmid:19171898
25 Loewen C J, Roy A, Levine T P (2003). A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J , 22(9): 2025-2035
doi: 10.1093/emboj/cdg201 pmid:12727870
26 Maxfield F R, van Meer G (2010). Cholesterol, the central lipid of mammalian cells. Curr Opin Cell Biol , 22(4): 422-429
doi: 10.1016/j.ceb.2010.05.004 pmid:20627678
27 Mesmin B, Maxfield F R (2009). Intracellular sterol dynamics. Biochim Biophys Acta , 1791(7): 636-645
pmid:19286471
28 Naureckiene S, Sleat D E, Lackland H, Fensom A, Vanier M T, Wattiaux R, Jadot M, Lobel P (2000). Identification of HE1 as the second gene of Niemann-Pick C disease. Science , 290(5500): 2298-2301
doi: 10.1126/science.290.5500.2298 pmid:11125141
29 Ngo M H, Colbourne T R, Ridgway N D (2010). Functional implications of sterol transport by the oxysterol-binding protein gene family. Biochem J , 429(1): 13-24
doi: 10.1042/BJ20100263 pmid:20545625
30 Ohgami N, Ko D C, Thomas M, Scott M P, Chang C C, Chang T Y (2004). Binding between the Niemann-Pick C1 protein and a photoactivatable cholesterol analog requires a functional sterol-sensing domain. Proc Natl Acad Sci USA , 101(34): 12473-12478
doi: 10.1073/pnas.0405255101 pmid:15314240
31 Ohsaki Y, Sugimoto Y, Suzuki M, Hosokawa H, Yoshimori T, Davies J P, Ioannou Y A, Vanier M T, Ohno K, Ninomiya H (2006). Cholesterol depletion facilitates ubiquitylation of NPC1 and its association with SKD1/Vps4. J Cell Sci , 119(Pt 13): 2643-2653
doi: 10.1242/jcs.02993 pmid:16757520
32 Okamura N, Kiuchi S, Tamba M, Kashima T, Hiramoto S, Baba T, Dacheux F, Dacheux J L, Sugita Y, Jin Y Z (1999). A porcine homolog of the major secretory protein of human epididymis, HE1, specifically binds cholesterol. Biochim Biophys Acta , 1438(3): 377-387
pmid:10366780
33 Rigotti A, Cohen D E, Zanlungo S (2010). STARTing to understand MLN64 function in cholesterol transport. J Lipid Res , 51(8): 2015-2017
doi: 10.1194/jlr.E008854 pmid:20511492
34 Rosenbaum A I, Zhang G, Warren J D, Maxfield F R (2010). Endocytosis of beta-cyclodextrins is responsible for cholesterol reduction in Niemann-Pick type C mutant cells. Proc Natl Acad Sci USA , 107(12): 5477-5482
doi: 10.1073/pnas.0914309107 pmid:20212119
35 Schulz T A, Choi M G, Raychaudhuri S, Mears J A, Ghirlando R, Hinshaw J E, Prinz W A (2009). Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues. J Cell Biol , 187(6): 889-903
doi: 10.1083/jcb.200905007 pmid:20008566
36 Sleat D E, Wiseman J A, El-Banna M, Price S M, Verot L, Shen M M, Tint G S, Vanier M T, Walkley S U, Lobel P (2004). Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc Natl Acad Sci USA , 101(16): 5886-5891
doi: 10.1073/pnas.0308456101 pmid:15071184
37 Soccio R E, Breslow J L (2003). StAR-related lipid transfer (START) proteins: mediators of intracellular lipid metabolism. J Biol Chem , 278(25): 22183-22186
doi: 10.1074/jbc.R300003200 pmid:12724317
38 Soccio R E, Breslow J L (2004). Intracellular cholesterol transport. Arterioscler Thromb Vasc Biol , 24(7): 1150-1160
doi: 10.1161/01.ATV.0000131264.66417.d5 pmid:15130918
39 Subramanian K, Balch W E (2008). NPC1/NPC2 function as a tag team duo to mobilize cholesterol. Proc Natl Acad Sci USA , 105(40): 15223-15224
doi: 10.1073/pnas.0808256105 pmid:18832164
40 Suchanek M, Hynynen R, Wohlfahrt G, Lehto M, Johansson M, Saarinen H, Radzikowska A, Thiele C, Olkkonen V M (2007). The mammalian oxysterol-binding protein-related proteins (ORPs) bind 25-hydroxycholesterol in an evolutionarily conserved pocket. Biochem J , 405(3): 473-480
doi: 10.1042/BJ20070176 pmid:17428193
41 Taylor F R, Saucier S E, Shown E P, Parish E J, Kandutsch A A (1984). Correlation between oxysterol binding to a cytosolic binding protein and potency in the repression of hydroxymethylglutaryl coenzyme A reductase. J Biol Chem , 259(20): 12382-12387
pmid:6490619
42 Wang M L, Motamed M, Infante R E, Abi-Mosleh L, Kwon H J, Brown M S, Goldstein J L (2010). Identification of surface residues on Niemann-Pick C2 essential for hydrophobic handoff of cholesterol to NPC1 in lysosomes. Cell Metab , 12(2): 166-173
doi: 10.1016/j.cmet.2010.05.016 pmid:20674861
43 Wang P, Zhang Y, Li H, Chieu H K, Munn A L, Yang H (2005a). AAA ATPases regulate membrane association of yeast oxysterol binding proteins and sterol metabolism. EMBO J , 24(17): 2989-2999
doi: 10.1038/sj.emboj.7600764 pmid:16096648
44 Wang P Y, Weng J, Anderson R G (2005b). OSBP is a cholesterol-regulated scaffolding protein in control of ERK1/2 activation. Science , 307(5714): 1472-1476
doi: 10.1126/science.1107710 pmid:15746430
45 Willenborg M, Schmidt C K, Braun P, Landgrebe J, von Figura K, Saftig P, Eskelinen E L (2005). Mannose 6-phosphate receptors, Niemann-Pick C2 protein, and lysosomal cholesterol accumulation. J Lipid Res , 46(12): 2559-2569
doi: 10.1194/jlr.M500131-JLR200 pmid:16177447
46 Wyles J P, McMaster C R, Ridgway N D (2002). Vesicle-associated membrane protein-associated protein-A (VAP-A) interacts with the oxysterol-binding protein to modify export from the endoplasmic reticulum. J Biol Chem , 277(33): 29908-29918
doi: 10.1074/jbc.M201191200 pmid:12023275
47 Xu S, Benoff B, Liou H L, Lobel P, Stock A M (2007). Structural basis of sterol binding by NPC2, a lysosomal protein deficient in Niemann-Pick type C2 disease. J Biol Chem , 282(32): 23525-23531
doi: 10.1074/jbc.M703848200 pmid:17573352
48 Yan D, M?yr?np?? M I, Wong J, Perttil? J, Lehto M, Jauhiainen M, Kovanen P T, Ehnholm C, Brown A J, Olkkonen V M (2008). OSBP-related protein 8 (ORP8) suppresses ABCA1 expression and cholesterol efflux from macrophages. J Biol Chem , 283(1): 332-340
doi: 10.1074/jbc.M705313200 pmid:17991739
49 Yan D, Olkkonen V M (2008). Characteristics of oxysterol binding proteins. Int Rev Cytol , 265: 253-285
doi: 10.1016/S0074-7696(07)65007-4 pmid:18275891
50 Yang H (2006). Nonvesicular sterol transport: two protein families and a sterol sensor? Trends Cell Biol , 16(9): 427-432
doi: 10.1016/j.tcb.2006.07.002 pmid:16876994
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed