Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2012, Vol. 7 Issue (1) : 40-47    https://doi.org/10.1007/s11515-011-1174-y
REVIEW
Estrogens, inflammation and obesity: an overview
Colette N. MILLER1, Lynda M. BROWN2, Srujana RAYALAM3, Mary Anne DELLA-FERA3, Clifton A. BAILE1,3()
1. Department of Foods and Nutrition, University of Georgia, Athens, GA 30602, USA; 2. Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27401, USA; 3. Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
 Download: PDF(261 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Emerging research has suggested that inflammatory stress may play a role in the development of obesity. Both the leptin and insulin receptor are sensitive to intracellular inflammatory signaling that can be stimulated through toll-like receptor 4 activation by saturated fat. Pharmacological intervention within this cascade often protects animals from becoming obese, thus highlighting inflammatory pathways as a possible site of study in the prevention of pathologic weight gain. It has been well established in animal models that females display a marked reduction in the susceptibility to weight gain on high-fat diets compared to males. In addition, it has been widely accepted that females are partially protected from inflammatory-related diseases. At the molecular level, this reduction in disease susceptibility has been suggested to be due to the anti-inflammatory properties of 17 β-estradiol. Through direct free radical scavenging, transcriptional regulation, and protein interactions, chronic exposure to estradiol can reduce systemic inflammatory stress. As the knowledge base continues to grow on the etiology of obesity, further research is needed on the precise molecular pathways that can be inhibited by estradiol. Understanding of such pathways may provide a basis for the future use of estrogen and its related compounds (daidzein, genistein, resveratrol) to prevent weight gain in peri- and post-menopausal females.

Keywords inflammation      obesity      sex differences      estrogen      high fat diets      phytoestrogens     
Corresponding Author(s): A. BAILE Clifton,Email:cbaile@uga.edu   
Issue Date: 01 February 2012
 Cite this article:   
Colette N. MILLER,Lynda M. BROWN,Srujana RAYALAM, et al. Estrogens, inflammation and obesity: an overview[J]. Front Biol, 2012, 7(1): 40-47.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1174-y
https://academic.hep.com.cn/fib/EN/Y2012/V7/I1/40
Fig.1  Chronic inflammation disrupts hypothalamic leptin and insulin signaling. Leptin receptor results in SOCS3 gene expression (1), resulting in inhibition of JAK-STAT signaling (2). Leptin receptor is also inhibited through saturated fat-induced activation of NFκB, and downstream increases in SOCS3 (3). Insulin receptor is sensitive to SOCS3 (4), as well as JNK (5), both a consequence of saturated fat-induced NFκB activation. Abbreviations: toll-like receptor (TLR), inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ), nuclear factor kappa B (NFκB), c-jun N-terminal kinase (JNK), insulin receptor substrate 1 (IRS 1), insulin receptor (IR), suppressor of cytokine signaling 3 (SOCS3), leptin receptor (ObR), janus kinase (JAK), signal transducers and activators of transcription (STAT), tumor necrosis factor alpha (TNFα), interleukin 6 (IL6)
Fig.2  Anti-inflammatory effects of estrogens and phytoestrogens. Estrogens are capable of reducing ROS concentrations through direct free radical scavenging and ERα-mediated increases in other scavenger proteins (1). Intracellular reductions of ROS would reduce cellular stress and subsequent inflammatory signaling. ERα also mediates NFκB activity through increasing the inhibitory subunit IκBα (2) and direct protein on protein interactions with the NFκB complex (3). It is also important to mention that the anti-obesity effects of estrogens are in part due to ERα-mediated suppression of adipogenic genes (4). Abbreviations: estrogen receptor alpha (ERα), reactive oxygen species (ROS), nuclear factor kappa B (NFκB), tumor necrosis factor alpha (TNFα), interleukin 6 (IL6), nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha (IkBα), peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT-enhancer binding proteins (C/EBPs)
Fig.3  Molecular structure of estrogen and common phytoestrogens. Anti-inflammatory properties of the estrogens are in part due to the free-radical scavenging capabilities of the hydroxyl (-OH) groups in their structures. Reduction in free radicals and reactive oxygen species result in reduced cellular stress and inflammatory signaling.
1 Anand B K, Brobeck J R (1951). Hypothalamic control of food intake in rats and cats. Yale J Biol Med , 24(2): 123-140
pmid:14901884
2 Basterfield L, Lumley L K, Mathers J C (2009). Wheel running in female C57BL/6J mice: impact of oestrus and dietary fat and effects on sleep and body mass. Int J Obes (Lond) , 33(2): 212-218
doi: 10.1038/ijo.2008.253 pmid:19139751
3 Berthoud H R, Morrison C (2008). The brain, appetite, and obesity. Annu Rev Psychol , 59(1): 55-92
doi: 10.1146/annurev.psych.59.103006.093551 pmid:18154499
4 Boghossian S, Lemmon K, Park M, York D A (2009). High-fat diets induce a rapid loss of the insulin anorectic response in the amygdala. Am J Physiol Regul Integr Comp Physiol , 297(5): R1302-R1311
doi: 10.1152/ajpregu.00252.2009 pmid:19726717
5 Bryzgalova G, Lundholm L, Portwood N, Gustafsson J A, Khan A, Efendic S, Dahlman-Wright K (2008). Mechanisms of antidiabetogenic and body weight-lowering effects of estrogen in high-fat diet-fed mice. Am J Physiol Endocrinol Metab , 295(4): E904-E912
doi: 10.1152/ajpendo.90248.2008 pmid:18697913
6 Chadwick C C, Chippari S, Matelan E, Borges-Marcucci L, Eckert A M, Keith J C Jr, Albert L M, Leathurby Y, Harris H A, Bhat R A, Ashwell M, Trybulski E, Winneker R C, Adelman S J, Steffan R J, Harnish D C (2005). Identification of pathway-selective estrogen receptor ligands that inhibit NF-kappaB transcriptional activity. Proc Natl Acad Sci USA , 102(7): 2543-2548
doi: 10.1073/pnas.0405841102 pmid:15699342
7 Charradi K, Sebai H, Elkahoui S, Ben Hassine F, Limam F, Aouani E (2011). Grape seed extract alleviates high-fat diet-induced obesity and heart dysfunction by preventing cardiac siderosis. Cardiovasc Toxicol , 11(1): 28-37
doi: 10.1007/s12012-010-9101-z pmid:21234706
8 Clegg D J, Brown L M, Woods S C, Benoit S C (2006). Gonadal hormones determine sensitivity to central leptin and insulin. Diabetes , 55(4): 978-987
doi: 10.2337/diabetes.55.04.06.db05-1339 pmid:16567519
9 Clegg D J, Gotoh K, Kemp C, Wortman M D, Benoit S C, Brown L M, D’Alessio D, Tso P, Seeley R J, Woods S C (2011). Consumption of a high-fat diet induces central insulin resistance independent of adiposity. Physiol Behav , 103(1): 10-16
doi: 10.1016/j.physbeh.2011.01.010 pmid:21241723
10 Clegg D J, S C Woods (2004). The physiology of obesity. Clin Obstet Gynecol . 47(4): 967–979 ; discussion 980–961
11 Couse J F, Lindzey J, Grandien K, Gustafsson J A, Korach K S (1997). Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology , 138(11): 4613-4621 9348186
doi: 10.1210/en.138.11.4613
12 Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A, Szabo G (2011). Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology , 54(1): 133-144
doi: 10.1002/hep.24341 pmid:21488066
13 Davis J E, Gabler N K, Walker-Daniels J, Spurlock M E (2008). Tlr-4 deficiency selectively protects against obesity induced by diets high in saturated fat. Obesity (Silver Spring) , 16(6): 1248-1255
doi: 10.1038/oby.2008.210 pmid:18421279
14 De Souza C T, Araujo E P, Bordin S, Ashimine R, Zollner R L, Boschero A C, Saad M J, Velloso L A (2005). Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology , 146(10): 4192-4199
doi: 10.1210/en.2004-1520 pmid:16002529
15 Enriori P J, Evans A E, Sinnayah P, Cowley M A (2006). Leptin resistance and obesity. Obesity (Silver Spring) , 14(Suppl 5): 254S-258S
doi: 10.1038/oby.2006.319 pmid:17021377
16 Evans M J, Eckert A, Lai K, Adelman S J, Harnish D C (2001). Reciprocal antagonism between estrogen receptor and NF-kappaB activity in vivo. Circ Res , 89(9): 823-830
doi: 10.1161/hh2101.098543 pmid:11679413
17 Fazeli M, Zarkesh-Esfahani S H, (2004). Effects of Estrogen on Leptin Signaling and Leptin-induced TNF-alpha Production. British Endocrine Societies, Brighton, UK, BioScientifica.
18 Ghisletti S, Meda C, Maggi A, Vegeto E (2005). 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol Cell Biol , 25(8): 2957-2968
doi: 10.1128/MCB.25.8.2957-2968.2005 pmid:15798185
19 Gong L, Yao F, Hockman K, Heng H H, Morton G J, Takeda K, Akira S, Low M J, Rubinstein M, MacKenzie R G (2008). Signal transducer and activator of transcription-3 is required in hypothalamic agouti-related protein/neuropeptide Y neurons for normal energy homeostasis. Endocrinology , 149(7): 3346-3354
doi: 10.1210/en.2007-0945 pmid:18403487
20 Gonzales A M, Orlando R A (2008). Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes. Nutr Metab (Lond) , 5(1): 17
doi: 10.1186/1743-7075-5-17 pmid:18549505
21 Hamilton K L, Lin L, Wang Y, Knowlton A A (2007). Effect of ovariectomy on cardiac gene expression: inflammation and changes in SOCS gene expression. Physiol Genomics , 32(2): 254-263
doi: 10.1152/physiolgenomics.00039.2007 pmid:17986523
22 Harris H A, Albert L M, Leathurby Y, Malamas M S, Mewshaw R E, Miller C P, Kharode Y P, Marzolf J, Komm B S, Winneker R C, Frail D E, Henderson R A, Zhu Y, Keith J C Jr (2003). Evaluation of an estrogen receptor-beta agonist in animal models of human disease. Endocrinology , 144(10): 4241-4249
doi: 10.1210/en.2003-0550 pmid:14500559
23 Haslam D W, James W P (2005). Obesity. Lancet , 366(9492): 1197-1209
doi: 10.1016/S0140-6736(05)67483-1 pmid:16198769
24 Hetherington R, Ranson S (1940). Hypothalamic lesions and adiposity in the rat. Anat Rec , 78(2): 149-172
doi: 10.1002/ar.1090780203
25 Hewitt K N, Pratis K, Jones M E, Simpson E R (2003). Estrogen replacement reverses the hepatic steatosis phenotype in the male aromatase knockout mouse. Endocrinology , 145(4): 1842-1848
doi: 10.1210/en.2003-1369 pmid:14684602
26 Hong J, Stubbins R E, Smith R R, Harvey A E, Nú?ez N P (2009). Differential susceptibility to obesity between male, female and ovariectomized female mice. Nutr J , 8(1): 11
doi: 10.1186/1475-2891-8-11 pmid:19220919
27 Hotamisligil G S (2006). Inflammation and metabolic disorders. Nature , 444(7121): 860-867
doi: 10.1038/nature05485 pmid:17167474
28 Jayaprakasam B, Olson L K, Schutzki R E, Tai M H, Nair M G (2006). Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in Cornelian cherry (Cornus mas). J Agric Food Chem , 54(1): 243-248
doi: 10.1021/jf0520342 pmid:16390206
29 Kahn B B, Flier J S (2000). Obesity and insulin resistance. J Clin Invest , 106(4): 473-481
doi: 10.1172/JCI10842 pmid:10953022
30 Kalaitzidis D, Gilmore T D (2005). Transcription factor cross-talk: the estrogen receptor and NF-kappaB. Trends Endocrinol Metab , 16(2): 46-52
doi: 10.1016/j.tem.2005.01.004 pmid:15734144
31 Kaneko M, Niinuma Y, Nomura Y (2003). Activation signal of nuclear factor-kappa B in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol Pharm Bull , 26(7): 931-935
doi: 10.1248/bpb.26.931 pmid:12843613
32 Kennedy A, Martinez K, Chuang C C, LaPoint K, McIntosh M (2008). Saturated fatty acid-mediated inflammation and insulin resistance in adipose tissue: mechanisms of action and implications. J Nutr , 139(1): 1-4
doi: 10.3945/jn.108.098269 pmid:19056664
33 Kim S, Jin Y, Choi Y, Park T (2011). Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochem Pharmacol , 81(11): 1343-1351
doi: 10.1016/j.bcp.2011.03.012 pmid:21439945
34 Kleinridders A, Schenten D, K?nner A C, Belgardt B F, Mauer J, Okamura T, Wunderlich F T, Medzhitov R, Brüning J C (2009). MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab , 10(4): 249-259
doi: 10.1016/j.cmet.2009.08.013 pmid:19808018
35 Kuiper G G, Lemmen J G, Carlsson B, Corton J C, Safe S H, van der Saag P T, van der Burg B, Gustafsson J A (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology , 139(10): 4252-4263
doi: 10.1210/en.139.10.4252 pmid:9751507
36 Lehrke M, Lazar M A (2004). Inflamed about obesity. Nat Med , 10(2): 126-127
doi: 10.1038/nm0204-126 pmid:14760416
37 Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra D E, Tsukumo D M, Anhe G, Amaral M E, Takahashi H K, Curi R, Oliveira H C, Carvalheira J B, Bordin S, Saad M J, Velloso L A (2009). Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci , 29(2): 359-370
doi: 10.1523/JNEUROSCI.2760-08.2009 pmid:19144836
38 Morgan K, Obici S, Rossetti L (2004). Hypothalamic responses to long-chain fatty acids are nutritionally regulated. J Biol Chem , 279(30): 31139-31148
doi: 10.1074/jbc.M400458200 pmid:15155754
39 Oh-I S, Thaler J P, Ogimoto K, Wisse B E, Morton G J, Schwartz M W (2010). Central administration of interleukin-4 exacerbates hypothalamic inflammation and weight gain during high-fat feeding. Am J Physiol Endocrinol Metab , 299(1): E47-E53
doi: 10.1152/ajpendo.00026.2010 pmid:20371733
40 Park H J, Della-Fera M A, Hausman D B, Rayalam S, Ambati S, Baile C A (2009). Genistein inhibits differentiation of primary human adipocytes. J Nutr Biochem , 20(2): 140-148
doi: 10.1016/j.jnutbio.2008.01.006 pmid:18547799
41 Park Y J, Jang Y M, Kwon Y H (2009). Isoflavones prevent endoplasmic reticulum stress-mediated neuronal degeneration by inhibiting tau hyperphosphorylation in SH-SY5Y cells. J Med Food , 12(3): 528-535
doi: 10.1089/jmf.2008.1069 pmid:19627200
42 Poggi M, Engel D, (2011). “CD40L Deficiency Ameliorates Adipose Tissue Inflammation and Metabolic Manifestations of Obesity in Mice.” Arterioscler Thromb Vasc Biol
43 Posey K A, Clegg D J, Printz R L, Byun J, Morton G J, Vivekanandan-Giri A, Pennathur S, Baskin D G, Heinecke J W, Woods S C, Schwartz M W, Niswender K D (2009). Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab , 296(5): E1003-E1012
doi: 10.1152/ajpendo.90377.2008 pmid:19116375
44 Priego T, Sánchez J, Picó C, Palou A (2009). Sex-associated differences in the leptin and ghrelin systems related with the induction of hyperphagia under high-fat diet exposure in rats. Horm Behav , 55(1): 33-40
doi: 10.1016/j.yhbeh.2008.07.010 pmid:18718472
45 Reaven G M (1995). Pathophysiology of insulin resistance in human disease. Physiol Rev , 75(3): 473-486
pmid:7624391
46 Rocha M, Bing C, Williams G, Puerta M (2004). Physiologic estradiol levels enhance hypothalamic expression of the long form of the leptin receptor in intact rats. J Nutr Biochem , 15(6): 328-334
doi: 10.1016/j.jnutbio.2004.01.003 pmid:15157938
47 Rui L, Yuan M, Frantz D, Shoelson S, White M F (2002). SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem , 277(44): 42394-42398
doi: 10.1074/jbc.C200444200 pmid:12228220
48 Schwartz M W, Sipols A J, Marks J L, Sanacora G, White J D, Scheurink A, Kahn S E, Baskin D G, Woods S C, Figlewicz D P, (1992). Inhibition of hypothalamic neuropeptide Y gene expression by insulin. Endocrinology , 130(6): 3608-3616
doi: 10.1210/en.130.6.3608 pmid:1597158
49 Shi H, Clegg D J (2009). Sex differences in the regulation of body weight. Physiol Behav , 97(2): 199-204
doi: 10.1016/j.physbeh.2009.02.017 pmid:19250944
50 Stein B, Yang M X (1995). Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Mol Cell Biol , 15(9): 4971-4979
pmid:7651415
51 Stice J P, Knowlton A A (2008). Estrogen, NFkappaB, and the heat shock response. Mol Med , 14(7-8): 17-27
doi: 10.2119/2008-00026.Stice pmid:18431462
52 Straub R H (2007). The complex role of estrogens in inflammation. Endocr Rev , 28(5): 521-574
doi: 10.1210/er.2007-0001 pmid:17640948
53 Suganami T, Nishida J, Ogawa Y (2005). A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol , 25(10): 2062-2068
doi: 10.1161/01.ATV.0000183883.72263.13 pmid:16123319
54 Tsukumo D M, Carvalho-Filho M A, Carvalheira J B, Prada P O, Hirabara S M, Schenka A A, Araújo E P, Vassallo J, Curi R, Velloso L A, Saad M J (2007). Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes , 56(8): 1986-1998
doi: 10.2337/db06-1595 pmid:17519423
55 Ueki K, Kondo T, Kahn C R (2004). Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol , 24(12): 5434-5446
doi: 10.1128/MCB.24.12.5434-5446.2004 pmid:15169905
56 Vegeto E, Belcredito S, Etteri S, Ghisletti S, Brusadelli A, Meda C, Krust A, Dupont S, Ciana P, Chambon P, Maggi A (2003). Estrogen receptor-mediates the brain antiinflammatory activity of estradiol. Proc Natl Acad Sci USA , 100(16): 9614-9619
doi: 10.1073/pnas.1531957100 pmid:12878732
57 Vegeto E, Belcredito S, Ghisletti S, Meda C, Etteri S, Maggi A (2006). The endogenous estrogen status regulates microglia reactivity in animal models of neuroinflammation. Endocrinology , 147(5): 2263-2272
doi: 10.1210/en.2005-1330 pmid:16469811
58 Vegeto E, Bonincontro C, Pollio G, Sala A, Viappiani S, Nardi F, Brusadelli A, Viviani B, Ciana P, Maggi A (2001). Estrogen prevents the lipopolysaccharide-induced inflammatory response in microglia. J Neurosci , 21(6): 1809-1818
pmid:11245665
59 Vinchon M, Weill J, Delestret I, Dhellemmes P (2009). Craniopharyngioma and hypothalamic obesity in children. Childs Nerv Syst , 25(3): 347-352
doi: 10.1007/s00381-008-0754-x pmid:19057910
60 Wang J, Obici S, Morgan K, Barzilai N, Feng Z, Rossetti L (2001). Overfeeding rapidly induces leptin and insulin resistance. Diabetes , 50(12): 2786-2791
doi: 10.2337/diabetes.50.12.2786 pmid:11723062
61 Wang Y, Beydoun M A, Liang L, Caballero B, Kumanyika S K (2008). Will all Americans become overweight or obese? estimating the progression and cost of the US obesity epidemic. Obesity (Silver Spring) , 16(10): 2323-2330
doi: 10.1038/oby.2008.351 pmid:18719634
62 Wauman J, Tavernier J (2011). Leptin receptor signaling: pathways to leptin resistance. Front Biosci , 17: 2771-2793
63 Weisberg S P, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, Charo I, Leibel R L, Ferrante A W Jr (2006). CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest , 116(1): 115-124
doi: 10.1172/JCI24335 pmid:16341265
64 Wellen K E, Hotamisligil G S (2003). Obesity-induced inflammatory changes in adipose tissue. J Clin Invest , 112(12): 1785-1788
pmid:14679172
65 Wellen K E, Hotamisligil G S (2005). Inflammation, stress, and diabetes. J Clin Invest , 115(5): 1111-1119
pmid:15864338
66 Yang L, Hotamisligil G S (2008). Stressing the brain, fattening the body. Cell , 135(1): 20-22
doi: 10.1016/j.cell.2008.09.030 pmid:18854151
67 York D, Hansen B (1998). Animal Models of Obesity. Handbook of Obesity . G. Bray, C. Bouchardand W.James. New York, Marcel Dekker, Inc.
68 Yu H P, Hsu J C, Hwang T L, Yen C H, Lau Y T (2008). Resveratrol attenuates hepatic injury after trauma-hemorrhage via estrogen receptor-related pathway. Shock , 30(3): 324-328
doi: 10.1097/SHK.0b013e318164f013 pmid:18277952
69 Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D (2008). Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell , 135(1): 61-73
doi: 10.1016/j.cell.2008.07.043 pmid:18854155
[1] Ankita Chattopadhyay, Mythili S.. The journey of gut microbiome – An introduction and its influence on metabolic disorders[J]. Front. Biol., 2018, 13(5): 327-341.
[2] Nima Heidary, Hedayat Sahraei, Mohammad Reza Afarinesh, Zahra Bahari, Gholam Hossein Meftahi. Investigating the inhibition of NMDA glutamate receptors in the basolateral nucleus of the amygdala on the pain and inflammation induced by formalin in male Wistar rats[J]. Front. Biol., 2018, 13(2): 149-155.
[3] Amir Abdoli. High salt and fat intake, inflammation, and risk of cancer[J]. Front. Biol., 2017, 12(6): 387-391.
[4] Jun Sun. Intestinal organoid as an in vitromodel in studying host-microbial interactions[J]. Front. Biol., 2017, 12(2): 94-102.
[5] Altea Rocchi,Congcong He. Emerging roles of autophagy in metabolism and metabolic disorders[J]. Front. Biol., 2015, 10(2): 154-164.
[6] Kristen DAVIS,Young-Jai YOU. Appetite control: why we fail to stop eating even when we are full?[J]. Front. Biol., 2014, 9(3): 169-174.
[7] Noor GAMMOH,Simon WILKINSON. Autophagy in cancer biology and therapy[J]. Front. Biol., 2014, 9(1): 35-50.
[8] Tanapat PALAGA, Lisa M. MINTER. Notch signaling and its emerging role in autoimmunity[J]. Front Biol, 2013, 8(3): 279-294.
[9] Abiodun AJAYI, Xin YU, Anna-Lena STR?M. The role of NADPH oxidase (NOX) enzymes in neurodegenerative disease[J]. Front Biol, 2013, 8(2): 175-188.
[10] Afsar U. AHMED. An overview of inflammation: mechanism and consequences[J]. Front Biol, 2011, 6(4): 274-281.
[11] Catherine C. Y. CHANG, Jie SUN, Ta-Yuan CHANG. Membrane-bound O-acyltransferases (MBOAT)[J]. Front Biol, 2011, 6(3): 177-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed