|
|
Approaches in extracellular matrix engineering for determination of adhesion molecule mediated single cell function |
Chantal E. AYRES-SANDER, Anjelica L. GONZALEZ( ) |
Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA |
|
|
Abstract The native extracellular matrix (ECM) and the cells that comprise human tissues are together engaged in a complex relationship; cells alter the composition and structure of the ECM to regulate the material and biologic properties of the surrounding environment while the composition and structure of the ECM modulates cellular processes that maintain healthy tissue and repair diseased tissue. This reciprocal relationship occurs via cell adhesion molecules (CAMs) such as integrins, selectins, cadherins and IgSF adhesion molecules. To study these cell-ECM interactions, researchers use two-dimensional substrates or three-dimensional matrices composed of native proteins or bioactive peptide sequences to study single cell function. While two-dimensional substrates provide valuable information about cell-ECM interactions, three-dimensional matrices more closely mimic the native ECM; cells cultured in three-dimensional matrices have demonstrated greater cell movement and increased integrin expression when compared to cells cultured on two-dimensional substrates. In this article we review a number of cellular processes (adhesion, motility, phagocytosis, differentiation and survival) and examine the cell adhesion molecules and ECM proteins (or bioactive peptide sequences) that mediate cell functionality.
|
Keywords
Extracellular matrix
integrins
biomaterials
natural polymers
peptide sequences
RGD
|
Corresponding Author(s):
GONZALEZ Anjelica L.,Email:anjelica.gonzalez@yale.edu
|
Issue Date: 01 February 2013
|
|
1 |
Abraham L C, Dice J F, Finn P F, Mesires N T, Lee K, Kaplan D L (2007). Extracellular matrix remodeling—methods to quantify cell-matrix interactions. Biomaterials , 28(2): 151–161 doi: 10.1016/j.biomaterials.2006.07.001 pmid:16893566
|
2 |
Abu-Rub M T, Billiar K L, Van Es M H, Knight A, Rodriguez B J, Zeugolis D I, McMahon S, Windebank A J, Pandit A (2011). Nano-textured self-assembled aligned hydrogels promote directional neurite guidance and overcome inhibition by myelin associated glycoprotein. Soft Matter , 7(6): 2770–2781 doi: 10.1039/c0sm01062f
|
3 |
Agrez M V, Bates R C, Boyd A W, Burns G F (1991). Arg-Gly-Asp-containing peptides expose novel collagen receptors on fibroblasts: implications for wound healing. Cell Regul , 2(12): 1035–1044 pmid:1666304
|
4 |
Alvarez-Perez M A, Guarino V, Cirillo V, Ambrosio L (2010). Influence of gelatin cues in PCL electrospun membranes on nerve outgrowth. Biomacromolecules , 11(9): 2238–2246 doi: 10.1021/bm100221h pmid:20690634
|
5 |
Andukuri A, Minor W P, Kushwaha M, Anderson J M, Jun H W, Jun H W (2010). Effect of endothelium mimicking self-assembled nanomatrices on cell adhesion and spreading of human endothelial cells and smooth muscle cells. Nanomedicine , 6(2): 289–297 doi: 10.1016/j.nano.2009.09.004 pmid:19800987
|
6 |
Anselme K (2000). Osteoblast adhesion on biomaterials. Biomaterials , 21(7): 667–681 doi: 10.1016/S0142-9612(99)00242-2 pmid:10711964
|
7 |
Ayres C E, Bowlin G L, Henderson S C, Taylor L, Shultz J, Alexander J, Telemeco T A, Simpson D G (2006). Modulation of anisotropy in electrospun tissue-engineering scaffolds: Analysis of fiber alignment by the fast Fourier transform. Biomaterials , 27(32): 5524–5534 doi: 10.1016/j.biomaterials.2006.06.014 pmid:16859744
|
8 |
Ayres C E, Bowlin G L, Pizinger R, Taylor L T, Keen C A, Simpson D G (2007). Incremental changes in anisotropy induce incremental changes in the material properties of electrospun scaffolds. Acta Biomater , 3(5): 651–661 doi: 10.1016/j.actbio.2007.02.010 pmid:17513181
|
9 |
Barbani N, Guerra G D, Cristallini C, Urciuoli P, Avvisati R, Sala A, Rosellini E (2011). Hydroxyapatite/gelatin/gellan sponges as nanocomposite scaffolds for bone reconstruction. J Mater Sci Mater Med , (Epub ahead of print) doi: 10.1007/s10856-011-4505-2 pmid:22116662
|
10 |
Barczyk M, Carracedo S, Gullberg D (2010). Integrins. Cell Tissue Res , 339(1): 269–280 doi: 10.1007/s00441-009-0834-6 pmid:19693543
|
11 |
Barnes C P, Sell S A, Boland E D, Simpson D G, Bowlin G L (2007). Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev , 59(14): 1413–1433 doi: 10.1016/j.addr.2007.04.022 pmid:17916396
|
12 |
Barnhart E L, Lee K C, Keren K, Mogilner A, Theriot J A (2011). An adhesion-dependent switch between mechanisms that determine motile cell shape. PLoS Biol , 9(5): e1001059 doi: 10.1371/journal.pbio.1001059 pmid:21559321
|
13 |
Béduer A, Vieu C, Arnauduc F, Sol J C, Loubinoux I, Vaysse L (2012). Engineering of adult human neural stem cells differentiation through surface micropatterning. Biomaterials , 33(2): 504–514 doi: 10.1016/j.biomaterials.2011.09.073 pmid:22014459
|
14 |
Benton G, Kleinman H K, Arnaoutova I (2011). Multiple uses of basement membrane-like matrix (BME/Matrigel) in vitro and in vivo with cancer cells. International Journal of Cancer , 128(8):1751– 1757
|
15 |
Berndt P, Fields G B, Tirrell M (1995). Synthetic lipidation of peptides and amino acids: monolayer structure and properties. J Am Chem Soc , 117(37): 9515–9522 doi: 10.1021/ja00142a019
|
16 |
Bhattarai N, Edmondson D, Veiseh O, Matsen F A, Zhang M (2005). Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials , 26(31): 6176–6184 doi: 10.1016/j.biomaterials.2005.03.027 pmid:15885770
|
17 |
Bigi A, Panzavolta S, Rubini K (2004). Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterials , 25(25): 5675–5680 doi: 10.1016/j.biomaterials.2004.01.033 pmid:15159084
|
18 |
Brown E J (1986). The role of extracellular matrix proteins in the control of phagocytosis. J Leukoc Biol , 39(5): 579–591 pmid:3517208
|
19 |
Chaubey A, Ross K J, Leadbetter R M, Burg K J (2008). Surface patterning: tool to modulate stem cell differentiation in an adipose system. J Biomed Mater Res B Appl Biomater , 84B(1): 70–78 doi: 10.1002/jbm.b.30846 pmid:17455278
|
20 |
Cheema U, Ananta M, Mudera V (2011). Collagen: applications of a natural polymer in regenerative medicine. Regenerative Medicine and Tissue Engineering—Cells and Biomaterials . Eberli D, Ed. In Tech. 287–300
|
21 |
Chen V J, Ma P X (2004). Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials , 25(11): 2065–2073 doi: 10.1016/j.biomaterials.2003.08.058 pmid:14741621
|
22 |
Chen Y J, Chung M C, Jane Yao C C, Huang C H, Chang H H, Jeng J H, Young T H (2012). The effects of acellular amniotic membrane matrix on osteogenic differentiation and ERK1/2 signaling in human dental apical papilla cells. Biomaterials , 33(2): 455–463 doi: 10.1016/j.biomaterials.2011.09.065 pmid:21993232
|
23 |
Colognato H, Yurchenco P D (2000). Form and function: the laminin family of heterotrimers. Dev Dyn , 218(2): 213–234 doi: 10.1002/(SICI)1097-0177(200006)218:2<213::AID-DVDY1>3.0.CO;2-R pmid:10842354
|
24 |
Coxon A, Rieu P, Barkalow F J, Askari S, Sharpe A H, von Andrian U H, Arnaout M A, Mayadas T N (1996). A novel role for the β2 integrin CD11b/CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation. Immunity , 5(6): 653–666 doi: 10.1016/S1074-7613(00)80278-2 pmid:8986723
|
25 |
Cybulsky M I, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos J C, Connelly P W, Milstone D S (2001). A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest , 107(10): 1255–1262 doi: 10.1172/JCI11871 pmid:11375415
|
26 |
Davis G E (1992). Affinity of integrins for damaged extracellular matrix: alpha v beta 3 binds to denatured collagen type I through RGD sites. Biochem Biophys Res Commun , 182(3): 1025–1031 doi: 10.1016/0006-291X(92)91834-D pmid:1540151
|
27 |
Duca L, Floquet N, Alix A J, Haye B, Debelle L (2004). Elastin as a matrikine. Crit Rev Oncol Hematol , 49(3): 235–244 doi: 10.1016/j.critrevonc.2003.09.007 pmid:15036263
|
28 |
Friedl P (2004). Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol , 16(1): 14–23 doi: 10.1016/j.ceb.2003.11.001 pmid:15037300
|
29 |
Friedl P, Br?cker E B (2000). The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol Life Sci , 57(1): 41–64 doi: 10.1007/s000180050498 pmid:10949580
|
30 |
Friedl P, Hegerfeldt Y, Tusch M (2004). Collective cell migration in morphogenesis and cancer. Int J Dev Biol , 48(5-6): 441–449 doi: 10.1387/ijdb.041821pf pmid:15349818
|
31 |
Ghibaudo M, Trichet L, Le Digabel J, Richert A, Hersen P, Ladoux B (2009). Substrate topography induces a crossover from 2D to 3D behavior in fibroblast migration. Biophys J , 97(1): 357–368 doi: 10.1016/j.bpj.2009.04.024 pmid:19580774
|
32 |
Gobin A S, West J L (2002). Cell migration through defined, synthetic extracellular matrix analogues. FASEB J , 16(7): 751–753 pmid:11923220
|
33 |
Golias C, Batistatou A, Bablekos G, Charalabopoulos A, Peschos D, Mitsopoulos P, Charalabopoulos K (2011). Physiology and pathophysiology of selectins, integrins, and IgSF cell adhesion molecules focusing on inflammation. A paradigm model on infectious endocarditis. Cell Commun Adhes , 18(3): 19–32 doi: 10.3109/15419061.2011.606381 pmid:21892874
|
34 |
Gonzalez A L, El-Bjeirami W, West J L, McIntire L V, Smith C W (2006). Transendothelial migration enhances integrin-dependent human neutrophil chemokinesis. J Leukoc Biol , 81(3): 686–695 doi: 10.1189/jlb.0906553 pmid:17164427
|
35 |
Gonzalez A L, Gobin A S, West J L, McIntire L V, Smith C W (2004). Integrin interactions with immobilized peptides in polyethylene glycol diacrylate hydrogels. Tissue Eng , 10(11–12): 1775–1786 doi: 10.1089/ten.2004.10.1775 pmid:15684686
|
36 |
Grinnell F (1984). Fibronectin and wound healing. J Cell Biochem , 26(2): 107–116 doi: 10.1002/jcb.240260206 pmid:6084665
|
37 |
Gumbiner B M (1996). Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell , 84(3): 345–357 doi: 10.1016/S0092-8674(00)81279-9 pmid:8608588
|
38 |
Gumbiner B M (2005). Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol , 6(8): 622–634 doi: 10.1038/nrm1699 pmid:16025097
|
39 |
Guo L T, Zhang X U, Kuang W, Xu H, Liu L A, Vilquin J T, Miyagoe-Suzuki Y, Takeda S, Ruegg M A, Wewer U M, Engvall E (2003). Laminin alpha2 deficiency and muscular dystrophy; genotype-phenotype correlation in mutant mice. Neuromuscul Disord , 13(3): 207–215 doi: 10.1016/s0960-8966(02)00266-3 pmid:12609502
|
40 |
Handley M E, Pollara G, Chain B M, Katz D R (2005). The use of targeted microbeads for quantitative analysis of the phagocytic properties of human monocyte-derived dendritic cells. J Immunol Methods , 297(1–2): 27–38 doi: 10.1016/j.jim.2004.11.009 pmid:15777928
|
41 |
Hayashi Y, Shumsky J S, Connors T, Otsuka T, Fischer I, Tessler A, Murray M (2005). Immunosuppression with either cyclosporine a or FK506 supports survival of transplanted fibroblasts and promotes growth of host axons into the transplant after spinal cord injury. J Neurotrauma , 22(11): 1267–1281 doi: 10.1089/neu.2005.22.1267 pmid:16305315
|
42 |
Hughes C S, Postovit L M, Lajoie G A (2010). Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics , 10(9): 1886–1890 doi: 10.1002/pmic.200900758 pmid:20162561
|
43 |
Huo Y, Hafezi-Moghadam A, Ley K (2000). Role of vascular cell adhesion molecule-1 and fibronectin connecting segment-1 in monocyte rolling and adhesion on early atherosclerotic lesions. Circ Res , 87(2): 153–159 pmid:10904000
|
44 |
Jayaraman K, Kotaki M, Zhang Y, Mo X, Ramakrishna S (2004). Recent advances in polymer nanofibers. J Nanosci Nanotechnol , 4(1–2): 52–65 pmid:15112541
|
45 |
Jha B S, Ayres C E, Bowman J R, Telemeco T A, Sell S A, Bowlin G L, Simpson DG (2011). Electrospun collagen: a tissue engineering scaffold with unique functional properties in a wide variety of applications. J Nanomaterials , doi: 10.1155/2011/348268
|
46 |
Ju Y M, Choi J S, Atala A, Yoo J J, Lee S J (2010). Bilayered scaffold for engineering cellularized blood vessels. Biomaterials , 31(15): 4313–4321 doi: 10.1016/j.biomaterials.2010.02.002 pmid:20188414
|
47 |
Kafi A M, El-Said W A, Kim T H, Choi J W (2012). Cell adhesion, spreading, and proliferation on surface functionalized with RGD nanopillar arrays. Biomaterials , 33(3):731–739
|
48 |
Komoriya A, Green L J, Mervic M, Yamada S S, Yamada K M, Humphries M J (1991). The minimal essential sequence for a major cell type-specific adhesion site (CS1) within the alternatively spliced type III connecting segment domain of fibronectin is leucine-aspartic acid-valine. J Biol Chem , 266(23): 15075–15079 pmid:1869542
|
49 |
Koo W, Ahn S J, Zhang H, Wang J C, Yim E K F (2011). Human corneal keratocyte response tomicro and nano-gratings on chitosan and PDMS. Cell MolBioeng. , 4(3): 399–410
|
50 |
Kundu A K, Putnam A J (2006). Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochem Biophys Res Commun , 347(1): 347–357 doi: 10.1016/j.bbrc.2006.06.110 pmid:16815299
|
51 |
Ledger P W, Uchida N, Tanzer M L (1980). Immunocytochemical localization of procollagen and fibronectin in human fibroblasts: effects of the monovalent ionophore, monensin. J Cell Biol , 87(3): 663–671 doi: 10.1083/jcb.87.3.663 pmid:7007394
|
52 |
Lee K Y, Mooney D J (2001). Hydrogels for tissue engineering. Chem Rev , 101(7): 1869–1880 doi: 10.1021/cr000108x pmid:11710233
|
53 |
Lee S H, Moon J J, Miller J S, West J L (2007). Poly(ethylene glycol) hydrogels conjugated with a collagenase-sensitive fluorogenic substrate to visualize collagenase activity during three-dimensional cell migration. Biomaterials , 28(20): 3163–3170 doi: 10.1016/j.biomaterials.2007.03.004 pmid:17395258
|
54 |
Long M, Sato M, Lim C T, Wu J, Adachi T, Inoue Y (2011). Advances in experiments in modeling in micro- and nano- biomechanics: A mini review. Cell Mol Bioeng , 4(3): 327–339
|
55 |
Lü S H, Lin Q, Liu Y N, Gao Q, Hao T, Wang Y, Zhou J, Wang H, Du Z, Wu J, Wang C Y (2011). Self-assembly of renal cells into engineered renal tissues in collagen/Matrigel scaffold in vitro. J Tissue Eng Regen Med : N/A (Epub ahead of print) doi: 10.1002/term.484 pmid:22052853
|
56 |
Ma P X, Zhang R (1999). Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res , 46(1): 60–72 doi: 10.1002/(SICI)1097-4636(199907)46:1<60::AID-JBM7>3.0.CO;2-H pmid:10357136
|
57 |
Ma P X, Zhang R, Xiao G, Franceschi R (2001). Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds. J Biomed Mater Res , 54(2): 284–293 doi: 10.1002/1097-4636(200102)54:2<284::AID-JBM16>3.0.CO;2-W pmid:11093189
|
58 |
Ma Z, Kotaki M, Inai R, Ramakrishna S (2005). Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng , 11(1–2): 101–109 doi: 10.1089/ten.2005.11.101 pmid:15738665
|
59 |
Macrae E K, Pryzwansky K B (1984). Phagocytosis of zymosan by human neutrophils. Carlsberg Res Commun , 49(2): 315–322 doi: 10.1007/BF02913959
|
60 |
Maheshwari G, Brown G, Lauffenburger D A, Wells A, Griffith L G (2000). Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci , 113(Pt 10): 1677–1686 pmid:10769199
|
61 |
Man S, Tucky B, Bagheri N, Li X, Kochar R, Ransohoff R M (2009). alpha4 Integrin/FN-CS1 mediated leukocyte adhesion to brain microvascular endothelial cells under flow conditions. J Neuroimmunol , 210(1–2): 92–99 doi: 10.1016/j.jneuroim.2009.03.008 pmid:19345424
|
62 |
Martins-Green M (1997). The Dynamics of Cell-ECM Interactions with Implications for Tissue Engineering. Principles of Tissue Engineering . Lanza R, Langer R, Chick W, Eds. R.G. Landes Company: New York. 23–46
|
63 |
Matter M L, Zhang Z, Nordstedt C, Ruoslahti E (1998). The α5β1 integrin mediates elimination of amyloid-β peptide and protects against apoptosis. J Cell Biol , 141(4): 1019–1030 doi: 10.1083/jcb.141.4.1019 pmid:9585419
|
64 |
Matthews J A, Wnek G E, Simpson D G, Bowlin G L (2002). Electrospinning of collagen nanofibers. Biomacromolecules , 3(2): 232–238 doi: 10.1021/bm015533u pmid:11888306
|
65 |
McClure M J, Sell S A, Simpson D G, Walpoth B H, Bowlin G L (2010). A three-layered electrospun matrix to mimic native arterial architecture using polycaprolactone, elastin, and collagen: a preliminary study. Acta Biomater , 6(7): 2422–2433 doi: 10.1016/j.actbio.2009.12.029 pmid:20060934
|
66 |
McCracken K W, Howell J C, Wells J M, Spence J R (2011). Generating human intestinal tissue from pluripotent stem cells in vitro. Nat Protoc , 6(12): 1920–1928 doi: 10.1038/nprot.2011.410 pmid:22082986
|
67 |
Meredith J E Jr, Fazeli B, Schwartz M A (1993). The extracellular matrix as a cell survival factor. Mol Biol Cell , 4(9): 953–961 pmid:8257797
|
68 |
Meshel A S, Wei Q, Adelstein R S, Sheetz M P (2005). Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat Cell Biol , 7(2): 157–164 doi: 10.1038/ncb1216 pmid:15654332
|
69 |
Miller C, George S, Niklason L (2010). Developing a tissue-engineered model of the human bronchiole. J Tissue Eng Regen Med , 4(8): 619–627 doi: 10.1002/term.277 pmid:20603896
|
70 |
Nathan C, Srimal S, Farber C, Sanchez E, Kabbash L, Asch A, Gailit J, Wright S D (1989). Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18 integrins. J Cell Biol , 109(3): 1341–1349 doi: 10.1083/jcb.109.3.1341 pmid:2475511
|
71 |
Newman S L, Tucci M A (1990). Regulation of human monocyte/macrophage function by extracellular matrix. Adherence of monocytes to collagen matrices enhances phagocytosis of opsonized bacteria by activation of complement receptors and enhancement of Fc receptor function. J Clin Invest , 86(3): 703–714 doi: 10.1172/JCI114766 pmid:2168442
|
72 |
Norton L W, Park J, Babensee J E (2010). Biomaterial adjuvant effect is attenuated by anti-inflammatory drug delivery or material selection. J Control Release , 146(3): 341–348 doi: 10.1016/j.jconrel.2010.05.032 pmid:20595029
|
73 |
Paik D C, Saito L Y, Sugirtharaj D D, Holmes J W (2006). Nitrite-induced cross-linking alters remodeling and mechanical properties of collagenous engineered tissues. Connect Tissue Res , 47(3): 163–176 doi: 10.1080/03008200600721569 pmid:16753810
|
74 |
Parkhurst M R, Saltzman W M (1992). Quantification of human neutrophil motility in three-dimensional collagen gels. Effect of collagen concentration. Biophys J , 61(2): 306–315 doi: 10.1016/S0006-3495(92)81838-6 pmid:1547321
|
75 |
Partin A W, Schoeniger J S, Mohler J L, Coffey D S (1989). Fourier analysis of cell motility: correlation of motility with metastatic potential. Proc Natl Acad Sci USA , 86(4): 1254–1258 doi: 10.1073/pnas.86.4.1254 pmid:2919174
|
76 |
Peppas N A (2004). Hydrogels. In Biomaterials Science, 2nd Edition. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, Eds. Elsevier Academic Press , 100–106
|
77 |
Petersen T H, Calle E A, Zhao L,Lee E J, Gui L, Raredon M B, Gavrilov K, Yi T, Zhuang Z W, Breuer C, Herzog E, Niklason L E (2010). Tissue-engineered lungs for in vivo implantation. Science , 329(5991): 538–541 doi: 10.1126/science.1189345 pmid:20576850
|
78 |
Pierschbacher M D, Ruoslahti E (1984). Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature , 309(5963): 30–33 doi: 10.1038/309030a0 pmid:6325925
|
79 |
Pluskota E, Soloviev D A, Szpak D, Weber C, Plow E F (2008). Neutrophil apoptosis: selective regulation by different ligands of integrin alphaMbeta2. J Immunol , 181(5): 3609–3619 pmid:18714035
|
80 |
Ricard-Blum S (2011). The collagen family. Cold Spring Harb Perspect Biol , 3(1): a004978 doi: 10.1101/cshperspect.a004978 pmid:21421911
|
81 |
Roca-Cusachs P, Gauthier N C, Del Rio A, Sheetz M P (2009). Clustering of alpha5beta1 integrins determines adhesion strength whereas alphavbeta3 and talin enable mechanotransduction. Proc Natl Acad Sci USA , 22(106): 16245–16250 doi: 10.1073/pnas.0902818106
|
82 |
Rodgers U R, Weiss A S (2005). Cellular interactions with elastin. Pathol Biol (Paris) , 53(7): 390–398 doi: 10.1016/j.patbio.2004.12.022 pmid:16085115
|
83 |
Rogers T H, Babensee J E (2011). The role of integrins in the recognition and response of dendritic cells to biomaterials. Biomaterials , 32(5): 1270–1279 doi: 10.1016/j.biomaterials.2010.10.014 pmid:21030075
|
84 |
Roh J D, Sawh-Martinez R, Brennan M P, Jay S M, Devine L, Rao D A, Yi T, Mirensky T L, Nalbandian A, Udelsman B, Hibino N, Shinoka T, Saltzman W M, Snyder E, Kyriakides T R, Pober J S, Breuer C K (2010). Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci USA , 107(10): 4669–4674 doi: 10.1073/pnas.0911465107 pmid:20207947
|
85 |
Rubel C, Fernández G C, Dran G, Bompadre M B, Isturiz M A, Palermo M S (2001). Fibrinogen promotes neutrophil activation and delays apoptosis. J Immunol , 166(3): 2002–2010 pmid:11160249
|
86 |
Ruoslahti E (1996). RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol , 12(1): 697–715 doi: 10.1146/annurev.cellbio.12.1.697 pmid:8970741
|
87 |
Saltzman W M, Livingston T L, Parkhurst M R (1999). Antibodies to CD18 influence neutrophil migration through extracellular matrix. J Leukoc Biol , 65(3): 356–363 pmid:10080540
|
88 |
Saltzman W M, Parkhurst M R, Parsons-Wingerter P, Zhu W H (1992). Three-dimensional cell cultures mimic tissues. Ann N Y Acad Sci , 665(665): 259–273 doi: 10.1111/j.1749-6632.1992.tb42590.x pmid:1416608
|
89 |
Schwarbauer JE, DeSimone DW (2011). Fibronectins, their fibrillogenesis and in vivo Functions. Prespectives in Biology, Cold Spring Harbor, USA
|
90 |
Sell S A, Wolfe P S, Garg K, McCool J M, Rodriguez I A, Bowlin G L (2010). The use of natural polymers in tissue engineering: A focus on electrospun extracellular matrix analogues. Polymers. , 2(4): 522–553 doi: 10.3390/polym2040522
|
91 |
Shepherd B R, Enis D R, Wang F, Suarez Y, Pober J S, Schechner J S (2006). Vascularization and engraftment of a human skin substitute using circulating progenitor cell-derived endothelial cells. FASEB J , 20(10): 1739–1741 doi: 10.1096/fj.05-5682fje pmid:16807367
|
92 |
Simon-Assmann P, Orend G, Mammadova-Bach E, Spenlé C, Lefebvre O (2011). Role of laminins in physiological and pathological angiogenesis. Int J Dev Biol , 55(4–5): 455–465 doi: 10.1387/ijdb.103223ps pmid:21858771
|
93 |
Simpson D G, Terracio L, Terracio M, Price R L, Turner D C, Borg T K (1994). Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix. J Cell Physiol , 161(1): 89–105 doi: 10.1002/jcp.1041610112 pmid:7929612
|
94 |
Singer A J, Clark R A (1999). Cutaneous wound healing. N Engl J Med , 341(10): 738–746 doi: 10.1056/NEJM199909023411006 pmid:10471461
|
95 |
Singh P, Carraher C, Schwarzbauer J E (2010). Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol , 26(1): 397–419 doi: 10.1146/annurev-cellbio-100109-104020 pmid:20690820
|
96 |
Sniadecki N J, Anguelouch A, Yang M T, Lamb C M, Liu Z, Kirschner S B, Liu Y, Reich D H, Chen C S (2007). Magnetic microposts as an approach to apply forces to living cells. Proc Natl Acad Sci USA , 104(37): 14553–14558 doi: 10.1073/pnas.0611613104 pmid:17804810
|
97 |
Stupack D G, Cheresh D A (2004). Integrins and angiogenesis. Curr Top Dev Biol , 64: 207–238 doi: 10.1016/S0070-2153(04)64009-9 pmid:15563949
|
98 |
Sugawara K, Tsuruta D, Ishii M, Jones J C, Kobayashi H (2008). Laminin-332 and -511 in skin. Exp Dermatol , 17(6): 473–480 doi: 10.1111/j.1600-0625.2008.00721.x pmid:18474082
|
99 |
Tan J, Saltzman W M (2002). Topographical control of human neutrophil motility on micropatterned materials with various surface chemistry. Biomaterials , 23(15): 3215–3225 doi: 10.1016/S0142-9612(02)00074-1 pmid:12102193
|
100 |
Telemeco T A, Ayres C E, Bowlin G L, Wnek G E, Boland E D, Cohen N, Baumgarten C M, Mathews J, Simpson D G (2005). Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Acta Biomater , 1(4): 377–385 doi: 10.1016/j.actbio.2005.04.006 pmid:16701819
|
101 |
Thein-Han W W, Misra R D (2009). Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater , 5(4): 1182–1197 doi: 10.1016/j.actbio.2008.11.025 pmid:19121983
|
102 |
Todorovic V, Chen C C, Hay N, Lau L F (2005). The matrix protein CCN1 (CYR61) induces apoptosis in fibroblasts. J Cell Biol , 171(3): 559–568 doi: 10.1083/jcb.200504015 pmid:16275757
|
103 |
Tuluc F, Garcia A, Bredetean O, Meshki J, Kunapuli S P (2004). Primary granule release from human neutrophils is potentiated by soluble fibrinogen through a mechanism depending on multiple intracellular signaling pathways. Am J Physiol Cell Physiol , 287(5): C1264–C1272 doi: 10.1152/ajpcell.00177.2004 pmid:15229106
|
104 |
Tzu J, Marinkovich M P (2008). Bridging structure with function: structural, regulatory, and developmental role of laminins. Int J Biochem Cell Biol , 40(2): 199–214 doi: 10.1016/j.biocel.2007.07.015 pmid:17855154
|
105 |
Underhill D M (2003). Macrophage recognition of zymosan particles. J Endotoxin Res , 9(3): 176–180 pmid:12831459
|
106 |
van de Witte P, Dijkstra P J, Van den Berg J W A, Feijen J (1996). Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci , 117(1–2): 1–31 doi: 10.1016/0376-7388(96)00088-9
|
107 |
Varki A (1994). Selectin ligands. Proc Natl Acad Sci USA , 91(16): 7390–7397 doi: 10.1073/pnas.91.16.7390 pmid:7519775
|
108 |
Vasita R, Katti D S (2006). Nanofibers and their applications in tissue engineering. Int J Nanomedicine , 1(1): 15–30 doi: 10.2147/nano.2006.1.1.15 pmid:17722259
|
109 |
Wagenseil J E, Mecham R P (2007). New insights into elastic fiber assembly. Birth Defects Res C Embryo Today , 81(4): 229–240 doi: 10.1002/bdrc.20111 pmid:18228265
|
110 |
Wang Y Y, Lü L X, Feng Z Q, Xiao Z D, Huang N P (2010). Cellular compatibility of RGD-modified chitosan nanofibers with aligned or random orientation. Biomed Mater , 5(5): 054112 doi: 10.1088/1748-6041/5/5/054112 pmid:20876956
|
111 |
Werbowetski T, Bjerkvig R, Del Maestro R F (2004). Evidence for a secreted chemorepellent that directs glioma cell invasion. J Neurobiol , 60(1): 71–88 doi: 10.1002/neu.10335 pmid:15188274
|
112 |
Wierzbicka-Patynowski I, Schwarzbauer J E (2003). The ins and outs of fibronectin matrix assembly. J Cell Sci , 116(16): 3269–3276 doi: 10.1242/jcs.00670 pmid:12857786
|
113 |
Wilson B D, Gibson C C, Sorensen L K, Guilhermier M Y, Clinger M, Kelley L L, Shiu Y T, Li D Y (2011). Novel approach for endothelializing vascular devices: understanding and exploiting elastin-endothelial interactions. Ann Biomed Eng , 39(1): 337–346 doi: 10.1007/s10439-010-0142-z pmid:20737290
|
114 |
Woo K M, Seo J, Zhang R, Ma P X (2007). Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. Biomaterials , 28(16): 2622–2630 doi: 10.1016/j.biomaterials.2007.02.004 pmid:17320948
|
115 |
Wu C, Fields A J, Kapteijn B A, McDonald J A (1995). The role of alpha 4 beta 1 integrin in cell motility and fibronectin matrix assembly. J Cell Sci , 108(Pt 2): 821–829 pmid:7539441
|
116 |
Zhang R, Ma P X (2000). Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. J Biomed Mater Res , 52(2): 430–438 doi: 10.1002/1097-4636(200011)52:2<430::AID-JBM25>3.0.CO;2-L pmid:10951385
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|