Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2012, Vol. 7 Issue (2) : 96-112    https://doi.org/10.1007/s11515-012-1193-3
REVIEW
The stomata frontline of plant interaction with the environment-perspectives from hormone regulation
Mengmeng ZHU1, Shaojun DAI1,2, Sixue CHEN1()
1. Department of Biology, Genetics Institute, Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL 32610, USA; 2. Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
 Download: PDF(501 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Plants have evolved elaborate mechanisms to perceive and integrate signals from various environmental conditions. On leaf surface, stomata formed by pairs of guard cells mediate gas exchange, water transpiration as well as function in response to abiotic and biotic stresses. Stomatal closure could be induced by drought, salt, pathogen and other adverse conditions. This constitutes an instant defense response to prevent further damage to plants. Abscisic acid (ABA) is a major plant hormone involved in stress responses. Stress-activated ABA synthesis causes stomatal closure and prevents opening to reduce water loss and cell dehydration. Key regulatory receptor complex and other important components in the ABA signaling pathway have been identified. However, our knowledge of ABA signal transduction in guard cells is far from complete. Jasmonates are a group of phytohormones generally known to be important for plant defense against insects and necrotrophic pathogens. The increased levels of methyl jasmonate (MeJA) induced by herbivory and pathogen invasion show a similar effect on stomatal movement associated with ROS production as ABA. Investigation of guard cell signaling networks involving the two important phytohormones is significant and exciting. Information about protein and metabolite components and how they interact in guard cells is lacking. Here we review recent advances on hormone signaling networks in guard cells and how the networks integrate environmental signals to plant physiological output.

Keywords stomata      guard cells      hormone      signaling      molecular networks     
Corresponding Author(s): CHEN Sixue,Email:schen@ufl.edu   
Issue Date: 01 April 2012
 Cite this article:   
Shaojun DAI,Sixue CHEN,Mengmeng ZHU. The stomata frontline of plant interaction with the environment-perspectives from hormone regulation[J]. Front Biol, 2012, 7(2): 96-112.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-012-1193-3
https://academic.hep.com.cn/fib/EN/Y2012/V7/I2/96
Fig.1  Overview of the ABA signaling networks in guard cells. [Ca], cytosolic free Ca concentration; ABA, abscisic acid; ABC, ATP binding cassette; ABI1, ABA insensitive 1; ABI2, ABA insensitive 2; ABI5, ABA insensitive 5; AREB 2, ABA responsive element binding protein 2; Asc, ascorbic acid; ATGPX3, glutathione peroxidase 3; AtRboh, respiratory burst oxidase protein; CDPK, calcium-dependent protein kinase; CP, carotenoid precursor; ETR1, ethylene response 1; G, glucosinolate; GCA2, growth controlled by abscisic acid 2; GCR2, G protein-coupled receptor; GPA1, α-subunit of the trimeric G protein; GRX, glutaredoxin; HAB1&2, homology to ABI1 1&2; IP, inositol trisphosphate; ITC, isothiocyanate; KAT1, potassium channel 1; M, myrosinase; GTG, G protein coupled receptor (GPCR) type protein; MAPK, mitogen-activated protein kinase; OST1, open stomata 1; PA, phosphatidic acid; PI3K, phosphatidylinositol-3-kinase; PI4K, phosphatidylinositol-4-kinase; PIP, phosphatidylinositol-4,5-bisphosphate; PLC, phospholipase C; PLD, phospholipase D; POX, peroxidase; PP2A, protein phosphatase 2A; PP2C, protein phosphatase 2C; PYL, pyrabactin resistance-like; PYR, pyrabactin resistance; RCAR, regulatory component of ABA receptor; ROS, reactive oxygen species; SLAC1, slow anion channel 1; SnRK2, sucrose non-fermenting 1-related protein kinase 2; TF, transcription factor; TRX, thioredoxin.
Fig.2  implified model of crosstalk between ABA and MeJA signaling in stomatal closure. [Ca], cytosolic calcium concentration; ABA, abscisic acid; ; , ; I channels, Ca ion channel; MeJA, methyl jasmonate; , ; pH, cytosolic pH; RCN1, root curling in n-naphthylphthalamic acid 1; ROS, reactive oxygen species; .
ProteinGene locusGeneReferences
ABA signalingMeJA signaling
PYR/PYL/RCAR (14) Bet v I domain proteinAt4g17870PYR1Ma et al., 2009
At5g46790PYL1Park et al., 2009
At2g26040PYL2Santiago et al., 2009
At2g38310PYL4Nishimura et al., 2010Lackman et al., 2011
At5g53160PYL8/RCAR3
At1g01360PYL9/RCAR1
PP2C Group A (9) Mg2+-dependent Ser/Thr protein phosphataseAt4g26080ABI1Leung et al., 1994Munemasa et al., 2007
At5g57050ABI2Saez et al., 2004Islam et al., 2009
At1g72770HAB1Saez et al., 2004
At1g17550HAB2Leonhardt et al., 2004
At3g11410AtPP2CAYoshida et al., 2005
At5g51760AHG1Nishimura et al., 2007
SnRK2 (10) Ser/Thr protein kinaseAt3g50500SnRK2.2Merlot et al., 2002
At5g66880SnRK2.3Fujii et al., 2007
At4g33950SnRK2.6/OST1Mustilli et al., 2002Suhita et al., 2004
CaM/CML (57) Calmodulin (-like)At3g51920CML9Delk et al., 2005
At5g37770CML24Magnan et al., 2008
CDPK (34) Ca2+-dependent Ser/Thr kinaseAt4g23650CPK3Choi et al., 2005
At4g09570CPK4Mori et al., 2006
At2g17290CPK6Ma and Wu, 2007
At1g35670CPK11Zhu et al., 2007
At4g04720CPK21Geiger et al., 2011
At4g07470CPK23
At3g57530CPK32
F-box protein (>568)At2g39940COI1Xie et al., 1998
Katsir et al., 2008
Jasmonate-ZIM domain protein (12)At1g19180JAZ1Sheard et al., 2010
Thines et al., 2007
CBL (10) Calcineurin-B likeAt4g17615CBL1/SCABP5Cheong et al., 2003
At5g47100CBL9Pandey et al., 2008
CIPK/SnRK3 (25) Ser/Thr protein kinaseAt5g01810CIPK15/PKS3Cheong et al., 2007
At1g30270CIPK23Pandey et al., 2008
Rboh (10) NADPH oxidaseAt5g47910AtRbohDKwak et al., 2003Suhita et al., 2004
At1g64060AtRbohFSuhita et al., 2004
PP2A (26) Protein phosphatase regulatory subunitAt1g25490RCN1Kwak et al., 2002Saito et al., 2008
Murata et al., 2001
Myrosinase (6)At5g26000TGG1Zhao et al., 2008Islam et al., 2009
At5g25980TGG2Islam et al., 2009
Transcription factors (>1500)At1g32640MYC2/JAI1/JIN1Abe et al., 2003Lorenzo et al., 2004
At2g47190MYB2
Tab.1  Protein components of guard cell ABA and MeJA signaling pathways in
Fig.3  Diagram of potential modifications of redox sensitive cysteines in guard cell proteins. The reversible cysteine modifications may play important signaling roles in stomatal movement as redox switches.
1 Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell , 15(1): 63-78
doi: 10.1105/tpc.006130 pmid:12509522
2 Acharya B R, Assmann S M (2009). Hormone interactions in stomatal function. Plant Mol Biol , 69(4): 451-462
doi: 10.1007/s11103-008-9427-0 pmid:19031047
3 Adachi T, Pimentel D R, Heibeck T, Hou X, Lee Y J, Jiang B, Ido Y, Cohen R A (2004). S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells. J Biol Chem , 279(28): 29857-29862
doi: 10.1074/jbc.M313320200 pmid:15123696
4 Allen G J, Chu S P, Schumacher K, Shimazaki C T, Vafeados D, Kemper A, Hawke S D, Tallman G, Tsien R Y, Harper J F, Chory J, Schroeder J I (2000). Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsisdet3 mutant. Science , 289(5488): 2338-2342
doi: 10.1126/science.289.5488.2338 pmid:11009417
5 Allen G J, Sanders D (1995). Calcineurin, a type 2B protein phosphatase, modulates the Ca2+-permeable slow vacuolar ion channel of stomatal guard cells. Plant Cell , 7(9): 1473-1483
doi: 10.1105/tpc.7.9.1473 pmid:12242407
6 Armstrong F, Leung J, Grabov A, Brearley J, Giraudat J, Blatt M R (1995). Sensitivity to abscisic acid of guard-cell K+ channels is suppressed by abi1-1, a mutant Arabidopsis gene encoding a putative protein phosphatase. Proc Natl Acad Sci USA , 92(21): 9520-9524
doi: 10.1073/pnas.92.21.9520 pmid:7568166
7 Assmann S M (1993). Signal transduction in guard cells. Annu Rev Cell Biol , 9(1): 345-375
doi: 10.1146/annurev.cb.09.110193.002021 pmid:8280465
8 Assmann S M (2003). OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells. Trends Plant Sci , 8(4): 151-153
doi: 10.1016/S1360-1385(03)00052-9 pmid:12711225
9 Bandurska H, Stroinski A, Kubis J (2003). The effect of jasmonic acid on the accumulation of ABA, proline and spermidine and its influence on membrane injury under water deficit in two barley genotypes. Acta Physiol Plant , 25(3): 279-285
doi: 10.1007/s11738-003-0009-0
10 Barford D (1996). Molecular mechanisms of the protein serine/threonine phosphatases. Trends Biochem Sci , 21(11): 407-412
doi: 10.1016/S0968-0004(96)10060-8 pmid:8987393
11 Barth C, Jander G (2006). Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J , 46(4): 549-562
doi: 10.1111/j.1365-313X.2006.02716.x pmid:16640593
12 B?umer N, M?urer A, Krieglstein J, Klumpp S (2007). Expression of protein histidine phosphatase in Escherichia coli, purification, and determination of enzyme activity. Methods Mol Biol , 365: 247-260
pmid:17200567
13 Beligni M V, Lamattina L (2001). Nitric oxide: a non-traditional regulator of plant growth. Trends Plant Sci , 6(11): 508-509
doi: 10.1016/S1360-1385(01)02156-2 pmid:11701377
14 Blechert S, Brodschelm W, H?lder S, Kammerer L, Kutchan T M, Mueller M J, Xia Z Q, Zenk M H (1995). The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci USA , 92(10): 4099-4105
doi: 10.1073/pnas.92.10.4099 pmid:7753776
15 Bright J, Desikan R, Hancock J T, Weir I S, Neill S J (2006). ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J , 45(1): 113-122
doi: 10.1111/j.1365-313X.2005.02615.x pmid:16367958
16 Buchanan B B, Balmer Y (2005). Redox regulation: a broadening horizon. Annu Rev Plant Biol , 56(1): 187-220
doi: 10.1146/annurev.arplant.56.032604.144246 pmid:15862094
17 Burnett G, Kennedy E P (1954). The enzymatic phosphorylation of proteins. J Biol Chem , 211(2): 969-980
pmid:13221602
18 Camps M, Nichols A, Arkinstall S (2000). Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J , 14(1): 6-16
pmid:10627275
19 Chen J G (2008). Heterotrimeric G-protein signaling in Arabidopsis: Puzzling G-protein-coupled receptor. Plant Signal Behav , 3(12): 1042-1045
doi: 10.4161/psb.3.12.6064 pmid:19513236
20 Chen S, Harmon A C (2006). Advances in plant proteomics. Proteomics , 6(20): 5504-5516
doi: 10.1002/pmic.200600143 pmid:16972296
21 Chen Z, Gallie D R (2004). The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell , 16(5): 1143-1162
doi: 10.1105/tpc.021584 pmid:15084716
22 Cheong Y H, Kim K N, Pandey G K, Gupta R, Grant J J, Luan S (2003). CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell , 15(8): 1833-1845
doi: 10.1105/tpc.012393 pmid:12897256
23 Cheong Y H, Pandey G K, Grant J J, Batistic O, Li L, Kim B G, Lee S C, Kudla J, Luan S (2007). Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J, 52: 223-239
24 Chérel I, Michard E, Platet N, Mouline K, Alcon C, Sentenac H, Thibaud J B (2002). Physical and functional interaction of the Arabidopsis K(+) channel AKT2 and phosphatase AtPP2CA. Plant Cell , 14(5): 1133-1146
doi: 10.1105/tpc.000943 pmid:12034902
25 Choi H I, Park H J, Park J H, Kim S, Im M Y, Seo H H, Kim Y W, Hwang I, Kim S Y (2005). Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol , 139(4): 1750-1761
doi: 10.1104/pp.105.069757 pmid:16299177
26 Cohen P, Cottrell G, Hill Venning C (1989). The protein phosphatase inhibitor okadaic acid potentiates the 5-HT induced suppression of a K current in the C1-neurone of helix-aspersa. J Physiol , 415: 33
27 Colcombet J, Lelièvre F, Thomine S, Barbier-Brygoo H, Frachisse J M (2005). Distinct pH regulation of slow and rapid anion channels at the plasma membrane of Arabidopsis thaliana hypocotyl cells. J Exp Bot , 56(417): 1897-1903
doi: 10.1093/jxb/eri184 pmid:15928017
28 Cramer M D, Nagel O W, Lips S H, Lambers H (1995). Reduction, assimilation and transport of N in normal and gibberellin de?cient tomato plants. Physiol Plant , 95(3): 347-354
doi: 10.1111/j.1399-3054.1995.tb00848.x
29 Creelman R A, Mullet J E (1997). Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol , 48(1): 355-381
doi: 10.1146/annurev.arplant.48.1.355 pmid:15012267
30 Dat J F, Capelli N, Folzer H, Bourgeade P, Badot P M (2004). Sensing and signalling during plant flooding. Plant Physiol Biochem , 42(4): 273-282
doi: 10.1016/j.plaphy.2004.02.003 pmid:15120111
31 Delk N A, Johnson K A, Chowdhury N I, Braam J (2005). CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol , 139(1): 240-253
doi: 10.1104/pp.105.062612 pmid:16113225
32 Desikan R, Griffiths R, Hancock J, Neill S (2002). A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA , 99(25): 16314-16318
doi: 10.1073/pnas.252461999 pmid:12446847
33 Desikan R, Hancock J T, Bright J, Harrison J, Weir I, Hooley R, Neill S J (2005). A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol , 137(3): 831-834
doi: 10.1104/pp.104.056994 pmid:15761208
34 Desikan R, Horák J, Chaban C, Mira-Rodado V, Witth?ft J, Elgass K, Grefen C, Cheung M K, Meixner A J, Hooley R, Neill S J, Hancock J T, Harter K (2008). The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. PLoS ONE , 3(6): e2491
doi: 10.1371/journal.pone.0002491 pmid:18560512
35 Dodd I C, Davies W J (2010). Hormones and the regulation of water balance. Plant Hormones. E 3: 519-548
36 Evans N H (2003). Modulation of guard cell plasma membrane potassium currents by methyl jasmonate. Plant Physiol , 131(1): 8-11
doi: 10.1104/pp.014266 pmid:12529509
37 Farkas I, Dombrádi V, Miskei M, Szabados L, Koncz C (2007). Arabidopsis PPP family of serine/threonine phosphatases. Trends Plant Sci , 12(4): 169-176
doi: 10.1016/j.tplants.2007.03.003 pmid:17368080
38 Finkelstein R R, Gibson S I (2002). ABA and sugar interactions regulating development: cross-talk or voices in a crowd? Curr Opin Plant Biol , 5(1): 26-32
doi: 10.1016/S1369-5266(01)00225-4 pmid:11788304
39 Foyer C H, Noctor G (2009). Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal , 11(4): 861-905
doi: 10.1089/ars.2008.2177 pmid:19239350
40 Fujii H, Verslues P E, Zhu J K (2007). Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell , 19(2): 485-494
doi: 10.1105/tpc.106.048538 pmid:17307925
41 Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006). Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol , 9(4): 436-442
doi: 10.1016/j.pbi.2006.05.014 pmid:16759898
42 Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt M R (2003). Nitric oxide regulates K+ and Cl- channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA , 100(19): 11116-11121
doi: 10.1073/pnas.1434381100 pmid:12949257
43 Gehring C, Irving H, McConchie R, Parish R (1997). Jasmonates induce intracellular alkalinization and closure of Paphiopedilum guard cells. Ann Bot (Lond) , 80(4): 485-489
doi: 10.1006/anbo.1997.0471
44 Geiger D, Maierhofer T, Al-Rasheid K A, Scherzer S, Mumm P, Liese A, Ache P, Wellmann C, Marten I, Grill E, Romeis T, Hedrich R (2011). Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci Signal , 4(173): ra32
doi: 10.1126/scisignal.2001346 pmid:21586729
45 Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid K A, Romeis T, Hedrich R (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci USA , 106(50): 21425-21430
doi: 10.1073/pnas.0912021106 pmid:19955405
46 Germain H, Lachance D, Pelletier G, Fossdal C G, Solheim H, Séguin A (2011). The expression pattern of the Picea glauca Defensin 1 promoter is maintained in Arabidopsis thaliana, indicating the conservation of signalling pathways between angiosperms and gymnosperms. J Exp Bot ,
doi: 10.1093/jxb/err303 pmid:22048038
47 Gomi K, Ogawa D, Katou S, Kamada H, Nakajima N, Saji H, Soyano T, Sasabe M, Machida Y, Mitsuhara I, Ohashi Y, Seo S (2005). A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. Plant Cell Physiol , 46(12): 1902-1914
doi: 10.1093/pcp/pci211 pmid:16207744
48 Gosti F, Beaudoin N, Serizet C, Webb A A, Vartanian N, Giraudat J (1999). ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell , 11(10): 1897-1910
pmid:10521520
49 Gudesblat G E, Iusem N D, Morris P C (2007). Guard cell-specific inhibition of Arabidopsis MPK3 expression causes abnormal stomatal responses to abscisic acid and hydrogen peroxide. New Phytol , 173(4): 713-721
doi: 10.1111/j.1469-8137.2006.01953.x pmid:17286820
50 Guo J, Zeng Q, Emami M, Ellis B E, Chen J G (2008). The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis. PLoS ONE , 3(8): e2982
doi: 10.1371/journal.pone.0002982 pmid:18714360
51 Halford N G, Hey S J (2009). Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signaling in plants. Biochem J , 419(2): 247-259
doi: 10.1042/BJ20082408 pmid:19309312
52 Hamel L P, Nicole M C, Sritubtim S, Morency M J, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A, Ellis B E (2006). Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci , 11(4): 192-198
doi: 10.1016/j.tplants.2006.02.007 pmid:16537113
53 Hanks S K, Hunter T (1995). Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J , 9(8): 576-596
pmid:7768349
54 Harmon A C (2003). Calcium-regulated protein kinases of plants. Gravit Space Biol Bull , 16(2): 83-90
pmid:12959135
55 Haubrick L L, Assmann S M (2006). Brassinosteroids and plant function: some clues, more puzzles. Plant Cell Environ , 29(3): 446-457
doi: 10.1111/j.1365-3040.2005.01481.x pmid:17080598
56 Herde O, Pena-Cortes H, Willmitzer L, Fisahn J (1997). Stomatal responses to jasmonic acid, linolenic acid and abscisic acid in wild-type and ABA-deficient tomato plants. Plant Cell Environ , 20(1): 136-141
doi: 10.1046/j.1365-3040.1997.d01-11.x
57 Hetherington A M, Woodward F I (2003). The role of stomata in sensing and driving environmental change. Nature , 424(6951): 901-908
doi: 10.1038/nature01843 pmid:12931178
58 Hey S, Bacon A, Burnett E, Neill S (1997). Abscisic acid signal transduction in epidermal cells of Pisum sativum L. argenteum: Both dehydrin mRNA accumulation and stomatal responses require protein phosphorylation and dephosphorylation. Planta , 202(1): 85-92
doi: 10.1007/s004250050106
59 Hornberg C, Weiler E (1984). High-affinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells. Nature , 310(5975): 321-324
doi: 10.1038/310321a0
60 Huang D, Wu W, Abrams S R, Cutler A J (2008). The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot , 59(11): 2991-3007
doi: 10.1093/jxb/ern155 pmid:18552355
61 Hubbard K E, Nishimura N, Hitomi K, Getzoff E D, Schroeder J I (2010). Early abscisic acid signal transduction mechanisms: Newly discovered components and newly emerging questions. Genes Dev , 24(16): 1695-1708
doi: 10.1101/gad.1953910 pmid:20713515
62 Husebye H, Chadchawan S, Winge P, Thangstad O P, Bones A M (2002). Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis. Plant Physiol , 128(4): 1180-1188
doi: 10.1104/pp.010925 pmid:11950967
63 Irving A J, Collingridge G L, Schofield J G (1992). L-glutamate and acetylcholine mobilise Ca2+ from the same intracellular pool in cerebellar granule cells using transduction mechanisms with different Ca2+ sensitivities. Cell Calcium , 13(5): 293-301
doi: 10.1016/0143-4160(92)90064-Y pmid:1320457
64 Islam M M, Tani C, Watanabe-Sugimoto M, Uraji M, Jahan M S, Masuda C, Nakamura Y, Mori I C, Murata Y (2009). Myrosinases, TGG1 and TGG2, redundantly function in ABA and MeJA signaling in Arabidopsis guard cells. Plant Cell Physiol , 50(6): 1171-1175
doi: 10.1093/pcp/pcp066 pmid:19433491
65 Iyer L M, Koonin E V, Aravind L (2001). Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily. Proteins , 43(2): 134-144
doi: 10.1002/1097-0134(20010501)43:2<134::AID-PROT1025>3.0.CO;2-I pmid:11276083
66 Jackson M B (2002). Long-distance signaling from roots to shoots assessed: the flooding story. J Exp Bot , 53(367): 175-181
doi: 10.1093/jexbot/53.367.175 pmid:11807120
67 Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S, Leonhardt N, Ellis B E, Murata Y, Kwak J M (2009). MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci USA , 106(48): 20520-20525
doi: 10.1073/pnas.0907205106 pmid:19910530
68 Johnston C A, Temple B R, Chen J G, Gao Y, Moriyama E N, Jones A M, Siderovski D P, Willard F S (2007). Comment on “A G protein coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid”. Science , 318(5852): 914c
doi: 10.1126/science.1143230 pmid:17991845
69 Joo J H, Wang S, Chen J G, Jones A M, Fedoroff N V (2005). Different signaling and cell death roles of heterotrimeric G protein alpha and beta subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell , 17(3): 957-970
doi: 10.1105/tpc.104.029603 pmid:15705948
70 Katsir L, Chung H S, Koo A J, Howe G A (2008). Jasmonate signaling: a conserved mechanism of hormone sensing. Curr Opin Plant Biol , 11(4): 428-435
doi: 10.1016/j.pbi.2008.05.004 pmid:18583180
71 Kerk D, Bulgrien J, Smith D W, Barsam B, Veretnik S, Gribskov M (2002). The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis. Plant Physiol , 129(2): 908-925
doi: 10.1104/pp.004002 pmid:12068129
72 Khokon A R, Okuma E, Hossain M A, Munemasa S, Uraji M, Nakamura Y, Mori I C, Murata Y (2011). Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ , 34(3): 434-443
doi: 10.1111/j.1365-3040.2010.02253.x pmid:21062318
73 Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, Fijolek B, Roux S, Hennig J (2009). The role of annexin 1 in drought stress in Arabidopsis. Plant Physiol , 150(3): 1394-1410
doi: 10.1104/pp.109.135228 pmid:19482919
74 Koornneef M, Hanhart C J, Hilhorst H W, Karssen C M (1989). In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana. Plant Physiol , 90(2): 463-469
doi: 10.1104/pp.90.2.463 pmid:16666794
75 Kwak J M, Moon J H, Murata Y, Kuchitsu K, Leonhardt N, DeLong A, Schroeder J I (2002). Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. Plant Cell , 14(11): 2849-2861
doi: 10.1105/tpc.003335 pmid:12417706
76 Kwak J M, Mori I C, Pei Z M, Leonhardt N, Torres M A, Dangl J L, Bloom R E, Bodde S, Jones J D, Schroeder J I (2003). NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J , 22(11): 2623-2633
doi: 10.1093/emboj/cdg277 pmid:12773379
77 Lackman P, González-Guzmán M, Tilleman S, Carqueijeiro I, Pérez A C, Moses T, Seo M, Kanno Y, H?kkinen S T, Van Montagu M C, Thevelein J M, Maaheimo H, Oksman-Caldentey K M, Rodriguez P L, Rischer H, Goossens A (2011). Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc Natl Acad Sci USA , 108(14): 5891-5896
doi: 10.1073/pnas.1103010108 pmid:21436041
78 Lee J S (1998). The mechanism of stomatal closing by salicylic acid in Commelina communis L. J Plant Biol , 41(2): 97-102
doi: 10.1007/BF03030395
79 Lee S C, Lan W, Buchanan B B, Luan S (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci USA , 106(50): 21419-21424
doi: 10.1073/pnas.0910601106 pmid:19955427
80 Leonhardt N, Kwak J M, Robert N, Waner D, Leonhardt G, Schroeder J I (2004). Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell , 16(3): 596-615
doi: 10.1105/tpc.019000 pmid:14973164
81 Leung J, Bouvier-Durand M, Morris P C, Guerrier D, Chefdor F, Giraudat J (1994). Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science , 264(5164): 1448-1452
doi: 7910981" target="_blank">10.1126/science. pmid:7910981 pmid:7910981
82 Leung J, Giraudat J (1998). Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol , 49(1): 199-222
doi: 10.1146/annurev.arplant.49.1.199 pmid:15012233
83 Leung J, Merlot S, Giraudat J (1997). The ArabidopsisABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell , 9(5): 759-771
pmid:9165752
84 Li J, Assmann S M (1996). An abscisic acid-activated and calcium-independent protein kinase from guard cells of fava bean. Plant Cell , 8(12): 2359-2368
doi: 10.1105/tpc.8.12.2359 pmid:12239380
85 Li J, Wang X Q, Watson M B, Assmann S M (2000). Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science , 287(5451): 300-303
doi: 10.1126/science.287.5451.300 pmid:10634783
86 Li S, Assmann S M, Albert R (2006). Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol , 4(10): e312
doi: 10.1371/journal.pbio.0040312 pmid:16968132
87 Li W, Luan S, Schreiber S, Assmann S (1994). Evidence for protein phosphates 1 and phosphatase 2A regulation of K+ channels in 2 types of leaf cells. Plant Physiol , 106: 963-970
doi: 10.1104/pp.106.3.963 pmid:7824661
88 Liechti R, Farmer E E (2002). The jasmonate pathway. Science , 296(5573): 1649-1650
doi: 10.1126/science.1071547 pmid:12040182
89 Lin F, Ding H, Wang J, Zhang H, Zhang A, Zhang Y, Tan M, Dong W, Jiang M (2009). Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling. J Exp Bot , 60(11): 3221-3238
doi: 10.1093/jxb/erp157 pmid:19592501
90 Liu X, Yue Y, Li B, Nie Y, Li W, Wu W H, Ma L (2007). A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science , 315(5819): 1712-1716
doi: 10.1126/science.1135882 pmid:17347412
91 Lohse G, Hedrich R (1992). Characterization of the plasma membrane H+-ATPase from Vicia faba guard cells- modulation by extracellular factors and seasonal changes. Planta , 188(2): 206-214
doi: 10.1007/BF00216815
92 Lorenzo O, Chico J M, Sánchez-Serrano J J, Solano R (2004). JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell , 16(7): 1938-1950
doi: 10.1105/tpc.022319 pmid:15208388
93 Luan S (2003). Protein phosphatases in plants. Annu Rev Plant Biol , 54(1): 63-92
doi: 10.1146/annurev.arplant.54.031902.134743 pmid:14502985
94 Luan S, Li W, Rusnak F, Assmann S M, Schreiber S L (1993). Immunosuppressants implicate protein phosphatase regulation of K+ channels in guard cells. Proc Natl Acad Sci U S A, 15 ; 90(6):2202-2206
95 Ma S Y, Wu W H (2007). AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol Biol , 65(4): 511-518
doi: 10.1007/s11103-007-9187-2 pmid:17541706
96 Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science , 324(5930): 1064-1068
pmid:19407143
97 MacRobbie E A (1998). Signal transduction and ion channels in guard cells. Philos Trans R Soc Lond B Biol Sci , 353(1374): 1475-1488
doi: 10.1098/rstb.1998.0303 pmid:9800209
98 MacRobbie E A (2002). Evidence for a role for protein tyrosine phosphatase in the control of ion release from the guard cell vacuole in stomatal closure. Proc Natl Acad Sci USA , 99(18): 11963-11968
doi: 10.1073/pnas.172360399 pmid:12189201
99 Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud J P, Aldon D (2008). Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J , 56(4): 575-589
doi: 10.1111/j.1365-313X.2008.03622.x pmid:18643966
100 Manthe B, Schulz M, Schnabl H (1992). Effects of salicylic acid on growth and stomatal movements of Vicia faba L.evidence for salicylic acid metabolization. J Chem Ecol , 18(9): 1525-1539
doi: 10.1007/BF00993226
101 Meinhard M, Grill E (2001). Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from Arabidopsis. FEBS Lett , 508(3): 443-446
doi: 10.1016/S0014-5793(01)03106-4 pmid:11728469
102 Meinhard M, Rodriguez P L, Grill E (2002). The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signalling. Planta , 214(5): 775-782
doi: 10.1007/s00425-001-0675-3 pmid:11882947
103 Melcher K, Ng L M, Zhou X E, Soon F F, Xu Y, Suino-Powell K M, Park S Y, Weiner J J, Fujii H, Chinnusamy V, Kovach A, Li J, Wang Y, Li J, Peterson F C, Jensen D R, Yong E L, Volkman B F, Cutler S R, Zhu J K, Xu H E (2009). A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature , 462(7273): 602-608
doi: 10.1038/nature08613 pmid:19898420
104 Melotto M, Underwood W, Koczan J, Nomura K, He S Y (2006). Plant stomata function in innate immunity against bacterial invasion. Cell , 126(5): 969-980
doi: 10.1016/j.cell.2006.06.054 pmid:16959575
105 Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001). The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J , 25(3): 295-303
doi: 10.1046/j.1365-313x.2001.00965.x pmid:11208021
106 Merlot S, Mustilli A C, Genty B, North H, Lefebvre V, Sotta B, Vavasseur A, Giraudat J (2002). Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J , 30(5): 601-609
doi: 10.1046/j.1365-313X.2002.01322.x pmid:12047634
107 Meyer K, Leube M P, Grill E (1994). A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science , 264(5164): 1452-1455
doi: 8197457" target="_blank">10.1126/science. pmid:8197457 pmid:8197457
108 Miyazono K, Miyakawa T, Sawano Y, Kubota K, Kang H J, Asano A, Miyauchi Y, Takahashi M, Zhi Y, Fujita Y, Yoshida T, Kodaira K S, Yamaguchi-Shinozaki K, Tanokura M (2009). Structural basis of abscisic acid signalling. Nature , 462(7273): 609-614
doi: 10.1038/nature08583 pmid:19855379
109 Mori I C, Murata Y, Yang Y, Munemasa S, Wang Y F, Andreoli S, Tiriac H, Alonso J M, Harper J F, Ecker J R, Kwak J M, Schroeder J I (2006). CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca (2+)-permeable channels and stomatal closure. PLoS Biol , 4(10): e327
doi: 10.1371/journal.pbio.0040327 pmid:17032064
110 Mori I C, Muto S (1997). Abscisic acid activates a 48-kilodalton protein kinase in guard cell protoplasts. Plant Physiol , 113(3): 833-839
pmid:12223647
111 Mori I C, Pinontoan R, Kawano T, Muto S (2001). Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. Plant Cell Physiol , 42(12): 1383-1388
doi: 10.1093/pcp/pce176 pmid:11773531
112 Mundy J, Schneitz K (2002). Protein phosphorylation in and around signal transduction. Trends Plant Sci , 7(2): 54-55
doi: 10.1016/S1360-1385(01)02192-6 pmid:11832270
113 Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y (2007). The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells: Specific impairment of ion channel activation and second messenger production. Plant Physiol , 143(3): 1398-1407
doi: 10.1104/pp.106.091298 pmid:17220365
114 Murata Y, Pei Z M, Mori I C, Schroeder J (2001). Abscisic acid activation of plasma membrane Ca (2+) channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell , 13(11): 2513-2523
pmid:11701885
115 Mustilli A C, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002). Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell , 14(12): 3089-3099
doi: 10.1105/tpc.007906 pmid:12468729
116 Neill S J, Desikan R, Clarke A, Hancock J T (2002). Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol , 128(1): 13-16
doi: 10.1104/pp.010707 pmid:11788747
117 Nemhauser J L, Hong F, Chory J (2006). Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell , 126(3): 467-475
doi: 10.1016/j.cell.2006.05.050 pmid:16901781
118 Nishimura N, Sarkeshik A, Nito K, Park S Y, Wang A, Carvalho P C, Lee S, Caddell D F, Cutler S R, Chory J, Yates J R, Schroeder J I (2010). PYR/PYL/RCAR family members are major in vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J , 61(2): 290-299
doi: 10.1111/j.1365-313X.2009.04054.x pmid:19874541
119 Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T (2007). ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J , 50(6): 935-949
doi: 10.1111/j.1365-313X.2007.03107.x pmid:17461784
120 Outlaw W H Jr, De Vlieghere-He X (2001). Transpiration rate: An important factor controlling the sucrose content of the guard cell apoplast of broad bean. Plant Physiol , 126(4): 1716-1724
doi: 10.1104/pp.126.4.1716 pmid:11500569
121 Pandey G K, Grant J J, Cheong Y H, Kim B G, Li G, Luan S (2008). Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. Mol Plant , 1(2): 238-248
doi: 10.1093/mp/ssn003 pmid:19825536
122 Pandey S, Nelson D C, Assmann S M (2009). Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell , 136(1): 136-148
doi: 10.1016/j.cell.2008.12.026 pmid:19135895
123 Park S Y, Fung P, Nishimura N, Jensen D R, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow T F, Alfred S E, Bonetta D, Finkelstein R, Provart N J, Desveaux D, Rodriguez P L, McCourt P, Zhu J K, Schroeder J I, Volkman B F, Cutler S R (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science , 324(5930): 1068-1071
pmid:19407142
124 Parvathi K, Raghavendra A (1997). Both Rubisco and phosphoenolpyruvate carboxylase are beneficial for stomatal function in epidermal strips of Commelina benghalensis. Plant Sci , 124(2): 153-157
doi: 10.1016/S0168-9452(97)04601-3
125 Pei Z M, Kuchitsu K, Ward J M, Schwarz M, Schroeder J I (1997). Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant Cell , 9(3): 409-423
pmid:9090884
126 Pei Z M, Murata Y, Benning G, Thomine S, Klüsener B, Allen G J, Grill E, Schroeder J I (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature , 406(6797): 731-734
doi: 10.1038/35021067 pmid:10963598
127 Pitzschke A, Forzani C, Hirt H (2006). Reactive oxygen species signaling in plants. Antioxid Redox Signal , 8(9-10): 1757-1764
doi: 10.1089/ars.2006.8.1757 pmid:16987029
128 Razem F A, El-Kereamy A, Abrams S R, Hill R D (2006). The RNA-binding protein FCA is an abscisic acid receptor. Nature , 439(7074): 290-294
doi: 10.1038/nature04373 pmid:16421562
129 Rodriguez P L, Leube M P, Grill E (1998). Molecular cloning in Arabidopsis thaliana of a new protein phosphatase 2C (PP2C) with homology to ABI1 and ABI2. Plant Mol Biol , 38(5): 879-883
doi: 10.1023/A:1006012218704 pmid:9862504
130 Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia M P, Nicolas C, Lorenzo O, Rodriguez P L (2004). Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant J , 37(3): 354-369
doi: 10.1046/j.1365-313X.2003.01966.x pmid:14731256
131 Saito N, Munemasa S, Nakamura Y, Shimoishi Y, Mori I C, Murata Y (2008). Roles of RCN1, regulatory A subunit of protein phosphatase 2A, in methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid. Plant Cell Physiol , 49(9): 1396-1401
doi: 10.1093/pcp/pcn106 pmid:18650210
132 Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park S Y, Márquez J A, Cutler S R, Rodriguez P L (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J , 60(4): 575-588
doi: 10.1111/j.1365-313X.2009.03981.x pmid:19624469
133 Sato A, Sato Y, Fukao Y, Fujiwara M, Umezawa T, Shinozaki K, Hibi T, Taniguchi M, Miyake H, Goto D B, Uozumi N (2009). Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J , 424(3): 439-448
doi: 10.1042/BJ20091221 pmid:19785574
134 Schmidt C, Schelle I, Liao Y J, Schroeder J I (1995). Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events. Proc Natl Acad Sci USA , 92(21): 9535-9539
doi: 10.1073/pnas.92.21.9535 pmid:11607582
135 Schroeder J I, Hedrich R (1989). Involvement of ion channels and active transport in osmoregulation and signaling of higher plant cells. Trends Biochem Sci , 14(5): 187-192
doi: 10.1016/0968-0004(89)90272-7 pmid:2475930
136 Schweighofer A, Hirt H, Meskiene I (2004). Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci , 9(5): 236-243
doi: 10.1016/j.tplants.2004.03.007 pmid:15130549
137 Sethuraman M, McComb M E, Huang H, Huang S, Heibeck T, Costello C E, Cohen R A (2004). Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J Proteome Res , 3(6): 1228-1233
doi: 10.1021/pr049887e pmid:15595732
138 Sheard L B, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds T R, Kobayashi Y, Hsu F F, Sharon M, Browse J, He S Y, Rizo J, Howe G A, Zheng N (2010). Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature , 468(7322): 400-405
doi: 10.1038/nature09430 pmid:20927106
139 Shen Y Y, Wang X F, Wu F Q, Du S Y, Cao Z, Shang Y, Wang X L, Peng C C, Yu X C, Zhu S Y, Fan R C, Xu Y H, Zhang D P (2006). The Mg-chelatase H subunit is an abscisic acid receptor. Nature , 443(7113): 823-826
doi: 10.1038/nature05176 pmid:17051210
140 Shimazaki K, Kinoshita T, Nishimura M (1992). Involvement of calmodulin and dalmodulin-dependent myosin light chain kinase in blue light-dependent H pumping by guard cell protoplasts from Vicia faba L. Plant Physiol , 99(4): 1416-1421
doi: 10.1104/pp.99.4.1416 pmid:16669053
141 Shinozaki K, Yamaguchi-Shinozaki K (2006). Gene networks involved in drought stress response and tolerance. J Exp Bot , 58(2): 221-227
doi: 10.1093/jxb/erl164 pmid:17075077
142 Sirichandra C, Davanture M, Turk B E, Zivy M, Valot B, Leung J, Merlot S (2010). The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS ONE , 5(11): e13935
doi: 10.1371/journal.pone.0013935 pmid:21085673
143 Sirichandra C, Wasilewska A, Vlad F, Valon C, Leung J (2009). The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. J Exp Bot , 60(5): 1439-1463
doi: 10.1093/jxb/ern340 pmid:19181866
144 Sokolovski S, Hills A, Gay R, Garcia-Mata C, Lamattina L, Blatt M R (2005). Protein phosphorylation is a prerequisite for intracellular Ca2+ release and ion channel control by nitric oxide and abscisic acid in guard cells. Plant J , 43(4): 520-529
doi: 10.1111/j.1365-313X.2005.02471.x pmid:16098106
145 Stone J M, Walker J C (1995). Plant protein kinase families and signal transduction. Plant Physiol , 108(2): 451-457
doi: 10.1104/pp.108.2.451 pmid:7610156
146 Suhita D, Kolla V, Vavasseur A, Raghavendra A (2003). Different signaling pathways involved during the suppression of stomatal opening by methyl jasmonate or abscisic acid. Plant Sci , 164(4): 481-488
doi: 10.1016/S0168-9452(02)00432-6
147 Suhita D, Raghavendra A S, Kwak J M, Vavasseur A (2004). Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol , 134(4): 1536-1545
doi: 10.1104/pp.103.032250 pmid:15064385
148 Suzukawa K, Miura K, Mitsushita J, Resau J, Hirose K, Crystal R, Kamata T (2000). Nerve growth factor-induced neuronal differentiation requires generation of Rac1-regulated reactive oxygen species. J Biol Chem , 275(18): 13175-13178
doi: 10.1074/jbc.275.18.13175 pmid:10788420
149 Suzuki N, Koussevitzky S, Mittler R, Miller G (2011). ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ : no
doi: 10.1111/j.1365-3040.2011.02336.x pmid:21486305
150 T?htiharju S, Palva T (2001). Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant J , 26(4): 461-470
doi: 10.1046/j.1365-313X.2001.01048.x pmid:11439132
151 Taiz L, Zeiger E (2006). Plant Physiology (4th ed). Sunderland: Sinauer Associates Inc
152 Taj G, Agarwal P, Grant M, Kumar A (2010). MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signal Behav , 5(11): 1370-1378
doi: 10.4161/psb.5.11.13020 pmid:20980831
153 Tanaka N, Matsuoka M, Kitano H, Asano T, Kaku H, Komatsu S (2006). gid1, a gibberellin-insensitive dwarf mutant, shows altered regulation of probenazole-inducible protein (PBZ1) in response to cold stress and pathogen attack. Plant Cell Environ , 29(4): 619-631
doi: 10.1111/j.1365-3040.2005.01441.x pmid:17080612
154 Thiel G, Blatt M (1994). Phosphatase antagonist okadaic acid inhibits steady state K+ currents in guard cells of Vicia faba. Plant J , 5(5): 727-733
doi: 10.1111/j.1365-313X.1994.00727.x
155 Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He S Y, Howe G A, Browse J (2007). JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature , 448(7154): 661-665
doi: 10.1038/nature05960 pmid:17637677
156 Tominaga M, Harada A, Kinoshita T, Shimazaki K (2010). Biochemical characterization of calcineurin B-like-interacting protein kinase in Vicia guard cells. Plant Cell Physiol , 51(3): 408-421
doi: 10.1093/pcp/pcq006 pmid:20061302
157 Tsuzuki T, Takahashi K, Inoue S, Okigaki Y, Tomiyama M, Hossain M A, Shimazaki K, Murata Y, Kinoshita T (2011). Mg-chelatase H subunit affects ABA signaling in stomatal guard cells, but is not an ABA receptor in Arabidopsis thaliana. J Plant Res , 124(4): 527-538
doi: 10.1007/s10265-011-0426-x pmid:21562844
158 Vahisalu T, Puz?rjova P, Brosché M, Valk E, Lepiku M, Moldau H, Pechter P, Wang Y S, Lindgren O, Saloj?rvi J, Loog M, Kangasj?rvi J, Kollist H (2010). Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. The Plant Journal , 62: 442-453
159 Valerio C, Costa A, Marri L, Issakidis-Bourguet E, Pupillo P, Trost P, Sparla F (2011). Thioredoxin-regulated beta-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. J Exp Bot , 62(2): 545-555
doi: 10.1093/jxb/erq288 pmid:20876336
160 Valko M, Leibfritz D, Moncol J, Cronin M T, Mazur M, Telser J (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol , 39(1): 44-84
doi: 10.1016/j.biocel.2006.07.001 pmid:16978905
161 Vavasseur A, Raghavendra A S (2005). Guard cell metabolism and CO2 sensing. New Phytol , 165(3): 665-682
doi: 10.1111/j.1469-8137.2004.01276.x pmid:15720679
162 Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C, Robert N, Leung J, Rodriguez P L, Laurière C, Merlot S (2009). Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell , 21(10): 3170-3184
doi: 10.1105/tpc.109.069179 pmid:19855047
163 Wang R S, Pandey S, Li S, Gookin T E, Zhao Z, Albert R, Assmann S M (2011). Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC Genomics , 12(1): 216
doi: 10.1186/1471-2164-12-216 pmid:21554708
164 Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frei dit Frey N, Leung J (2008). An update on abscisic acid signaling in plants and more.... Mol Plant , 1(2): 198-217
doi: 10.1093/mp/ssm022 pmid:19825533
165 West A H, Stock A M (2001). Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci , 26(6): 369-376
doi: 10.1016/S0968-0004(01)01852-7 pmid:11406410
166 Wilkinson S, Davies W J (2002). ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ , 25(2): 195-210
doi: 10.1046/j.0016-8025.2001.00824.x pmid:11841663
167 Wu Y, Kuzma J, Maréchal E, Graeff R, Lee H C, Foster R, Chua N H (1997). Abscisic acid signaling through cyclic ADP-ribose in plants. Science , 278(5346): 2126-2130
doi: 10.1126/science.278.5346.2126 pmid:9405349
168 Xie D X, Feys B F, James S, Nieto-Rostro M, Turner J G (1998). COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science , 280(5366): 1091-1094
doi: 10.1126/science.280.5366.1091 pmid:9582125
169 Xue S, Hu H, Ries A, Merilo E, Kollist H, Schroeder J I (2011). Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell. EMBO J , 30(8): 1645-1658
doi: 10.1038/emboj.2011.68 pmid:21423149
170 Yin P, Fan H, Hao Q, Yuan X, Wu D, Pang Y, Yan C, Li W, Wang J, Yan N (2009). Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol , 16(12): 1230-1236
doi: 10.1038/nsmb.1730 pmid:19893533
171 Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2005). The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem , 281(8): 5310-5318
doi: 10.1074/jbc.M509820200 pmid:16365038
172 Zhang X, Zhang L, Dong F, Gao J, Galbraith D W, Song C P (2001). Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol , 126(4): 1438-1448
doi: 10.1104/pp.126.4.1438 pmid:11500543
173 Zhao Z, Stanley B A, Zhang W, Assmann S M (2010). ABA-regulated G protein signaling in Arabidopsis guard cells: a proteomic perspective. J Proteome Res , 9(4): 1637-1647
doi: 10.1021/pr901011h pmid:20166762
174 Zhao Z, Zhang W, Stanley B A, Assmann S M (2008). Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell , 20(12): 3210-3226
doi: 10.1105/tpc.108.063263 pmid:19114538
175 Zhu M, Dai S, McClung S, Yan X, Chen S (2009). Functional differentiation of Brassica napus guard cells and mesophyll cells revealed by comparative proteomics. Mol Cell Proteomics , 8(4): 752-766
doi: 10.1074/mcp.M800343-MCP200 pmid:19106087
176 Zhu S Y, Yu X C, Wang X J, Zhao R, Li Y, Fan R C, Shang Y, Du S Y, Wang X F, Wu F Q, Xu Y H, Zhang X Y, Zhang D P (2007). Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell , 19(10): 3019-3036
doi: 10.1105/tpc.107.050666 pmid:17921317
[1] Rini Jacob,Anbalagan Moorthy. Targeting secret handshakes of biological processes for novel drug development[J]. Front. Biol., 2016, 11(2): 132-140.
[2] Kai Jiang,Jianhang Jia. Smoothened regulation in response to Hedgehog stimulation[J]. Front. Biol., 2015, 10(6): 475-486.
[3] Elaine Y. C. Hsia,Yirui Gui,Xiaoyan Zheng. Regulation of Hedgehog signaling by ubiquitination[J]. Front. Biol., 2015, 10(3): 203-220.
[4] Olga KSIONDA, Andre LIMNANDER, Jeroen P. ROOSE. RasGRP Ras guanine nucleotide exchange factors in cancer[J]. Front Biol, 2013, 8(5): 508-532.
[5] Tanapat PALAGA, Lisa M. MINTER. Notch signaling and its emerging role in autoimmunity[J]. Front Biol, 2013, 8(3): 279-294.
[6] Mary Catherine RENEER, Francesc MARTI. The balancing act of AKT in T cells[J]. Front Biol, 2013, 8(2): 160-174.
[7] Kundan KUMAR, Dhammaprakash Pandhari WANKHEDE, Alok Krishna SINHA. Signal convergence through the lenses of MAP kinases: paradigms of stress and hormone signaling in plants[J]. Front Biol, 2013, 8(1): 109-118.
[8] Yuying SANG, Wenfeng SUN, Zhenbiao YANG. Signaling mechanisms integrating carbon and nitrogen utilization in plants[J]. Front Biol, 2012, 7(6): 548-556.
[9] Hao LI, Xiao-Chun XU. Lost expression of thyroid hormone receptor-β1 mRNA in esophageal cancer[J]. Front Biol, 2012, 7(4): 368-373.
[10] Xiaoyan LIU, Jozsef GAL, Haining ZHU. Sequestosome 1/p62: a multi-domain protein with multi-faceted functions[J]. Front Biol, 2012, 7(3): 189-201.
[11] Xuan YE, Aimin LIU. Hedgehog signaling: mechanisms and evolution[J]. Front Biol, 2011, 6(6): 504-521.
[12] Xiuhua XUE, Fei DU, Jinsheng ZHU, Haiyun REN. Actin organization and regulation during pollen tube growth[J]. Front Biol, 2011, 06(01): 40-51.
[13] Peng ZHAO, Dong-Qiao SHI, Wei-Cai YANG. Patterning the embryo in higher plants: Emerging pathways and challenges[J]. Front Biol, 2011, 06(01): 3-11.
[14] Xin-Qi GAO, Dongzi ZHU, Xiansheng ZHANG, . Stigma factors regulating self-compatible pollination[J]. Front. Biol., 2010, 5(2): 156-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed