Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 6 Issue (6) : 446-461    https://doi.org/10.1007/s11515-011-1151-5
REVIEW
Molecular mechanisms of transcription and replication of the influenza A virus genome
Shijian ZHANG1, Tetsuya TOYODA2,3()
1. Shanghai Medical College of Fudan University, Shanghai 200032, China; 2. Choju Medical Institute, Fukushimura Hospital, 19-14 Azanakayama, Noyori-cho, Toyohashi, Aichi 441-8124, Japan; 3. Infectious Disease Regulation Project, Tokyo Metropolitan Institute of Medical Sciences, 1-6, Kamikitazawa 2-chome, Setagaya-ku, Tokyo156-8506, Japan
 Download: PDF(1026 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Influenza A virus is one of the major pathogens that pose a large threat to human health worldwide and has caused pandemics. Influenza A virus is the Orthomyxoviridae prototype, and has 8 segmented negative-sense single-stranded RNA (vRNA) as its genome. Influenza virus RNA polymerase (RdRp) consists of three subunits PB2, PB1 and PA, and catalyzes both transcription and replication. Recently, intensive biochemical and structural analysis of its RdRp has been performed. In this paper, we review the details from the biochemical analysis of the purified influenza virus RdRp and the classical ribonucleoprotein complex, as well as piece together their structures to form an overall picture.

Keywords influenza virus      RNA polymerase      ribonucleoprotein complex      transcription      replication     
Corresponding Author(s): TOYODA Tetsuya,Email:toyoda_tetsuya@yahoo.co.jp   
Issue Date: 01 December 2011
 Cite this article:   
Shijian ZHANG,Tetsuya TOYODA. Molecular mechanisms of transcription and replication of the influenza A virus genome[J]. Front Biol, 2011, 6(6): 446-461.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1151-5
https://academic.hep.com.cn/fib/EN/Y2011/V6/I6/446
Fig.1  Schematic diagram of influenza virus RNP. Schematic diagram (A) and cryoelectron micrograph of influenza virus RNP (B). Influenza virus RdRp, consisting of PA, PB1, and PB2 subunits, binds to the 3′-promoter/origin and 5′-end of vRNA. vRNA surrounds the NP homotrimer (see Fig. 5). The cryoelectron micrograph was modified from Fig. 6B of Area et al. ().
Fig.2  Schematic diagram of influenza virus transcription initiation and poly(A) tailing. A: Binding of PB1 subunit to the 5′-end of vRNA activates PB2 cap binding activity and PA endonuclease activity, which cleaves host cellular pre-mRNA to produce a 13-17 nucleotide long capped RNA primer. B: A guanosine residue is added to the capped RNA primer, initiating the viral transcription process. C: The vRNA template is read in the 3′ to 5′ direction. However, the 5′-end remains bound to the PB1 subunit. Therefore, RdRp begins to stutter-read upon encountering the U stretch, thus producing the poly(A) tail.
Fig.3  Schematic diagram of influenza virus replication initiation. Two steps of replication are carried out by different initiation mechanisms. A: vRNA → cRNA, host cellular terminal nucleotidyl transferases (TNT) add one nucleotide residue to the 3′-end of vRNA. Viral RdRp reads vRNA immediately after the addition of this extra nucleotide, thereby initiating cRNA replication. B: cRNA → vRNA, viral RdRp synthesizes pppApG directed by the 2nd UC sequence from the 3′-cRNA end. The pppApG motif realigns with the first UC from the 3′- cRNA end because of the instability of the pppApG-cRNA-protein complex. RdRp begins to elongate nascent RNA when the UTP concentration is high.
Fig.4  
Fig.5  The structure of influenza virus RNA polymerase. A: Schematic diagram of influenza virus RdRp. Functional domains, including nuclear localization signal (NLS), polymerase motif (Pol Motif), and nucleotide binding domain of PB1, are indicated. Ternary structures of RdRp solved are indicated in red. B: The PA (C)-PB1 (N) complex. PA (C) is indicated in cyan and PB1 (N) is indicated in green. The red part represents the PB1 LLFL motif. Alpha helices α10, α11, and α13 grasp PB1 (N), and beta sheets β8 and β9 wraps PB1 (N) PDB accession number: 2ZNL. C: The nuclease domain of PA. PDB accession number: 3EBJ. D: The PB2 (N)-PB1 (C) complex. The resolved complex structure was rotated to show the electrostatic interactions. Unlike the PA-PB1 complex, the interaction of which mainly depends on non-polar interactions, PB2 (N)-PB1 (C) predominantly interacts on the basis of electrostatic interactions. PDB accession number: 2ZTT. E: The cap binding domain of PB2. The sandwich structure is formed by the 5 phenylalanine residues and 1 histidine residue on either side with an m7GTP in between. PDB accession number: 2VQZ. F: Enhanced view of PB2 residue 627. (a) The electrostatic potential of PB2 3/3 was calculated using the GRASP program. Blue and red indicate basic and acidic surfaces, respectively. Basic regions (I) and (III) are separated by the loop (II). (b) The electrostatic potential of PB2 3/3 E627 was calculated using the GRASP program. Modified from Fig. 2 of Kuzuhara et al. (). G: PB2 C-terminal NLS. PDB accession number: 3L56. Figures were rendered in PyMOL (http://www.pymol.org/).
Fig.6  Charge distribution on the NP surface. Figures were rendered in PyMOL (PDB accession number 2IQH).
Fig.7  RNA polymerase assembly in infected cells. A: PB1 and PB2 enter the nucleus with the help of PA and HSP90, respectively. The RdRp heterotrimeric complex assembles in the nucleus, releasing HSP90. B: HSP90 escorts the nuclear import of the PB1 and PB2 binary complex by facilitating their association and interaction with the binary complex. Additionally, PA singly enters the nucleus, where the RdRp trimer forms and HSP90 is subsequently released. Modified from Naito et al. ().
Fig.8  Network of host factors and viral factors interacting with RNP. Details are described in the text. The host factors in gray perform functions in viral replication or transcription by unknown mechanisms.
1 Almond J W (1977). A single gene determines the host range of influenza virus. Nature , 270(5638): 617–618
doi: 10.1038/270617a0 pmid:593388
2 Area E, Martín-Benito J, Gastaminza P, Torreira E, Valpuesta J M, Carrascosa J L, Ortín J (2004). 3D structure of the influenza virus polymerase complex: localization of subunit domains. Proc Natl Acad Sci USA , 101(1): 308–313
doi: 10.1073/pnas.0307127101 pmid:14691253
3 Argos P (1988). A sequence motif in many polymerases. Nucleic Acids Res , 16(21): 9909–9916
doi: 10.1093/nar/16.21.9909 pmid:2461550
4 Ball L A (2007 ). Virus replication strategies, 5th ed. Lippincott Williams & Wilkins
5 Baudin F, Bach C, Cusack S, Ruigrok R W (1994). Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent. EMBO J , 13(13): 3158–3165
pmid:8039508
6 Beaton A R, Krug R M (1981). Selected host cell capped RNA fragments prime influenza viral RNA transcription in vivo. Nucleic Acids Res , 9(17): 4423–4436
doi: 10.1093/nar/9.17.4423 pmid:7301581
7 Beaton A R, Krug R M (1986). Transcription antitermination during influenza viral template RNA synthesis requires the nucleocapsid protein and the absence of a 5′ capped end. Proc Natl Acad Sci USA , 83(17): 6282–6286
doi: 10.1073/pnas.83.17.6282 pmid:3462695
8 Beigel J, Bray M (2008). Current and future antiviral therapy of severe seasonal and avian influenza. Antiviral Res , 78(1): 91–102
doi: 10.1016/j.antiviral.2008.01.003 pmid:18328578
9 Biswas S K, Nayak D P (1994). Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1. J Virol , 68(3): 1819–1826
pmid:8107244
10 Blaas D, Patzelt E, Kuechler E (1982a). Cap-recognizing protein of influenza virus. Virology , 116(1): 339–348
doi: 10.1016/0042-6822(82)90425-1 pmid:6801849
11 Blaas D, Patzelt E, Kuechler E (1982b). Identification of the cap binding protein of influenza virus. Nucleic Acids Res , 10(15): 4803–4812
doi: 10.1093/nar/10.15.4803 pmid:7133998
12 Bouloy M, Plotch S J, Krug R M (1978). Globin mRNAs are primers for the transcription of influenza viral RNA in vitro. Proc Natl Acad Sci USA , 75(10): 4886–4890
doi: 10.1073/pnas.75.10.4886 pmid:283399
13 Bouloy M, Plotch S J, Krug R M (1980). Both the 7-methyl and the 2′-O-methyl groups in the cap of mRNA strongly influence its ability to act as primer for influenza virus RNA transcription. Proc Natl Acad Sci USA , 77(7): 3952–3956
doi: 10.1073/pnas.77.7.3952 pmid:6933444
14 Bullido R, Gómez-Puertas P, Albo C, Portela A (2000). Several protein regions contribute to determine the nuclear and cytoplasmic localization of the influenza A virus nucleoprotein. J Gen Virol , 81(Pt 1): 135–142
pmid:10640551
15 Chan A Y, Vreede F T, Smith M, Engelhardt O G, Fodor E (2006). Influenza virus inhibits RNA polymerase II elongation. Virology , 351(1): 210–217
doi: 10.1016/j.virol.2006.03.005 pmid:16624367
16 Chen G W, Chang S C, Mok C K, Lo Y L, Kung Y N, Huang J H, Shih Y H, Wang J Y, Chiang C, Chen C J, Shih S R (2006). Genomic signatures of human versus avian influenza A viruses. Emerg Infect Dis , 12(9): 1353–1360
pmid:17073083
17 Chung T D, Cianci C, Hagen M, Terry B, Matthews J T, Krystal M, Colonno R J (1994). Biochemical studies on capped RNA primers identify a class of oligonucleotide inhibitors of the influenza virus RNA polymerase. Proc Natl Acad Sci USA , 91(6): 2372–2376
doi: 10.1073/pnas.91.6.2372 pmid:7510890
18 Coloma R, Valpuesta J M, Arranz R, Carrascosa J L, Ortín J, Martín-Benito J (2009). The structure of a biologically active influenza virus ribonucleoprotein complex. PLoS Pathog , 5(6): e1000491
doi: 10.1371/journal.ppat.1000491 pmid:19557158
19 Crépin T, Dias A, Palencia A, Swale C, Cusack S, Ruigrok R W (2010). Mutational and metal binding analysis of the endonuclease domain of the influenza virus polymerase PA subunit. J Virol , 84(18): 9096–9104
doi: 10.1128/JVI.00995-10 pmid:20592097
20 Cros J F, García-Sastre A, Palese P (2005). An unconventional NLS is critical for the nuclear import of the influenza A virus nucleoprotein and ribonucleoprotein. Traffic , 6(3): 205–213
doi: 10.1111/j.1600-0854.2005.00263.x pmid:15702989
21 Deng T, Sharps J, Fodor E, Brownlee G G (2005). In vitro assembly of PB2 with a PB1-PA dimer supports a new model of assembly of influenza A virus polymerase subunits into a functional trimeric complex. J Virol , 79(13): 8669–8674
doi: 10.1128/JVI.79.13.8669-8674.2005 pmid:15956611
22 Deng T, Engelhardt O G, Thomas B, Akoulitchev A V, Brownlee G G, Fodor E (2006a). Role of ran binding protein 5 in nuclear import and assembly of the influenza virus RNA polymerase complex. J Virol , 80(24): 11911–11919
doi: 10.1128/JVI.01565-06 pmid:17005651
23 Deng T, Sharps J L, Brownlee G G (2006b). Role of the influenza virus heterotrimeric RNA polymerase complex in the initiation of replication. J Gen Virol , 87(Pt 11): 3373–3377
doi: 10.1099/vir.0.82199-0 pmid:17030872
24 Deng T, Vreede F T, Brownlee G G (2006c). Different de novo initiation strategies are used by influenza virus RNA polymerase on its cRNA and viral RNA promoters during viral RNA replication. J Virol , 80(5): 2337–2348
doi: 10.1128/JVI.80.5.2337-2348.2006 pmid:16474140
25 Deyde V M, Xu X, Bright R A, Shaw M, Smith C B, Zhang Y, Shu Y, Gubareva L V, Cox N J, Klimov A I (2007). Surveillance of resistance to adamantanes among influenza A(H3N2) and A(H1N1) viruses isolated worldwide. J Infect Dis , 196(2): 249–257
doi: 10.1086/518936 pmid:17570112
26 Dias A, Bouvier D, Crépin T, McCarthy A A, Hart D J, Baudin F, Cusack S, Ruigrok R W (2009). The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature , 458(7240): 914–918
doi: 10.1038/nature07745 pmid:19194459
27 Duan S, Boltz D A, Seiler P, Li J, Bragstad K, Nielsen L P, Webby R J, Webster R G, Govorkova E A (2010). Oseltamivir-resistant pandemic H1N1/2009 influenza virus possesses lower transmissibility and fitness in ferrets. PLoS Pathog , 6(7): e1001022
doi: 10.1371/journal.ppat.1001022 pmid:20686654
28 Duijsings D, Kormelink R, Goldbach R (2001). In vivo analysis of the TSWV cap-snatching mechanism: single base complementarity and primer length requirements. EMBO J , 20(10): 2545–2552
doi: 10.1093/emboj/20.10.2545 pmid:11350944
29 Engelhardt O G, Smith M, Fodor E (2005). Association of the influenza A virus RNA-dependent RNA polymerase with cellular RNA polymerase II. J Virol , 79(9): 5812–5818
doi: 10.1128/JVI.79.9.5812-5818.2005 pmid:15827195
30 Fechter P, Mingay L, Sharps J, Chambers A, Fodor E, Brownlee G G (2003). Two aromatic residues in the PB2 subunit of influenza A RNA polymerase are crucial for cap binding. J Biol Chem , 278(22): 20381–20388
doi: 10.1074/jbc.M300130200 pmid:12646557
31 Flick R, Hobom G (1999). Interaction of influenza virus polymerase with viral RNA in the ‘corkscrew’ conformation. J Gen Virol , 80(Pt 10): 2565–2572
pmid:10573148
32 Fodor E, Brownlee G (2002). Influenza virus replication. In: Potter C, ed. Influenza. Elsevier, Amsterdom , pp. 1–29
33 Fodor E, Mikulasova A, Mingay L J, Poon L L, Brownlee G G (2000). Messenger RNAs that are not synthesized by RNA polymerase II can be 3′ end cleaved and polyadenylated. EMBO Rep , 1(6): 513–518
pmid:11263496
34 Fodor E, Palese P, Brownlee G G, García-Sastre A (1998). Attenuation of influenza A virus mRNA levels by promoter mutations. J Virol , 72(8): 6283–6290
pmid:9658066
35 Fodor E, Pritlove D C, Brownlee G G (1994). The influenza virus panhandle is involved in the initiation of transcription. J Virol , 68(6): 4092–4096
pmid:8189550
36 Fodor E, Smith M (2004). The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex. J Virol , 78(17): 9144–9153
doi: 10.1128/JVI.78.17.9144-9153.2004 pmid:15308710
37 Furuta Y, Takahashi K, Fukuda Y, Kuno M, Kamiyama T, Kozaki K, Nomura N, Egawa H, Minami S, Watanabe Y, Narita H, Shiraki K (2002). In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob Agents Chemother , 46(4): 977–981
doi: 10.1128/AAC.46.4.977-981.2002 pmid:11897578
38 Furuta Y, Takahashi K, Kuno-Maekawa M, Sangawa H, Uehara S, Kozaki K, Nomura N, Egawa H, Shiraki K (2005). Mechanism of action of T-705 against influenza virus. Antimicrob Agents Chemother , 49(3): 981–986
doi: 10.1128/AAC.49.3.981-986.2005 pmid:15728892
39 Gabriel G, Dauber B, Wolff T, Planz O, Klenk H D, Stech J (2005). The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci USA , 102(51): 18590–18595
doi: 10.1073/pnas.0507415102 pmid:16339318
40 Gabriel G, Herwig A, Klenk H D (2008). Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. PLoS Pathog , 4(2): e11
doi: 10.1371/journal.ppat.0040011 pmid:18248089
41 Garcin D, Kolakofsky D (1992). Tacaribe arenavirus RNA synthesis in vitro is primer dependent and suggests an unusual model for the initiation of genome replication. J Virol , 66(3): 1370–1376
pmid:1738196
42 Garcin D, Lezzi M, Dobbs M, Elliott R M, Schmaljohn C, Kang C Y, Kolakofsky D (1995). The 5′ ends of Hantaan virus (Bunyaviridae) RNAs suggest a prime-and-realign mechanism for the initiation of RNA synthesis. J Virol , 69(9): 5754–5762
pmid:7637020
43 González S, Zürcher T, Ortín J (1996). Identification of two separate domains in the influenza virus PB1 protein involved in the interaction with the PB2 and PA subunits: a model for the viral RNA polymerase structure. Nucleic Acids Res , 24(22): 4456–4463
doi: 10.1093/nar/24.22.4456 pmid:8948635
44 Guilligay D, Tarendeau F, Resa-Infante P, Coloma R, Crepin T, Sehr P, Lewis J, Ruigrok R W, Ortin J, Hart D J, Cusack S (2008). The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol , 15(5): 500–506
doi: 10.1038/nsmb.1421 pmid:18454157
45 Gutiérrez R A, Naughtin M J, Horm S V, San S, Buchy P (2009). A(H5N1) virus evolution in South East Asia. Viruses , 1(3): 335–361
doi: 10.3390/v1030335
46 Hagen M, Chung T D, Butcher J A, Krystal M (1994). Recombinant influenza virus polymerase: requirement of both 5′ and 3′ viral ends for endonuclease activity. J Virol , 68(3): 1509–1515
pmid:8107213
47 Hankins R W, Nagata K, Bucher D J, Popple S, Ishihama A (1989). Monoclonal antibody analysis of influenza virus matrix protein epitopes involved in transcription inhibition. Virus Genes , 3(2): 111–126
doi: 10.1007/BF00125124 pmid:2482574
48 Hao L, Sakurai A, Watanabe T, Sorensen E, Nidom C A, Newton M A, Ahlquist P, Kawaoka Y (2008). Drosophila RNAi screen identifies host genes important for influenza virus replication. Nature , 454(7206): 890–893
doi: 10.1038/nature07151 pmid:18615016
49 Hatta M, Gao P, Halfmann P, Kawaoka Y (2001). Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science , 293(5536): 1840–1842
50 Hauge S H, Dudman S, Borgen K, Lackenby A, Hungnes O (2009). Oseltamivir-resistant influenza viruses A (H1N1), Norway, 2007-08 . Emerg Infect Dis , 15: 155–162
51 Hayden F (2009). Developing new antiviral agents for influenza treatment: what does the future hold? Clin Infect Dis , 48(Suppl 1): S3–S13
doi: 10.1086/591851 pmid:19067613
52 He X, Zhou J, Bartlam M, Zhang R, Ma J, Lou Z, Li X, Li J, Joachimiak A, Zeng Z, Ge R, Rao Z, Liu Y (2008). Crystal structure of the polymerase PA(C)-PB1(N) complex from an avian influenza H5N1 virus. Nature , 454(7208): 1123–1126
doi: 10.1038/nature07120 pmid:18615018
53 Herfst S, Chutinimitkul S, Ye J, de Wit E, Munster V J, Schrauwen E J, Bestebroer T M, Jonges M, Meijer A, Koopmans M, Rimmelzwaan G F, Osterhaus A D, Perez D R, Fouchier R A (2010). Introduction of virulence markers in PB2 of pandemic swine-origin influenza virus does not result in enhanced virulence or transmission. J Virol , 84(8): 3752–3758
doi: 10.1128/JVI.02634-09 pmid:20130063
54 Honda A, Endo A, Mizumoto K, Ishihama A (2001). Differential roles of viral RNA and cRNA in functional modulation of the influenza virus RNA polymerase. J Biol Chem , 276(33): 31179–31185
doi: 10.1074/jbc.M102856200 pmid:11373286
55 Honda A, Mizumoto K, Ishihama A (1999). Two separate sequences of PB2 subunit constitute the RNA cap-binding site of influenza virus RNA polymerase. Genes Cells , 4(8): 475–485
doi: 10.1046/j.1365-2443.1999.00275.x pmid:10526235
56 Honda A, Mizumoto K, Ishihama A (2002). Minimum molecular architectures for transcription and replication of the influenza virus. Proc Natl Acad Sci USA , 99(20): 13166–13171
doi: 10.1073/pnas.152456799 pmid:12271117
57 Honda A, Mukaigawa J, Yokoiyama A, Kato A, Ueda S, Nagata K, Krystal M, Nayak D P, Ishihama A (1990). Purification and molecular structure of RNA polymerase from influenza virus A/PR8. J Biochem , 107(4): 624–628
pmid:2358436
58 Honda A, Okamoto T, Ishihama A (2007). Host factor Ebp1: selective inhibitor of influenza virus transcriptase. Genes Cells , 12(2): 133–142
doi: 10.1111/j.1365-2443.2007.01047.x pmid:17295834
59 Honda A, Uéda K, Nagata K, Ishihama A (1988). RNA polymerase of influenza virus: role of NP in RNA chain elongation. J Biochem , 104(6): 1021–1026
pmid:3243763
60 Huarte M, Sanz-Ezquerro J J, Roncal F, Ortín J, Nieto A (2001). PA subunit from influenza virus polymerase complex interacts with a cellular protein with homology to a family of transcriptional activators. J Virol , 75(18): 8597–8604
doi: 10.1128/JVI.75.18.8597-8604.2001 pmid:11507205
61 Huiet L, Feldstein P A, Tsai J H, Falk B W (1993). The maize stripe virus major noncapsid protein messenger RNA transcripts contain heterogeneous leader sequences at their 5′ termini. Virology , 197(2): 808–812
doi: 10.1006/viro.1993.1662 pmid:8249304
62 Hurt A C, Ho H T, Barr I (2006). Resistance to anti-influenza drugs: adamantanes and neuraminidase inhibitors. Expert Rev Anti Infect Ther , 4(5): 795–805
doi: 10.1586/14787210.4.5.795 pmid:17140356
63 Ishihama A, Nagata K (1988). Viral RNA polymerases. CRC Crit Rev Biochem , 23(1): 27–76
doi: 10.3109/10409238809103119 pmid:3284713
64 Jiang H, Zhang S, Wang Q, Wang J, Geng L, Toyoda T (2010). Influenza virus genome C4 promoter/origin attenuates its transcription and replication activity by the low polymerase recognition activity. Virology , 408(2): 190–196
doi: 10.1016/j.virol.2010.09.022 pmid:20956010
65 Jin H, Elliott R M (1993a). Characterization of Bunyamwera virus S RNA that is transcribed and replicated by the L protein expressed from recombinant vaccinia virus. J Virol , 67(3): 1396–1404
pmid:8437222
66 Jin H, Elliott R M (1993b). Non-viral sequences at the 5′ ends of Dugbe nairovirus S mRNAs. J Gen Virol , 74(Pt 10): 2293–2297
doi: 10.1099/0022-1317-74-10-2293 pmid:8409954
67 Kao C C, Singh P, Ecker D J (2001). De novo initiation of viral RNA-dependent RNA synthesis. Virology , 287(2): 251–260
doi: 10.1006/viro.2001.1039 pmid:11531403
68 Kao C C, Sun J H (1996). Initiation of minus-strand RNA synthesis by the brome mosaicvirus RNA-dependent RNA polymerase: use of oligoribonucleotide primers. J Virol , 70(10): 6826–6830
pmid:8794323
69 Kao R Y, Yang D, Lau L S, Tsui W H, Hu L, Dai J, Chan M P, Chan C M, Wang P, Zheng B J, Sun J, Huang J D, Madar J, Chen G, Chen H, Guan Y, Yuen K Y (2010). Identification of influenza A nucleoprotein as an antiviral target. Nat Biotechnol , 28(6): 600–605
doi: 10.1038/nbt.1638 pmid:20512121
70 Karlas A, Machuy N, Shin Y, Pleissner K P, Artarini A, Heuer D, Becker D, Khalil H, Ogilvie L A, Hess S, M?urer A P, Müller E, Wolff T, Rudel T, Meyer T F (2010). Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature , 463(7282): 818–822
doi: 10.1038/nature08760 pmid:20081832
71 Kashiwagi T, Leung B W, Deng T, Chen H, Brownlee G G (2009). The N-terminal region of the PA subunit of the RNA polymerase of influenza A/HongKong/156/97 (H5N1) influences promoter binding. PLoS One , 4(5): e5473
doi: 10.1371/journal.pone.0005473 pmid:19421324
72 Kawaguchi A, Nagata K (2007). De novo replication of the influenza virus RNA genome is regulated by DNA replicative helicase, MCM. EMBO J , 26(21): 4566–4575
doi: 10.1038/sj.emboj.7601881 pmid:17932485
73 Kawakami K, Mizumoto K, Ishihama A (1983). RNA polymerase of influenza virus. IV. Catalytic properties of the capped RNA endonuclease associated with the RNA polymerase. Nucleic Acids Res , 11(11): 3637–3649
doi: 10.1093/nar/11.11.3637 pmid:6856461
74 Kiso M, Shinya K, Shimojima M, Takano R, Takahashi K, Katsura H, Kakugawa S, Le M T, Yamashita M, Furuta Y, Ozawa M, Kawaoka Y (2010). Characterization of oseltamivir-resistant 2009 H1N1 pandemic influenza A viruses. PLoS Pathog , 6(8): e1001079
doi: 10.1371/journal.ppat.1001079 pmid:20865125
75 Kobayashi M, Toyoda T, Ishihama A (1996). Influenza virus PB1 protein is the minimal and essential subunit of RNA polymerase. Arch Virol , 141(3-4): 525–539
doi: 10.1007/BF01718315 pmid:8645093
76 K?nig R, Stertz S, Zhou Y, Inoue A, Hoffmann H H, Bhattacharyya S, Alamares J G, Tscherne D M, Ortigoza M B, Liang Y, Gao Q, Andrews S E, Bandyopadhyay S, De Jesus P, Tu B P, Pache L, Shih C, Orth A, Bonamy G, Miraglia L, Ideker T, García-Sastre A, Young J A, Palese P, Shaw M L, Chanda S K (2010). Human host factors required for influenza virus replication. Nature , 463(7282): 813–817
doi: 10.1038/nature08699 pmid:20027183
77 Kormelink R, van Poelwijk F, Peters D, Goldbach R (1992). Non-viral heterogeneous sequences at the 5′ ends of tomato spotted wilt virus mRNAs. J Gen Virol , 73(8): 2125–2128
doi: 10.1099/0022-1317-73-8-2125 pmid:1645150
78 Kuzuhara T, Kise D, Yoshida H, Horita T, Murazaki Y, Nishimura A, Echigo N, Utsunomiya H, Tsuge H(2009a). Structural basis of the influenza A virus RNA polymerase PB2 RNA-binding domain containing the pathogenicity-determinant lysine 627 residue. J Biol Chem , 284(22): 6855–6860
79 Kuzuhara T, Kise D, Yoshida H, Horita T, Murazaki Y, Nishimura A, Echigo N, Utsunomiya H, Tsuge H (2009b). Structural basis of the influenza A virus RNA polymerase PB2 RNA-binding domain containing the pathogenicity-determinant lysine 627 residue. J Biol Chem , 284(11): 6855–6860
doi: 10.1074/jbc.C800224200 pmid:19144639
80 Lackenby A, Thompson C I, Democratis J (2008). The potential impact of neuraminidase inhibitor resistant influenza. Curr Opin Infect Dis , 21(6): 626–638
doi: 10.1097/QCO.0b013e3283199797 pmid:18978531
81 Leahy M B, Dobbyn H C, Brownlee G G (2001a). Hairpin loop structure in the 3′ arm of the influenza A virus virion RNA promoter is required for endonuclease activity. J Virol , 75(15): 7042–7049
doi: 10.1128/JVI.75.15.7042-7049.2001 pmid:11435584
82 Leahy M B, Pritlove D C, Poon L L, Brownlee G G (2001b). Mutagenic analysis of the 5′ arm of the influenza A virus virion RNA promoter defines the sequence requirements for endonuclease activity. J Virol , 75(1): 134–142
doi: 10.1128/JVI.75.1.134-142.2001 pmid:11119582
83 Li M L, Rao P, Krug R M (2001). The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. EMBO J , 20(8): 2078–2086
doi: 10.1093/emboj/20.8.2078 pmid:11296240
84 Li X, Palese P (1994). Characterization of the polyadenylation signal of influenza virus RNA. J Virol , 68(2): 1245–1249
pmid:7507179
85 Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster R G, Matsuoka Y, Yu K (2005). Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol , 79(18): 12058–12064
doi: 10.1128/JVI.79.18.12058-12064.2005 pmid:16140781
86 Luo G, Hamatake R K, Mathis D M, Racela J, Rigat K L, Lemm J, Colonno R J (2000). De novo initiation of RNA synthesis by the RNA-dependent RNA polymerase (NS5B) of hepatitis C virus. J Virol , 74(2): 851–863
doi: 10.1128/JVI.74.2.851-863.2000 pmid:10623748
87 Luo G X, Luytjes W, Enami M, Palese P (1991). The polyadenylation signal of influenza virus RNA involves a stretch of uridines followed by the RNA duplex of the panhandle structure. J Virol , 65(6): 2861–2867
pmid:2033659
88 Mark G E, Taylor J M, Broni B, Krug R M (1979). Nuclear accumulation of influenza viral RNA transcripts and the effects of cycloheximide, actinomycin D, and alpha-amanitin. J Virol , 29(2): 744–752
pmid:430609
89 Martin K, Helenius A (1991). Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell , 67(1): 117–130
doi: 10.1016/0092-8674(91)90576-K pmid:1913813
90 Massin P, van der Werf S, Naffakh N (2001). Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian influenza viruses. J Virol , 75(11): 5398–5404
doi: 10.1128/JVI.75.11.5398-5404.2001 pmid:11333924
91 Mayer D, Molawi K, Martínez-Sobrido L, Ghanem A, Thomas S, Baginsky S, Grossmann J, García-Sastre A, Schwemmle M (2007). Identification of cellular interaction partners of the influenza virus ribonucleoprotein complex and polymerase complex using proteomic-based approaches. J Proteome Res , 6(2): 672–682
doi: 10.1021/pr060432u pmid:17269724
92 Mehle A, Doudna J A (2008). An inhibitory activity in human cells restricts the function of an avian-like influenza virus polymerase. Cell Host Microbe , 4(2): 111–122
doi: 10.1016/j.chom.2008.06.007 pmid:18692771
93 Momose F, Basler C F, O’Neill R E, Iwamatsu A, Palese P, Nagata K (2001). Cellular splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza virus nucleoprotein and enhances viral RNA synthesis. J Virol , 75(4): 1899–1908
doi: 10.1128/JVI.75.4.1899-1908.2001 pmid:11160689
94 Momose F, Handa H, Nagata K (1996). Identification of host factors that regulate the influenza virus RNA polymerase activity. Biochimie , 78(11-12): 1103–1108
doi: 10.1016/S0300-9084(97)86736-3 pmid:9150891
95 Momose F, Naito T, Yano K, Sugimoto S, Morikawa Y, Nagata K (2002). Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. J Biol Chem , 277(47): 45306–45314
doi: 10.1074/jbc.M206822200 pmid:12226087
96 Monsalvo A C, Batalle J P, Lopez M F, Krause J C, Klemenc J, Hernandez J Z, Maskin B, Bugna J, Rubinstein C, Aguilar L, Dalurzo L, Libster R, Savy V, Baumeister E, Aguilar L, Cabral G, Font J, Solari L, Weller K P, Johnson J, Echavarria M, Edwards K M, Chappell J D, Crowe J E Jr, Williams J V, Melendi G A, Polack F P (2011). Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes. Nat Med , 17(2): 195–199
doi: 10.1038/nm.2262 pmid:21131958
97 Moscona A (2009). Global transmission of oseltamivir-resistant influenza. N Engl J Med , 360(10): 953–956
doi: 10.1056/NEJMp0900648 pmid:19258250
98 Moss R B, Davey R T, Steigbigel R T, Fang F (2010). Targeting pandemic influenza: a primer on influenza antivirals and drug resistance. J Antimicrob Chemother , 65(6): 1086–1093
doi: 10.1093/jac/dkq100 pmid:20375034
99 Nagata K, Kawaguchi A, Naito T (2008). Host factors for replication and transcription of the influenza virus genome. Rev Med Virol , 18(4): 247–260
doi: 10.1002/rmv.575 pmid:18383427
100 Naito T, Kiyasu Y, Sugiyama K, Kimura A, Nakano R, Matsukage A, Nagata K (2007a). An influenza virus replicon system in yeast identified Tat-SF1 as a stimulatory host factor for viral RNA synthesis. Proc Natl Acad Sci USA , 104(46): 18235–18240
doi: 10.1073/pnas.0705856104 pmid:17991777
101 Naito T, Momose F, Kawaguchi A, Nagata K (2007b). Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J Virol , 81(3): 1339–1349
doi: 10.1128/JVI.01917-06 pmid:17121807
102 Nakagawa Y, Oda K, Nakada S (1996). The PB1 subunit alone can catalyze cRNA synthesis, and the PA subunit in addition to the PB1 subunit is required for viral RNA synthesis in replication of the influenza virus genome. J Virol , 70(9): 6390–6394
pmid:8709268
103 Neumann G, Castrucci M R, Kawaoka Y (1997). Nuclear import and export of influenza virus nucleoprotein. J Virol , 71(12): 9690–9700
pmid:9371635
104 Neumann G, Hobom G (1995). Mutational analysis of influenza virus promoter elements in vivo. J Gen Virol , 76(7): 1709–1717
doi: 10.1099/0022-1317-76-7-1709 pmid:9049376
105 Newcomb L L, Kuo R L, Ye Q, Jiang Y, Tao Y J, Krug R M (2009). Interaction of the influenza a virus nucleocapsid protein with the viral RNA polymerase potentiates unprimed viral RNA replication. J Virol , 83(1): 29–36
doi: 10.1128/JVI.02293-07 pmid:18945782
106 O’Neill R E, Jaskunas R, Blobel G, Palese P, Moroianu J (1995). Nuclear import of influenza virus RNA can be mediated by viral nucleoprotein and transport factors required for protein import. J Biol Chem , 270(39): 22701–22704
doi: 10.1074/jbc.270.39.22701 pmid:7559393
107 O’Neill R E, Palese P (1995). NPI-1, the human homolog of SRP-1, interacts with influenza virus nucleoprotein. Virology , 206(1): 116–125
doi: 10.1016/S0042-6822(95)80026-3 pmid:7831767
108 Obayashi E, Yoshida H, Kawai F, Shibayama N, Kawaguchi A, Nagata K, Tame J R, Park S Y (2008). The structural basis for an essential subunit interaction in influenza virus RNA polymerase. Nature , 454(7208): 1127–1131
doi: 10.1038/nature07225 pmid:18660801
109 Oberg B (2006). Rational design of polymerase inhibitors as antiviral drugs. Antiviral Res , 71(2-3): 90–95
doi: 10.1016/j.antiviral.2006.05.012 pmid:16820225
110 Ohtsu Y, Honda Y, Sakata Y, Kato H, Toyoda T (2002). Fine mapping of the subunit binding sites of influenza virus RNA polymerase. Microbiol Immunol , 46(3): 167–175
pmid:12008925
111 Ortega J, Martín-Benito J, Zürcher T, Valpuesta J M, Carrascosa J L, Ortín J (2000). Ultrastructural and functional analyses of recombinant influenza virus ribonucleoproteins suggest dimerization of nucleoprotein during virus amplification. J Virol , 74(1): 156–163
doi: 10.1128/JVI.74.1.156-163.2000 pmid:10590102
112 Palese P, Shaw M L (2007). Orthomyxoviridae: the Viruses and Their Replication, 5th ed. Lippincott Williams & Wilkins
113 Paul A V, Rieder E, Kim D W, van Boom J H, Wimmer E (2000). Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. J Virol , 74(22): 10359–10370
doi: 10.1128/JVI.74.22.10359-10370.2000 pmid:11044080
114 Pérez D R, Donis R O (1995). A 48-amino-acid region of influenza A virus PB1 protein is sufficient for complex formation with PA. J Virol , 69(11): 6932–6939
pmid:7474111
115 Pérez-González A, Rodriguez A, Huarte M, Salanueva I J, Nieto A (2006). hCLE/CGI-99, a human protein that interacts with the influenza virus polymerase, is a mRNA transcription modulator. J Mol Biol , 362(5): 887–900
doi: 10.1016/j.jmb.2006.07.085 pmid:16950395
116 Plotch S J, Bouloy M, Ulmanen I, Krug R M (1981). A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell , 23(3): 847–858
doi: 10.1016/0092-8674(81)90449-9 pmid:6261960
117 Plotch S J, Krug R M (1977). Influenza virion transcriptase: synthesis in vitro of large, polyadenylic acid-containing complementary RNA. J Virol , 21(1): 24–34
pmid:833924
118 Plotch S J, Krug R M (1978). Segments of influenza virus complementary RNA synthesized in vitro. J Virol , 25(2): 579–586
pmid:625084
119 Plotkin J B, Dushoff J, Levin S A (2002). Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus. Proc Natl Acad Sci USA , 99(9): 6263–6268
doi: 10.1073/pnas.082110799 pmid:11972025
120 Poole E L, Medcalf L, Elton D, Digard P (2007). Evidence that the C-terminal PB2-binding region of the influenza A virus PB1 protein is a discrete α-helical domain. FEBS Lett , 581(27): 5300–5306
doi: 10.1016/j.febslet.2007.10.025 pmid:17967456
121 Poon L L, Fodor E, Brownlee G G (2000). Polyuridylated mRNA synthesized by a recombinant influenza virus is defective in nuclear export. J Virol , 74(1): 418–427
doi: 10.1128/JVI.74.1.418-427.2000 pmid:10590131
122 Poon L L, Pritlove D C, Fodor E, Brownlee G G (1999). Direct evidence that the poly(A) tail of influenza A virus mRNA is synthesized by reiterative copying of a U track in the virion RNA template. J Virol , 73(4): 3473–3476
pmid:10074205
123 Poon L L, Pritlove D C, Sharps J, Brownlee G G (1998). The RNA polymerase of influenza virus, bound to the 5′ end of virion RNA, acts in cis to polyadenylate mRNA. J Virol , 72(10): 8214–8219
pmid:9733864
124 Pritlove D C, Poon L L, Devenish L J, Leahy M B, Brownlee G G (1999). A hairpin loop at the 5′ end of influenza A virus virion RNA is required for synthesis of poly(A)+ mRNA in vitro. J Virol , 73(3): 2109–2114
pmid:9971793
125 Pritlove D C, Poon L L, Fodor E, Sharps J, Brownlee G G (1998). Polyadenylation of influenza virus mRNA transcribed in vitro from model virion RNA templates: requirement for 5′ conserved sequences. J Virol , 72(2): 1280–1286
pmid:9445028
126 Rao P, Yuan W, Krug R M (2003). Crucial role of CA cleavage sites in the cap-snatching mechanism for initiating viral mRNA synthesis. EMBO J , 22(5): 1188–1198
doi: 10.1093/emboj/cdg109 pmid:12606583
127 Resa-Infante P, Jorba N, Zamarre?o N, Fernández Y, Juárez S, Ortín J (2008). The host-dependent interaction of alpha-importins with influenza PB2 polymerase subunit is required for virus RNA replication. PLoS ONE , 3(12): e3904
doi: 10.1371/journal.pone.0003904 pmid:19066626
128 Robertson J S, Schubert M, Lazzarini R A (1981). Polyadenylation sites for influenza virus mRNA. J Virol , 38(1): 157–163
pmid:7241649
129 Seong B L, Kobayashi M, Nagata K, Brownlee G G, Ishihama A (1992). Comparison of two reconstituted systems for in vitro transcription and replication of influenza virus. J Biochem , 111(4): 496–499
pmid:1618740
130 Shapiro G I, Krug R M (1988). Influenza virus RNA replication in vitro: synthesis of viral template RNAs and virion RNAs in the absence of an added primer. J Virol , 62(7): 2285–2290
pmid:2453679
131 Shaw M W, Lamb R A (1984). A specific sub-set of host-cell mRNAs prime influenza virus mRNA synthesis. Virus Res , 1(6): 455–467
doi: 10.1016/0168-1702(84)90003-0 pmid:6532008
132 Su C Y, Cheng T J, Lin M I, Wang S Y, Huang W I, Lin-Chu S Y, Chen Y H, Wu C Y, Lai M M, Cheng W C, Wu Y T, Tsai M D, Cheng Y S, Wong C H (2010). High-throughput identification of compounds targeting influenza RNA-dependent RNA polymerase activity. Proc Natl Acad Sci USA , 107(45): 19151–19156
doi: 10.1073/pnas.1013592107 pmid:20974907
133 Subbarao E K, London W, Murphy B R (1993). A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol , 67(4): 1761–1764
pmid:8445709
134 Sugiyama K, Obayashi E, Kawaguchi A, Suzuki Y, Tame J R, Nagata K, Park S Y (2009). Structural insight into the essential PB1-PB2 subunit contact of the influenza virus RNA polymerase. EMBO J , 28(12): 1803–1811
doi: 10.1038/emboj.2009.138 pmid:19461581
135 Tarendeau F, Boudet J, Guilligay D, Mas P J, Bougault C M, Boulo S, Baudin F, Ruigrok R W, Daigle N, Ellenberg J, Cusack S, Simorre J P, Hart D J (2007). Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit. Nat Struct Mol Biol , 14(3): 229–233
doi: 10.1038/nsmb1212 pmid:17310249
136 Testa D, Banerjee A K (1979). Initiation of RNA synthesis in vitro by vesicular stomatitis virus. Role of ATP. J Biol Chem , 254(6): 2053–2058
pmid:217877
137 Torreira E, Schoehn G, Fernández Y, Jorba N, Ruigrok R W, Cusack S, Ortín J, Llorca O (2007). Three-dimensional model for the isolated recombinant influenza virus polymerase heterotrimer. Nucleic Acids Res , 35(11): 3774–3783
doi: 10.1093/nar/gkm336 pmid:17517766
138 Toyoda T, Adyshev D M, Kobayashi M, Iwata A, Ishihama A (1996a). Molecular assembly of the influenza virus RNA polymerase: determination of the subunit-subunit contact sites. J Gen Virol , 77(9): 2149–2157
doi: 10.1099/0022-1317-77-9-2149 pmid:8811014
139 Toyoda T, Kobayashi M, Nakada S, Ishihama A (1996b). Molecular dissection of influenza virus RNA polymerase: PB1 subunit alone is able to catalyze RNA synthesis. Virus Genes , 12(2): 155–163
doi: 10.1007/BF00572954 pmid:8879132
140 Tsai C H, Lee P Y, Stollar V, Li M L (2006). Antiviral therapy targeting viral polymerase. Curr Pharm Des , 12(11): 1339–1355
doi: 10.2174/138161206776361156 pmid:16611119
141 Ulmanen I, Broni B, Krug R M (1983). Influenza virus temperature-sensitive cap (m7GpppNm)-dependent endonuclease. J Virol , 45(1): 27–35
pmid:6823015
142 Ulmanen I, Broni B A, Krug R M (1981). Role of two of the influenza virus core P proteins in recognizing cap 1 structures (m7GpppNm) on RNAs and in initiating viral RNA transcription. Proc Natl Acad Sci USA , 78(12): 7355–7359
doi: 10.1073/pnas.78.12.7355 pmid:6950380
143 van Dijk A A, Makeyev E V, Bamford D H (2004). Initiation of viral RNA-dependent RNA polymerization. J Gen Virol , 85(5): 1077–1093
doi: 10.1099/vir.0.19731-0 pmid:15105525
144 Vreede F T, Brownlee G G (2007). Influenza virion-derived viral ribonucleoproteins synthesize both mRNA and cRNA in vitro. J Virol , 81(5): 2196–2204
doi: 10.1128/JVI.02187-06 pmid:17166911
145 Vreede F T, Gifford H, Brownlee G G (2008). Role of initiating nucleoside triphosphate concentrations in the regulation of influenza virus replication and transcription. J Virol , 82(14): 6902–6910
doi: 10.1128/JVI.00627-08 pmid:18463155
146 Vreede F T, Jung T E, Brownlee G G (2004). Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates. J Virol , 78(17): 9568–9572
doi: 10.1128/JVI.78.17.9568-9572.2004 pmid:15308750
147 Wang P, Palese P, O’Neill R E (1997). The NPI-1/NPI-3 (karyopherin alpha) binding site on the influenza a virus nucleoprotein NP is a nonconventional nuclear localization signal. J Virol , 71(3): 1850–1856
pmid:9032315
148 Watanabe K, Handa H, Mizumoto K, Nagata K (1996). Mechanism for inhibition of influenza virus RNA polymerase activity by matrix protein. J Virol , 70(1): 241–247
pmid:8523532
149 Weber F, Kochs G, Gruber S, Haller O (1998). A classical bipartite nuclear localization signal on Thogoto and influenza A virus nucleoproteins. Virology , 250(1): 9–18
doi: 10.1006/viro.1998.9329 pmid:9770415
150 Webster R G, Sharp G B, Claas E C (1995). Interspecies transmission of influenza viruses. Am J Respir Crit Care Med , 152(4 Pt 2): S25–S30
pmid:7551408
151 Wright P F, Neumann G, Kawaoka Y (2007). Orthomyxoviruses, 5th ed. Lippincott Williams & Wilkins .
152 Yang Y, Rijnbrand R, Watowich S, Lemon S M (2004). Genetic evidence for an interaction between a picornaviral cis-acting RNA replication element and 3CD protein. J Biol Chem , 279(13): 12659–12667
doi: 10.1074/jbc.M312992200 pmid:14711816
153 Ye Q, Krug R M, Tao Y J (2006). The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature , 444(7122): 1078–1082
doi: 10.1038/nature05379 pmid:17151603
154 Ye Z P, Pal R, Fox J W, Wagner R R (1987). Functional and antigenic domains of the matrix (M1) protein of influenza A virus. J Virol , 61(2): 239–246
pmid:2433462
155 Yuan P, Bartlam M, Lou Z, Chen S, Zhou J, He X, Lv Z, Ge R, Li X, Deng T, Fodor E, Rao Z, Liu Y (2009). Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site. Nature , 458(7240): 909–913
doi: 10.1038/nature07720 pmid:19194458
156 Zhang S, Wang J, Wang Q, Toyoda T (2010a). Internal initiation of influenza virus replication of viral RNA and complementary RNA in vitro. J Biol Chem , 285: 41194–41201 20858902
doi: 10.1074/jbc.M110.130062
157 Zhang S, Weng L, Geng L, Wang J, Zhou J, Deubel V, Buchy P, Toyoda T (2010b). Biochemical and kinetic analysis of the influenza virus RNA polymerase purified from insect cells. Biochem Biophys Res Commun , 391(1): 570–574
doi: 10.1016/j.bbrc.2009.11.100 pmid:19932088
158 Zhao C, Lou Z, Guo Y, Ma M, Chen Y, Liang S, Zhang L, Chen S, Li X, Liu Y, Bartlam M, Rao Z (2009). Nucleoside monophosphate complex structures of the endonuclease domain from the influenza virus polymerase PA subunit reveal the substrate binding site inside the catalytic center. J Virol , 83(18): 9024–9030
doi: 10.1128/JVI.00911-09 pmid:19587036
159 Zheng H, Lee H A, Palese P, García-Sastre A (1999). Influenza A virus RNA polymerase has the ability to stutter at the polyadenylation site of a viral RNA template during RNA replication. J Virol , 73(6): 5240–5243
pmid:10233995
160 Zvonarjev A Y, Ghendon Y Z (1980). Influence of membrane (M) protein on influenza A virus virion transcriptase activity in vitro and its susceptibility to rimantadine. J Virol , 33(2): 583–586
pmid:6893343
[1] Johanna Morrow, Kyle T. Willenburg, Emmanuel Liscum. Phototropism in land plants: Molecules and mechanism from light perception to response[J]. Front. Biol., 2018, 13(5): 342-357.
[2] Yujie Deng, Caixia Lin, Huanjiao Jenny Zhou, Wang Min. Smooth muscle cell differentiation: Mechanisms and models for vascular diseases[J]. Front. Biol., 2017, 12(6): 392-405.
[3] Jian Li,Chun Guo,Nickolas Steinauer,Jinsong Zhang. New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins[J]. Front. Biol., 2016, 11(4): 285-304.
[4] Meng WANG,Kasturi BANERJEE,Harriet BAKER,John W. CAVE. Nucleotide sequence conservation of novel and established cis-regulatory sites within the tyrosine hydroxylase gene promoter[J]. Front. Biol., 2015, 10(1): 74-90.
[5] Rebecca M. FOX,Deborah J. ANDREW. Transcriptional regulation of secretory capacity by bZip transcription factors[J]. Front. Biol., 2015, 10(1): 28-51.
[6] Nidhi VISHNOI,Jie YAO. Gene positioning and genome function[J]. Front. Biol., 2014, 9(4): 255-268.
[7] Vipul SHUKLA,Runqing LU. IRF4 and IRF8: governing the virtues of B lymphocytes[J]. Front. Biol., 2014, 9(4): 269-282.
[8] Yaojuan LU,Longwei QIAO,Guanghua LEI,Ranim R. MIRA,Junxia GU,Qiping ZHENG. Col10a1 gene expression and chondrocyte hypertrophy during skeletal development and disease[J]. Front. Biol., 2014, 9(3): 195-204.
[9] Yunsong LAI, Huanxiu LI, Masumi YAMAGISHI. A review of target gene specificity of flavonoid R2R3-MYB transcription factors and a discussion of factors contributing to the target gene selectivity[J]. Front Biol, 2013, 8(6): 577-598.
[10] P. Shannon PENDERGRAST, Tom VOLPE. MicroRNA rules: Made to be broken[J]. Front Biol, 2013, 8(5): 468-474.
[11] Li FAN. How two helicases work together within the TFIIH complex, a perspective from structural studies of XPB and XPD helicases[J]. Front Biol, 2013, 8(4): 363-368.
[12] Iouri CHEPELEV, Xin CHEN. Alternative splicing switching in stem cell lineages[J]. Front Biol, 2013, 8(1): 50-59.
[13] Kazuhiro TANAKA, Nikhat J. SIDDIQI, Abdullah S. ALHOMIDA, Akhlaq A. FAROOQUI, Wei-Yi ONG. Differential regulation of cPLA2 and iPLA2 expression in the brain[J]. Front Biol, 2012, 7(6): 514-521.
[14] Gabriel J. SWENSON, J. STOCHASTIC, Franklyn F. BOLANDER, Jr., Richard A. LONG. Acid stress response in environmental and clinical strains of enteric bacteria[J]. Front Biol, 2012, 7(6): 495-505.
[15] Yonggang ZHANG, Wenhui HU. NFκB signaling regulates embryonic and adult neurogenesis[J]. Front Biol, 2012, 7(4): 277-291.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed