Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    0, Vol. Issue () : 83-91    https://doi.org/10.1007/s11515-011-1176-9
ADVANCED TECHNIC
Using a novel approach — recombineering — to generate odf2 null alleles
Rongsun PU()
School of Natural Sciences, Kean University, Union, NJ 07083, USA
 Download: PDF(578 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This article uses a real-life example to illustrate the concept and methodology of recombineering, a revolutionary genetic engineering technique based on phage-mediated homologous recombination. A step-by-step approach is presented along with a flow diagram, from obtaining gene-harboring BACs to the in vitro generation of a conditional null allele. This method can be used to target any gene at any position, without the knowledge or use of any restriction site. The extensive applicability of recombineering to gene manipulation is discussed.

Keywords gene manipulation      recombineering      odf2     
Corresponding Author(s): PU Rongsun,Email:rpu@kean.edu   
Issue Date: 01 February 2012
 Cite this article:   
Rongsun PU. Using a novel approach — recombineering — to generate odf2 null alleles[J]. Front Biol, 0, (): 83-91.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1176-9
https://academic.hep.com.cn/fib/EN/Y0/V/I/83
Fig.1  Exons 5-8 are conserved (boxed area) among variants of gene transcript, as shown in Ensembl.
Fig.2  A flow diagram summarizing the major steps involved in generating a conditional null allele using recombineering. Drawing is not to scale.
Fig.3  Targeted insertion of two loxP-PGK-gb2-neo-loxP cassettes into gene. The first cassette was to be inserted between exons 4 and 5. The second cassette was to be inserted between exons 8 and 9. Homologous recombination mediated by pRedET results in the introduction of loxP sites flanking exons 5-8. Drawing is not to scale.
Primers for upstream cassette insertion:
Forward:5′TTCCAGAAGTCTCAGCCTCCCCAGTAGCTGGGACTATTCAGGCACACAGCAATTAACCCTCACTAAAGGGCG 3′
Reverse: 5′ AAAAAGGCATGGGTTAGAATGTTAAGTTATAAAGAAGGCTAGGTTTGTGTTAATACGACTCACTATAGGGCTC 3′
Primers for downstream cassette insertion:
Forward: 5′ CTCTCTCCTCCCTCCTCTCTCTCCCTTGAATATTGAATGTTGTAGCCTAAAATTAACCCTCACTAAAGGGCG 3′
Reverse: 5′ TTTGAAAGCTGACCATGAGCTCATAGGAAGACCATGAGCTTGAAGTCAGCTAATACGACTCACTATAGGGCTC 3′
Tab.1  Primer sequences for insertion of cassettes via PCR.
Forward (10,608-10,629): 5′ GGTTGAGTGTCTTTATGTTGCC 3′
Reverse (11,063-11,081): 5′ CAGTGACCTGAATCGTCGT 3′
Tab.2  Primers for confirming the insertion of the upstream cassette at 10,700 bp of using PCR.
Fig.4  Sequence of the loxP site.
Fig.5  gene with the upstream loxP site insertion at 10700 bp. Green arrows indicate the positions of primers to verify the insertion of the loxP site using PCR.
Fig.6  Final targeting construct with three loxP sites. Two of the loxP sites flank the selectable marker/cassette that is inserted between exons 8 and 9.
Fig.7  The introduction of Cre recombinase can result in three different constructs, one of which can be further manipulated to generate a conditional null allele. (a) Complete excision, resulting in an null allele; (b) Type I excision, resulting in retention of the cassette; (c) Type II excision, resulting in two loxP sites flanking exons 5-8. The conditional null allele can be generated by introducing Cre recombinase again and inducing its expression. This leads to the deletion of exons 5-8.
1 Brohmann H, Pinnecke S, Hoyer-Fender S (1997). Identification and characterization of new cDNAs encoding outer dense fiber proteins of rat sperm. J Biol Chem , 272(15): 10327-10332
doi: 10.1074/jbc.272.15.10327 pmid:9092585
2 Copeland N G, Jenkins N A, Court D L (2001). Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet , 2(10): 769-779
doi: 10.1038/35093556 pmid:11584293
3 Cox M M, Goodman M F, Kreuzer K N, Sherratt D J, Sandler S J, Marians K J (2000). The importance of repairing stalled replication forks. Nature , 404(6773): 37-41
doi: 10.1038/35003501 pmid:10716434
4 Eggenschwiler J T, Anderson K V (2007). Cilia and developmental signaling. Annu Rev Cell Dev Biol , 23(1): 345-373
doi: 10.1146/annurev.cellbio.23.090506.123249 pmid:17506691
5 Ellis H M, Yu D, DiTizio T, Court D L (2001). High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci USA , 98(12): 6742-6746
doi: 10.1073/pnas.121164898 pmid:11381128
6 Gene Bridges (2007). Quick & Easy Conditional Knockout Kit (loxP/Cre) by Red/ET Recombination. http://www.genebridges.com/gb/pdf/K005%20KO%20Kit%20loxP-version%201.1-2007a-screen.pdf.
7 Haber J E (1999). DNA repair. Gatekeepers of recombination. Nature , 398(6729): 665-667, 667
doi: 10.1038/19423 pmid:10227286
8 Ishikawa H, Kubo A, Tsukita S, Tsukita S (2005). Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia. Nat Cell Biol , 7(5): 517-524
doi: 10.1038/ncb1251 pmid:15852003
9 Kogoma T (1996). Recombination by replication. Cell , 85(5): 625-627
doi: 10.1016/S0092-8674(00)81229-5 pmid:8646771
10 Kolodner R, Hall S D, Luisi-DeLuca C (1994). Homologous pairing proteins encoded by the Escherichia coli recE and recT genes. Mol Microbiol , 11(1): 23-30
doi: 10.1111/j.1365-2958.1994.tb00286.x pmid:8145642
11 Muyrers J P, Zhang Y, Buchholz F, Stewart A F (2000). RecE/RecT and Redalpha/Redbeta initiate double-stranded break repair by specifically interacting with their respective partners. Genes Dev , 14(15): 1971-1982
pmid:10921910
12 Muyrers J P P, Zhang Y, Stewart A F (2001). Techniques: Recombinogenic Engineering: new options for manipulating DNA. Trends Biochem Sci , 26: 325-331
doi: 10.1016/S0968-0004(00)01757-6 pmid:11343926
13 Nakagawa Y, Yamane Y, Okanoue T, Tsukita S, Tsukita S (2001). Outer dense fiber 2 is a widespread centrosome scaffold component preferentially associated with mother centrioles: its identification from isolated centrosomes. Mol Biol Cell , 12(6): 1687-1697
pmid:11408577
14 Rosales J L, Rattner J B, Lee K Y (2010). Cdk5 in the centriolar appendages mediates cenexin1 localization and primary cilia formation. Cell Cycle , 9(10): 2037-2039
doi: 10.4161/cc.9.10.11600 pmid:20234188
15 Schweizer S, Hoyer-Fender S (2009). Mouse Odf2 localizes to centrosomes and basal bodies in adult tissues and to the photoreceptor primary cilium. Cell Tissue Res , 338(2): 295-301
doi: 10.1007/s00441-009-0861-3 pmid:19756757
16 Zhang Y, Buchholz F, Muyrers J P, Stewart A F (1998). A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet , 20(2): 123-128
doi: 10.1038/2417 pmid:9771703
17 Zhang Y, Muyrers J P P, Testa G, Stewart A F (2000). DNA cloning by homologous recombination in Escherichia coli. Nat Biotechnol , 18(12): 1314-1317
doi: 10.1038/82449 pmid:11101815
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed