Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2012, Vol. 7 Issue (5) : 379-396    https://doi.org/10.1007/s11515-012-1244-9
REVIEW
Structure and function of the guanylate kinase-like domain of the MAGUK family scaffold proteins
Jinwei ZHU1, Yuan SHANG1, Jia CHEN1, Mingjie ZHANG1,2()
1. Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; 2. Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
 Download: PDF(1256 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Membrane associated guanylate kinases (MAGUKs) are a family of scaffold proteins that play essential roles in organ development, cell-cell communication, cell polarity establishment and maintenance, and cellular signal transduction. Every member of the MAGUK family contains a guanylate kinase-like (GK) domain, which has evolved from the enzyme catalyzing GMP to GDP conversion to become a protein–protein interaction module with no enzymatic activity. Mutations of MAGUKs are linked to a number of human diseases, including autism and hereditary deafness. In this review, we summarize the structural basis governing cellular function of various members of the MAGUKs. In particular, we focus on recent discoveries of MAGUK GKs as specific phospho-protein interaction modules, and discuss functional implications and connections to human diseases of such regulated MAGUK GK/target interactions.

Keywords MAGUK      GK domain      phospho-protein interaction module      synapse      neuronal disease     
Corresponding Author(s): ZHANG Mingjie,Email:mzhang@ust.hk   
Issue Date: 01 October 2012
 Cite this article:   
Jinwei ZHU,Yuan SHANG,Jia CHEN, et al. Structure and function of the guanylate kinase-like domain of the MAGUK family scaffold proteins[J]. Front Biol, 2012, 7(5): 379-396.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-012-1244-9
https://academic.hep.com.cn/fib/EN/Y2012/V7/I5/379
Fig.1  Domain organization of the MAGUK family proteins. All members contain a GK domain with several PDZ domains N and/or C-terminal to the GK domain. All members except for MAGI contain an SH3 domain immediately N-terminal to the GK domain. The CASK and MPP proteins contain a pair of L27 domain connected in tandem in their N-termini. CARMA contains a CARD domain in its N terminus. The Caβs are the smallest and contain only the SH3 and GK domains.
Fig.1  Domain organization of the MAGUK family proteins. All members contain a GK domain with several PDZ domains N and/or C-terminal to the GK domain. All members except for MAGI contain an SH3 domain immediately N-terminal to the GK domain. The CASK and MPP proteins contain a pair of L27 domain connected in tandem in their N-termini. CARMA contains a CARD domain in its N terminus. The Caβs are the smallest and contain only the SH3 and GK domains.
Fig.2  The SH3-GK supramodule. Ribbon diagrams of the PSD-95 SH3-GK tandem (PDB code: 1KJW) (A) and the Caβ SH3-GK tandem (PDB code: 1T3L) (B). The GK domain, the HOOK region and the split SH3 domain are colored green, gray and ruby-red, respectively. The coupling strands between SH3 and GK domain are colored magenta. The N-terminal helix extension in Caβ SH3-GK tandem is colored marine-blue.
Fig.2  The SH3-GK supramodule. Ribbon diagrams of the PSD-95 SH3-GK tandem (PDB code: 1KJW) (A) and the Caβ SH3-GK tandem (PDB code: 1T3L) (B). The GK domain, the HOOK region and the split SH3 domain are colored green, gray and ruby-red, respectively. The coupling strands between SH3 and GK domain are colored magenta. The N-terminal helix extension in Caβ SH3-GK tandem is colored marine-blue.
MAGUKsBinding proteinFunctionReferences
DLG LGNMitotic spindle orientation in ACDZhu et al., 2011
GKAP/DLGAP/SAPAPPostsynaptic scaffold protein; involved in OCDs, ASDsKim et al., 1997; Zhu et al., 2011
SPARRap-specific GTPase-activating proteinPak et al., 2001; Zhu et al., 2011
AKAP79/150Adenylate-kinase anchoring proteinColledge et al., 2000
MAP1aA microtubule-associated proteinBrenman et al., 1998
GAKINKinesin-like motor proteinDeguchi et al., 1998
BEGAINSynaptic scaffold proteinHanada et al., 2000
GukHolderA scaffold protein in synapseMathew et al., 2002
CASKRabphilin3aAn effector of rab3b GTPase; involved in synaptic vesicular traffickingZhang et al., 2001
Tbr-1T-box transcription factorHsueh et al., 2000
CINAPNucleosome assembly protein; together with Tbr-1 involved in regulation of NR2B expressionWang et al., 2004
BCL11A transcriptional repressor; involved in axon outgrowth and branchingKuo et al., 2010
WhirlinA scaffold protein involved in Usher syndromeMburu et al., 2006
MPP1GelsolinActin capping and severing protein; involved in the actin polymerization in hair cell stereociliaMburu et al., 2010
WhirlinA scaffold protein involved in Usher syndromeGosens et al., 2007
MAGIGKAP/DLGAP/SAPAPPostsynaptic scaffold protein; involved in OCDs, ASDsHirao et al., 1998
CavβCavα AID domainModulates gating properties of voltage-gated calcium channelsVan Petegem et al., 2004
Tab.1  Summary of binding partners of MAGUKs GK domains
Fig.3  Structural basis of phosphorylation-dependent target binding of MAGUK GKs. (A) Ribbon diagram representation of the SAP97 SH3-GK/pLGN complex. The SH3 domain is shown in ruby-red, the HOOK region in gray, the Core sub-domain in green, the LID subdomain in orange, and the GMP binding subdomain in blue. The pLGN peptide is shown in purple with the phosphate group shown in the stick-and-ball model. (B) Surface representation showing the GK/pLGN interface. In this drawing, the hydrophobic residues are in yellow, the positively charged residues are in blue, the negatively charged residues are in red, and the rest of the amino acids are in gray. The phospho-LGN peptide, colored in purple, binds to the “Phospho-site” and the “Hydrophobic cradle” in the GMP binding subdomain of SAP97 GK. (C) The amino acid residue conservation map of various GK domains mapped on to the SAP97/pLGN structure. Residues that are conserved (conservation score>0.8) in the DLG subfamily are colored beige; residues that are conserved (conservation score>0.8) among the DLG/MPP/CASK/MAGI subfamilies are colored light blue; other residues are colored light gray. The conservation scores were obtained by the Scorecons Server () based on the amino acid sequence alignment in panel D. (D) Structure-based sequence alignment of the residues of the MAGUK GK GMP binding subdomains. Highly conserved and conserved residues in DLG family are colored red and green, respectively. Residues participating in the phosphate group binding are highlighted in blue-green; residues participating in the hydrophobic cradle binding site are highlighted in orange. (E) Overlay of the GMP binding subdomain of the GK domain structures from MPP1, CASK and DLG1. The GMP binding sites align very well, while the orientations of the core subdomain and LID subdomain vary in different GKs. (F–H) Comparisons of the structures of the yeast guanylate kinase/GMP complex (F), the PSD-95 SH3-GK/GMP complex (G), and the SAP97 SH3-GK/pLGN complex (H).
Fig.3  Structural basis of phosphorylation-dependent target binding of MAGUK GKs. (A) Ribbon diagram representation of the SAP97 SH3-GK/pLGN complex. The SH3 domain is shown in ruby-red, the HOOK region in gray, the Core sub-domain in green, the LID subdomain in orange, and the GMP binding subdomain in blue. The pLGN peptide is shown in purple with the phosphate group shown in the stick-and-ball model. (B) Surface representation showing the GK/pLGN interface. In this drawing, the hydrophobic residues are in yellow, the positively charged residues are in blue, the negatively charged residues are in red, and the rest of the amino acids are in gray. The phospho-LGN peptide, colored in purple, binds to the “Phospho-site” and the “Hydrophobic cradle” in the GMP binding subdomain of SAP97 GK. (C) The amino acid residue conservation map of various GK domains mapped on to the SAP97/pLGN structure. Residues that are conserved (conservation score>0.8) in the DLG subfamily are colored beige; residues that are conserved (conservation score>0.8) among the DLG/MPP/CASK/MAGI subfamilies are colored light blue; other residues are colored light gray. The conservation scores were obtained by the Scorecons Server () based on the amino acid sequence alignment in panel D. (D) Structure-based sequence alignment of the residues of the MAGUK GK GMP binding subdomains. Highly conserved and conserved residues in DLG family are colored red and green, respectively. Residues participating in the phosphate group binding are highlighted in blue-green; residues participating in the hydrophobic cradle binding site are highlighted in orange. (E) Overlay of the GMP binding subdomain of the GK domain structures from MPP1, CASK and DLG1. The GMP binding sites align very well, while the orientations of the core subdomain and LID subdomain vary in different GKs. (F–H) Comparisons of the structures of the yeast guanylate kinase/GMP complex (F), the PSD-95 SH3-GK/GMP complex (G), and the SAP97 SH3-GK/pLGN complex (H).
Fig.4  Structural features of the yeast guanylate kinase and several MAGUK GKs. In all of the drawings, the Core subdomain, GMP binding sub-domain and LID sub-domain are colored green, blue and light-orange, respectively. The corresponding cartoon models are shown below. For clarity, each MAGUK GK is individually compared to the yeast guanylate kinase. (A) The GMP, ATP binding sites in the yeast guanylate kinase. (Left) The apo-form of GK kinase (PDB code: 1EX6); (Right) The ADP- and GMP-bound form of GK kinase (PDB code: 1LVG). (B) DLG GK recognizes phospho-peptides via the GMP binding subdomains. (Left) Comparison of the apo-form of DLG GK (PDB code: 1JXO) with the yeast GK kinase (gray) showing that the GMP binding site is retained and the ATP pocket is blocked in DLG GK. (Right) Structure of the SAP97 SH3-GK/pLGN complex (PDB code: 3UAT). The point mutation (S to P) in the link between the GMP binding subdomain and the Core subdomain marked with a red star in the cartoon below. (C) The Caβ GK domains bind to AID via the ATP binding site. Comparison of the apo-form Caβ GK (PDB code: 1T3S) with the yeast GK kinase (gray) showing that the ATP binding site is enlarged and the GMP binding site is missing in the Caβ GK. (D) The GMP binding site is missing and the ATP binding site is blocked in ZO-subfamily MAGUKs. (Left) Superposition of ZO-1 GK (PDB code: 3SHW) with the yeast GK kinase (gray). The function of this GK domain is unknown.
Fig.4  Structural features of the yeast guanylate kinase and several MAGUK GKs. In all of the drawings, the Core subdomain, GMP binding sub-domain and LID sub-domain are colored green, blue and light-orange, respectively. The corresponding cartoon models are shown below. For clarity, each MAGUK GK is individually compared to the yeast guanylate kinase. (A) The GMP, ATP binding sites in the yeast guanylate kinase. (Left) The apo-form of GK kinase (PDB code: 1EX6); (Right) The ADP- and GMP-bound form of GK kinase (PDB code: 1LVG). (B) DLG GK recognizes phospho-peptides via the GMP binding subdomains. (Left) Comparison of the apo-form of DLG GK (PDB code: 1JXO) with the yeast GK kinase (gray) showing that the GMP binding site is retained and the ATP pocket is blocked in DLG GK. (Right) Structure of the SAP97 SH3-GK/pLGN complex (PDB code: 3UAT). The point mutation (S to P) in the link between the GMP binding subdomain and the Core subdomain marked with a red star in the cartoon below. (C) The Caβ GK domains bind to AID via the ATP binding site. Comparison of the apo-form Caβ GK (PDB code: 1T3S) with the yeast GK kinase (gray) showing that the ATP binding site is enlarged and the GMP binding site is missing in the Caβ GK. (D) The GMP binding site is missing and the ATP binding site is blocked in ZO-subfamily MAGUKs. (Left) Superposition of ZO-1 GK (PDB code: 3SHW) with the yeast GK kinase (gray). The function of this GK domain is unknown.
Fig.5  Possible protein–protein interaction sites in MAGUK SH3-GK tandems illustrated on the structure of the SAP97 SH3-GK supramodule. The GMP binding site colored deep purple; the potential ATP binding site colored red; the canonical SH3 binding pocket colored green; The HOOK region binding site colored blue.
Fig.5  Possible protein–protein interaction sites in MAGUK SH3-GK tandems illustrated on the structure of the SAP97 SH3-GK supramodule. The GMP binding site colored deep purple; the potential ATP binding site colored red; the canonical SH3 binding pocket colored green; The HOOK region binding site colored blue.
Fig.6  Protein complexes related to the spindle orientation in ACD. (A) In , polarized epithelium cells divide symmetrically within the plane of epithelium to expand their pools. (B) neuroblast delaminated from the polarized epithelium undergoes asymmetric cell division to generate a neuroblast and a ganglion mother cell, which divides one more time to give rise to two neurons. (C) A schematic diagram showing several sets of protein complexes that regulate spindle orientations in the neuroblasts.
Fig.6  Protein complexes related to the spindle orientation in ACD. (A) In , polarized epithelium cells divide symmetrically within the plane of epithelium to expand their pools. (B) neuroblast delaminated from the polarized epithelium undergoes asymmetric cell division to generate a neuroblast and a ganglion mother cell, which divides one more time to give rise to two neurons. (C) A schematic diagram showing several sets of protein complexes that regulate spindle orientations in the neuroblasts.
Fig.7  GK domain-mediated protein assemblies in synapses. A schematic diagram showing synaptic signaling complex organization in both pre- and post-synaptic sides of excitatory synapses. For simplicity, only selected sets of synaptic proteins that are directly or indirectly associated with mental disorders are drawn in the figure. The set of proteins labeled in red are known to be high risk factors of ASD.
Fig.7  GK domain-mediated protein assemblies in synapses. A schematic diagram showing synaptic signaling complex organization in both pre- and post-synaptic sides of excitatory synapses. For simplicity, only selected sets of synaptic proteins that are directly or indirectly associated with mental disorders are drawn in the figure. The set of proteins labeled in red are known to be high risk factors of ASD.
1 Anderson J M (1996). Cell signalling: MAGUK magic. Curr Biol , 6(4): 382–384
doi: 10.1016/S0960-9822(02)00501-8 pmid:8723338
2 Aoki C, Miko I, Oviedo H, Mikeladze-Dvali T, Alexandre L, Sweeney N, Bredt D S (2001). Electron microscopic immunocytochemical detection of PSD-95, PSD-93, SAP-102, and SAP-97 at postsynaptic, presynaptic, and nonsynaptic sites of adult and neonatal rat visual cortex. Synapse , 40(4): 239–257
doi: 10.1002/syn.1047 pmid:11309840
3 Asaba N, Hanada T, Takeuchi A, Chishti A H (2003). Direct interaction with a kinesin-related motor mediates transport of mammalian discs large tumor suppressor homologue in epithelial cells. J Biol Chem , 278(10): 8395–8400
doi: 10.1074/jbc.M210362200 pmid:12496241
4 Bangash M A, Park J M, Melnikova T, Wang D, Jeon S K, Lee D, Syeda S, Kim J, Kouser M, Schwartz J, Cui Y, Zhao X, Speed H E, Kee S E, Tu J C, Hu J H, Petralia R S, Linden D J, Powell C M, Savonenko A, Xiao B, Worley P F (2011). Enhanced polyubiquitination of Shank3 and NMDA receptor in a mouse model of autism. Cell , 145(5): 758–772
doi: 10.1016/j.cell.2011.03.052 pmid:21565394
5 Bella?che Y, Radovic A, Woods D F, Hough C D, Parmentier M L, O’Kane C J, Bryant P J, Schweisguth F (2001). The Partner of Inscuteable/Discs-large complex is required to establish planar polarity during asymmetric cell division in Drosophila. Cell , 106(3): 355–366
doi: 10.1016/S0092-8674(01)00444-5 pmid:11509184
6 Bienvenu O J, Wang Y, Shugart Y Y, Welch J M, Grados M A, Fyer A J, Rauch S L, McCracken J T, Rasmussen S A, Murphy D L, Cullen B, Valle D, Hoehn-Saric R, Greenberg B D, Pinto A, Knowles J A, Piacentini J, Pauls D L, Liang K Y, Willour V L, Riddle M, Samuels J F, Feng G, Nestadt G (2009). Sapap3 and pathological grooming in humans: Results from the OCD collaborative genetics study. Am J Med Genet B Neuropsychiatr Genet , 150B(5): 710–720
doi: 10.1002/ajmg.b.30897 pmid:19051237
7 Blonska M, Lin X (2011). NF-κB signaling pathways regulated by CARMA family of scaffold proteins. Cell Res , 21(1): 55–70
doi: 10.1038/cr.2010.182 pmid:21187856
8 B?ckers T M, Mameza M G, Kreutz M R, Bockmann J, Weise C, Buck F, Richter D, Gundelfinger E D, Kreienkamp H J (2001). Synaptic scaffolding proteins in rat brain. Ankyrin repeats of the multidomain Shank protein family interact with the cytoskeletal protein alpha-fodrin. J Biol Chem , 276(43): 40104–40112
doi: 10.1074/jbc.M102454200 pmid:11509555
9 Borg J P, Straight S W, Kaech S M, de Taddéo-Borg M, Kroon D E, Karnak D, Turner R S, Kim S K, Margolis B (1998). Identification of an evolutionarily conserved heterotrimeric protein complex involved in protein targeting. J Biol Chem , 273(48): 31633–31636
doi: 10.1074/jbc.273.48.31633 pmid:9822620
10 Brenman J E, Topinka J R, Cooper E C, McGee A W, Rosen J, Milroy T, Ralston H J, Bredt D S (1998). Localization of postsynaptic density-93 to dendritic microtubules and interaction with microtubule-associated protein 1A. J Neurosci , 18(21): 8805–8813
pmid:9786987
11 Butz S, Okamoto M, Südhof T C (1998). A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell , 94(6): 773–782
doi: 10.1016/S0092-8674(00)81736-5 pmid:9753324
12 Chen Y, Sheng R, K?llberg M, Silkov A, Tun M P, Bhardwaj N, Kurilova S, Hall R A, Honig B, Lu H, Cho W (2012). Genome-wide functional annotation of dual-specificity protein- and lipid-binding modules that regulate protein interactions. Mol Cell , 46(2): 226–237
doi: 10.1016/j.molcel.2012.02.012 pmid:22445486
13 Chen Y H, Li M H, Zhang Y, He L L, Yamada Y, Fitzmaurice A, Shen Y, Zhang H, Tong L, Yang J (2004). Structural basis of the alpha1-beta subunit interaction of voltage-gated Ca2+ channels. Nature , 429(6992): 675–680
doi: 10.1038/nature02641 pmid:15170217
14 Cheng D, Hoogenraad C C, Rush J, Ramm E, Schlager M A, Duong D M, Xu P, Wijayawardana S R, Hanfelt J, Nakagawa T, Sheng M, Peng J (2006). Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol Cell Proteomics , 5(6): 1158–1170
doi: 10.1074/mcp.D500009-MCP200 pmid:16507876
15 Cohen A R, Woods D F, Marfatia S M, Walther Z, Chishti A H, Anderson J M (1998). Human CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cells. J Cell Biol , 142(1): 129–138
doi: 10.1083/jcb.142.1.129 pmid:9660868
16 Colledge M, Dean R A, Scott G K, Langeberg L K, Huganir R L, Scott J D (2000). Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex. Neuron , 27(1): 107–119
doi: 10.1016/S0896-6273(00)00013-1 pmid:10939335
17 de Mendoza A, Suga H, Ruiz-Trillo I (2010). Evolution of the MAGUK protein gene family in premetazoan lineages. BMC Evol Biol , 10(1): 93
doi: 10.1186/1471-2148-10-93 pmid:20359327
18 Deguchi M, Hata Y, Takeuchi M, Ide N, Hirao K, Yao I, Irie M, Toyoda A, Takai Y (1998). BEGAIN (brain-enriched guanylate kinase-associated protein), a novel neuronal PSD-95/SAP90-binding protein. J Biol Chem , 273(41): 26269–26272
doi: 10.1074/jbc.273.41.26269 pmid:9756850
19 Doe C Q (2008). Neural stem cells: balancing self-renewal with differentiation. Development , 135(9): 1575–1587
doi: 10.1242/dev.014977 pmid:18356248
20 Doerks T, Bork P, Kamberov E, Makarova O, Muecke S, Margolis B (2000). L27, a novel heterodimerization domain in receptor targeting proteins Lin-2 and Lin-7. Trends Biochem Sci , 25(7): 317–318
doi: 10.1016/S0968-0004(00)01599-1 pmid:10871881
21 Durand C M, Betancur C, Boeckers T M, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg I C, Anckars?ter H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni M C, de Mas P, Bieth E, Rogé B, Héron D, Burglen L, Gillberg C, Leboyer M, Bourgeron T (2007). Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet , 39(1): 25–27
doi: 10.1038/ng1933 pmid:17173049
22 Fanning A S, Jameson B J, Jesaitis L A, Anderson J M (1998). The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem , 273(45): 29745–29753
doi: 10.1074/jbc.273.45.29745 pmid:9792688
23 Fanning A S, Little B P, Rahner C, Utepbergenov D, Walther Z, Anderson J M (2007). The unique-5 and-6 motifs of ZO-1 regulate tight junction strand localization and scaffolding properties. Mol Biol Cell , 18(3): 721–731
doi: 10.1091/mbc.E06-08-0764 pmid:17182847
24 Feng W, Long J F, Fan J S, Suetake T, Zhang M (2004). The tetrameric L27 domain complex as an organization platform for supramolecular assemblies. Nat Struct Mol Biol , 11(5): 475–480
doi: 10.1038/nsmb751 pmid:15048107
25 Feng W, Long J F, Zhang M (2005). A unified assembly mode revealed by the structures of tetrameric L27 domain complexes formed by mLin-2/mLin-7 and Patj/Pals1 scaffold proteins. Proc Natl Acad Sci USA , 102(19): 6861–6866
doi: 10.1073/pnas.0409346102 pmid:15863617
26 Feng W, Zhang M (2009). Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density. Nat Rev Neurosci , 10(2): 87–99
doi: 10.1038/nrn2540 pmid:19153575
27 Feyder M, Karlsson R M, Mathur P, Lyman M, Bock R, Momenan R, Munasinghe J, Scattoni M L, Ihne J, Camp M, Graybeal C, Strathdee D, Begg A, Alvarez V A, Kirsch P, Rietschel M, Cichon S, Walter H, Meyer-Lindenberg A, Grant S G, Holmes A (2010). Association of mouse Dlg4 (PSD-95) gene deletion and human DLG4 gene variation with phenotypes relevant to autism spectrum disorders and Williams’ syndrome. Am J Psychiatry , 167(12): 1508–1517
doi: 10.1176/appi.ajp.2010.10040484 pmid:20952458
28 Froyen G, Van Esch H, Bauters M, Hollanders K, Frints S G, Vermeesch J R, Devriendt K, Fryns J P, Marynen P (2007). Detection of genomic copy number changes in patients with idiopathic mental retardation by high-resolution X-array-CGH: important role for increased gene dosage of XLMR genes. Hum Mutat , 28(10): 1034–1042
doi: 10.1002/humu.20564 pmid:17546640
29 Funke L, Dakoji S, Bredt D S (2005). Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu Rev Biochem , 74(1): 219–245
doi: 10.1146/annurev.biochem.74.082803.133339 pmid:15952887
30 Garcia E P, Mehta S, Blair L A, Wells D G, Shang J, Fukushima T, Fallon J R, Garner C C, Marshall J (1998). SAP90 binds and clusters kainate receptors causing incomplete desensitization. Neuron , 21(4): 727–739
doi: 10.1016/S0896-6273(00)80590-5 pmid:9808460
31 Geschwind D H (2009). Advances in autism. Annu Rev Med , 60(1): 367–380
doi: 10.1146/annurev.med.60.053107.121225 pmid:19630577
32 Gillies T E, Cabernard C (2011). Cell division orientation in animals. Curr Biol , 21(15): R599–R609
doi: 10.1016/j.cub.2011.06.055 pmid:21820628
33 González-Mariscal L, Betanzos A, Avila-Flores A (2000). MAGUK proteins: structure and role in the tight junction. Semin Cell Dev Biol , 11(4): 315–324
doi: 10.1006/scdb.2000.0178 pmid:10966866
34 Gosens I, van Wijk E, Kersten F F, Krieger E, van der Zwaag B, M?rker T, Letteboer S J, Dusseljee S, Peters T, Spierenburg H A, Punte I M, Wolfrum U, Cremers F P, Kremer H, Roepman R (2007). MPP1 links the Usher protein network and the Crumbs protein complex in the retina. Hum Mol Genet , 16(16): 1993–2003
doi: 10.1093/hmg/ddm147 pmid:17584769
35 Hackett A, Tarpey P S, Licata A, Cox J, Whibley A, Boyle J, Rogers C, Grigg J, Partington M, Stevenson R E, Tolmie J, Yates J R, Turner G, Wilson M, Futreal A P, Corbett M, Shaw M, Gecz J, Raymond F L, Stratton M R, Schwartz C E, Abidi F E (2010). CASK mutations are frequent in males and cause X-linked nystagmus and variable XLMR phenotypes. Eur J Hum Genet , 18(5): 544–552
doi: 10.1038/ejhg.2009.220 pmid:20029458
36 Hall S W, Kühn H (1986). Purification and properties of guanylate kinase from bovine retinas and rod outer segments. Eur J Biochem , 161(3): 551–556
doi: 10.1111/j.1432-1033.1986.tb10477.x pmid:3024975
37 Hanada T, Lin L, Tibaldi E V, Reinherz E L, Chishti A H (2000). GAKIN, a novel kinesin-like protein associates with the human homologue of the Drosophila discs large tumor suppressor in T lymphocytes. J Biol Chem , 275(37): 28774–28784
doi: 10.1074/jbc.M000715200 pmid:10859302
38 Hao Y, Du Q, Chen X, Zheng Z, Balsbaugh J L, Maitra S, Shabanowitz J, Hunt D F, Macara I G (2010). Par3 controls epithelial spindle orientation by aPKC-mediated phosphorylation of apical Pins. Curr Biol , 20(20): 1809–1818
doi: 10.1016/j.cub.2010.09.032 pmid:20933426
39 Hata Y, Butz S, Südhof T C (1996). CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci , 16(8): 2488–2494
pmid:8786425
40 Hayashi S, Mizuno S, Migita O, Okuyama T, Makita Y, Hata A, Imoto I, Inazawa J (2008). The CASK gene harbored in a deletion detected by array-CGH as a potential candidate for a gene causative of X-linked dominant mental retardation. Am J Med Genet A , 146A(16): 2145–2151
doi: 10.1002/ajmg.a.32433 pmid:18629876
41 Hirao K, Hata Y, Ide N, Takeuchi M, Irie M, Yao I, Deguchi M, Toyoda A, Sudhof T C, Takai Y (1998). A novel multiple PDZ domain-containing molecule interacting with N-methyl-D-aspartate receptors and neuronal cell adhesion proteins. J Biol Chem , 273(33): 21105–21110
doi: 10.1074/jbc.273.33.21105 pmid:9694864
42 Hoskins R, Hajnal A F, Harp S A, Kim S K (1996). The C. elegans vulval induction gene lin-2 encodes a member of the MAGUK family of cell junction proteins. Development , 122(1): 97–111
pmid:8565857
43 Hsueh Y P (2009). Calcium/calmodulin-dependent serine protein kinase and mental retardation. Ann Neurol , 66(4): 438–443
doi: 10.1002/ana.21755 pmid:19847910
44 Hsueh Y P, Wang T F, Yang F C, Sheng M (2000). Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2. Nature , 404(6775): 298–302
doi: 10.1038/35005118 pmid:10749215
45 Huang T N, Chang H P, Hsueh Y P (2010). CASK phosphorylation by PKA regulates the protein-protein interactions of CASK and expression of the NMDAR2b gene. J Neurochem , 112(6): 1562–1573
doi: 10.1111/j.1471-4159.2010.06569.x pmid:20067577
46 Huang T N, Hsueh Y P (2009). CASK point mutation regulates protein-protein interactions and NR2b promoter activity. Biochem Biophys Res Commun , 382(1): 219–222
doi: 10.1016/j.bbrc.2009.03.015 pmid:19275891
47 Hung A Y, Sheng M (2002). PDZ domains: structural modules for protein complex assembly. J Biol Chem , 277(8): 5699–5702
doi: 10.1074/jbc.R100065200 pmid:11741967
48 Hutterer A, Berdnik D, Wirtz-Peitz F, Zigman M, Schleiffer A, Knoblich J A (2006). Mitotic activation of the kinase Aurora-A requires its binding partner Bora. Dev Cell , 11(2): 147–157
doi: 10.1016/j.devcel.2006.06.002 pmid:16890155
49 Johnston C A, Doe C Q, Prehoda K E (2012). Structure of an enzyme-derived phosphoprotein recognition domain. PLoS ONE , 7(4): e36014
doi: 10.1371/journal.pone.0036014 pmid:22545154
50 Johnston C A, Hirono K, Prehoda K E, Doe C Q (2009). Identification of an Aurora-A/PinsLINKER/Dlg spindle orientation pathway using induced cell polarity in S2 cells. Cell , 138(6): 1150–1163
doi: 10.1016/j.cell.2009.07.041 pmid:19766567
51 Johnston C A, Whitney D S, Volkman B F, Doe C Q, Prehoda K E (2011). Conversion of the enzyme guanylate kinase into a mitotic-spindle orienting protein by a single mutation that inhibits GMP-induced closing. Proc Natl Acad Sci USA , 108(44): E973–E978
doi: 10.1073/pnas.1104365108 pmid:21990344
52 Kim E, Naisbitt S, Hsueh Y P, Rao A, Rothschild A, Craig A M, Sheng M (1997). GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J Cell Biol , 136(3): 669–678
doi: 10.1083/jcb.136.3.669 pmid:9024696
53 Kistner U, Garner C C, Linial M (1995). Nucleotide binding by the synapse associated protein SAP90. FEBS Lett , 359(2-3): 159–163
doi: 10.1016/0014-5793(95)00030-D pmid:7867790
54 Knoblich J A (2008). Mechanisms of asymmetric stem cell division. Cell , 132(4): 583–597
doi: 10.1016/j.cell.2008.02.007 pmid:18295577
55 Kuhlendahl S, Spangenberg O, Konrad M, Kim E, Garner C C (1998). Functional analysis of the guanylate kinase-like domain in the synapse-associated protein SAP97. Eur J Biochem , 252(2): 305–313
doi: 10.1046/j.1432-1327.1998.2520305.x pmid:9523702
56 Li Y, Zhang Y L, Yan H G (1996). Kinetic and thermodynamic characterizations of yeast guanylate kinase. J Biol Chem , 271(45): 28038–28044
doi: 10.1074/jbc.271.45.28038 pmid:8910414
57 Lu B, Jan L, Jan Y N (2000). Control of cell divisions in the nervous system: symmetry and asymmetry. Annu Rev Neurosci , 23(1): 531–556
doi: 10.1146/annurev.neuro.23.1.531 pmid:10845074
58 Lu X J, Chen X Q, Weng J, Zhang H Y, Pak D T, Luo J H, Du J Z (2009). Hippocampal spine-associated Rap-specific GTPase-activating protein induces enhancement of learning and memory in postnatally hypoxia-exposed mice. Neuroscience , 162(2): 404–414
doi: 10.1016/j.neuroscience.2009.05.011 pmid:19442707
59 Lye M F, Fanning A S, Su Y, Anderson J M, Lavie A (2010). Insights into regulated ligand binding sites from the structure of ZO-1 Src homology 3-guanylate kinase module. J Biol Chem , 285(18): 13907–13917
doi: 10.1074/jbc.M109.093674 pmid:20200156
60 Masuko N, Makino K, Kuwahara H, Fukunaga K, Sudo T, Araki N, Yamamoto H, Yamada Y, Miyamoto E, Saya H (1999). Interaction of NE-dlg/SAP102, a neuronal and endocrine tissue-specific membrane-associated guanylate kinase protein, with calmodulin and PSD-95/SAP90. A possible regulatory role in molecular clustering at synaptic sites. J Biol Chem , 274(9): 5782–5790
doi: 10.1074/jbc.274.9.5782 pmid:10026200
61 Maximov A, Südhof T C, Bezprozvanny I (1999). Association of neuronal calcium channels with modular adaptor proteins. J Biol Chem , 274(35): 24453–24456
doi: 10.1074/jbc.274.35.24453 pmid:10455105
62 Mburu P, Kikkawa Y, Townsend S, Romero R, Yonekawa H, Brown S D (2006). Whirlin complexes with p55 at the stereocilia tip during hair cell development. Proc Natl Acad Sci USA , 103(29): 10973–10978
doi: 10.1073/pnas.0600923103 pmid:16829577
63 McGee A W, Bredt D S (1999). Identification of an intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95. J Biol Chem , 274(25): 17431–17436
doi: 10.1074/jbc.274.25.17431 pmid:10364172
64 McGee A W, Dakoji S R, Olsen O, Bredt D S, Lim W A, Prehoda K E (2001). Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. Mol Cell , 8(6): 1291–1301
doi: 10.1016/S1097-2765(01)00411-7 pmid:11779504
65 McGee A W, Nunziato D A, Maltez J M, Prehoda K E, Pitt G S, Bredt D S (2004). Calcium channel function regulated by the SH3-GK module in beta subunits. Neuron , 42(1): 89–99
doi: 10.1016/S0896-6273(04)00149-7 pmid:15066267
66 Moessner R, Marshall C R, Sutcliffe J S, Skaug J, Pinto D, Vincent J, Zwaigenbaum L, Fernandez B, Roberts W, Szatmari P, Scherer S W (2007). Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet , 81(6): 1289–1297
doi: 10.1086/522590 pmid:17999366
67 Montgomery J M, Zamorano P L, Garner C C (2004). MAGUKs in synapse assembly and function: an emerging view. Cell Mol Life Sci , 61(7-8): 911–929
doi: 10.1007/s00018-003-3364-5 pmid:15095012
68 Moog U, Kutsche K, Kortüm F, Chilian B, Bierhals T, Apeshiotis N, Balg S, Chassaing N, Coubes C, Das S, Engels H, Van Esch H, Grasshoff U, Heise M, Isidor B, Jarvis J, Koehler U, Martin T, Oehl-Jaschkowitz B, Ortibus E, Pilz D T, Prabhakar P, Rappold G, Rau I, Rettenberger G, Schlüter G, Scott R H, Shoukier M, Wohlleber E, Zirn B, Dobyns W B, Uyanik G (2011). Phenotypic spectrum associated with CASK loss-of-function mutations. J Med Genet , 48(11): 741–751
doi: 10.1136/jmedgenet-2011-100218 pmid:21954287
69 Mortier E, Wuytens G, Leenaerts I, Hannes F, Heung M Y, Degeest G, David G, Zimmermann P (2005). Nuclear speckles and nucleoli targeting by PIP2-PDZ domain interactions. EMBO J , 24(14): 2556–2565
doi: 10.1038/sj.emboj.7600722 pmid:15961997
70 Naisbitt S, Kim E, Tu J C, Xiao B, Sala C, Valtschanoff J, Weinberg R J, Worley P F, Sheng M (1999). Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron , 23(3): 569–582
doi: 10.1016/S0896-6273(00)80809-0 pmid:10433268
71 Naisbitt S, Valtschanoff J, Allison D W, Sala C, Kim E, Craig A M, Weinberg R J, Sheng M (2000). Interaction of the postsynaptic density-95/guanylate kinase domain-associated protein complex with a light chain of myosin-V and dynein. J Neurosci , 20(12): 4524–4534
pmid:10844022
72 Najm J, Horn D, Wimplinger I, Golden J A, Chizhikov V V, Sudi J, Christian S L, Ullmann R, Kuechler A, Haas C A, Flubacher A, Charnas L R, Uyanik G, Frank U, Klopocki E, Dobyns W B, Kutsche K (2008). Mutations of CASK cause an X-linked brain malformation phenotype with microcephaly and hypoplasia of the brainstem and cerebellum. Nat Genet , 40(9): 1065–1067
doi: 10.1038/ng.194 pmid:19165920
73 Nomme J, Fanning A S, Caffrey M, Lye M F, Anderson J M, Lavie A (2011). The Src homology 3 domain is required for junctional adhesion molecule binding to the third PDZ domain of the scaffolding protein ZO-1. J Biol Chem , 286(50): 43352–43360
doi: 10.1074/jbc.M111.304089 pmid:22030391
74 Oliva C, Escobedo P, Astorga C, Molina C, Sierralta J (2012). Role of the MAGUK protein family in synapse formation and function. Dev Neurobiol , 72(1): 57–72
doi: 10.1002/dneu.20949 pmid:21739617
75 Olsen O, Bredt D S (2003). Functional analysis of the nucleotide binding domain of membrane-associated guanylate kinases. J Biol Chem , 278(9): 6873–6878
doi: 10.1074/jbc.M210165200 pmid:12482754
76 Olsen O, Funke L, Long J F, Fukata M, Kazuta T, Trinidad J C, Moore K A, Misawa H, Welling P A, Burlingame A L, Zhang M, Bredt D S (2007). Renal defects associated with improper polarization of the CRB and DLG polarity complexes in MALS-3 knockout mice. J Cell Biol , 179(1): 151–164
doi: 10.1083/jcb.200702054 pmid:17923534
77 Olsen O, Moore K A, Fukata M, Kazuta T, Trinidad J C, Kauer F W, Streuli M, Misawa H, Burlingame A L, Nicoll R A, Bredt D S (2005). Neurotransmitter release regulated by a MALS-liprin-alpha presynaptic complex. J Cell Biol , 170(7): 1127–1134
doi: 10.1083/jcb.200503011 pmid:16186258
78 Opatowsky Y, Chen C C, Campbell K P, Hirsch J A (2004). Structural analysis of the voltage-dependent calcium channel beta subunit functional core and its complex with the alpha 1 interaction domain. Neuron , 42(3): 387–399
doi: 10.1016/S0896-6273(04)00250-8 pmid:15134636
79 Pak D T, Yang S, Rudolph-Correia S, Kim E, Sheng M (2001). Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron , 31(2): 289–303
doi: 10.1016/S0896-6273(01)00355-5 pmid:11502259
80 Pan L, Chen J, Yu J, Yu H, Zhang M (2011). The structure of the PDZ3-SH3-GuK tandem of ZO-1 protein suggests a supramodular organization of the membrane-associated guanylate kinase (MAGUK) family scaffold protein core. J Biol Chem , 286(46): 40069–40074
doi: 10.1074/jbc.C111.293084 pmid:21965684
81 Pan L, Zhang M (2012). Structures of usher syndrome 1 proteins and their complexes. Physiology (Bethesda) , 27(1): 25–42
doi: 10.1152/physiol.00037.2011 pmid:22311968
82 Pawson T (2004). Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell , 116(2): 191–203
doi: 10.1016/S0092-8674(03)01077-8 pmid:14744431
83 Pe?a J, Feliciano C, Ting J T, Wang W, Wells M F, Venkatraman T N, Lascola C D, Fu Z, Feng G (2011). Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature , 472(7344): 437–442
doi: 10.1038/nature09965 pmid:21423165
84 Peca J, Feng G (2012). Cellular and synaptic network defects in autism. Curr Opin Neurobiol , 22: 1–7
pmid:22305967
85 Piluso G, D’Amico F, Saccone V, Bismuto E, Rotundo I L, Di Domenico M, Aurino S, Schwartz C E, Neri G, Nigro V (2009). A missense mutation in CASK causes FG syndrome in an Italian family. Am J Hum Genet , 84(2): 162–177
doi: 10.1016/j.ajhg.2008.12.018 pmid:19200522
86 Quinn B J, Welch E J, Kim A C, Lokuta M A, Huttenlocher A, Khan A A, Kuchay S M, Chishti A H (2009). Erythrocyte scaffolding protein p55/MPP1 functions as an essential regulator of neutrophil polarity. Proc Natl Acad Sci U S A , 106(47): 19842–19847
pmid:19897731
87 Roh M H, Makarova O, Liu C J, Shin K, Lee S, Laurinec S, Goyal M, Wiggins R, Margolis B (2002). The Maguk protein, Pals1, functions as an adapter, linking mammalian homologues of Crumbs and Discs Lost. J Cell Biol , 157(1): 161–172
doi: 10.1083/jcb.200109010 pmid:11927608
88 Samuels B A, Hsueh Y P, Shu T, Liang H, Tseng H C, Hong C J, Su S C, Volker J, Neve R L, Yue D T, Tsai L H (2007). Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron , 56(5): 823–837
doi: 10.1016/j.neuron.2007.09.035 pmid:18054859
89 Schmeisser M J, Ey E, Wegener S, Bockmann J, Stempel A V, Kuebler A, Janssen A-L, Udvardi P T, Shiban E, Spilker C, Balschun D, Skryabin B V, Dieck S t, Smalla K-H, Montag D, Leblond C S, Faure P, Torquet N, Le Sourd A-M, Toro R, Grabrucker A M, Shoichet S A, Schmitz D, Kreutz M R, Bourgeron T, Gundelfinger E D, Boeckers T M (2012). Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature, advance online publication
90 Shin H, Hsueh Y P, Yang F C, Kim E, Sheng M (2000). An intramolecular interaction between Src homology 3 domain and guanylate kinase-like domain required for channel clustering by postsynaptic density-95/SAP90. J Neurosci , 20(10): 3580–3587
pmid:10804199
91 Siegrist S E, Doe C Q (2005). Microtubule-induced Pins/Galphai cortical polarity in Drosophila neuroblasts. Cell , 123(7): 1323–1335
doi: 10.1016/j.cell.2005.09.043 pmid:16377571
92 Siller K H, Doe C Q (2009). Spindle orientation during asymmetric cell division. Nat Cell Biol , 11(4): 365–374
doi: 10.1038/ncb0409-365 pmid:19337318
93 Stehle T, Schulz G E (1990). Three-dimensional structure of the complex of guanylate kinase from yeast with its substrate GMP. J Mol Biol , 211(1): 249–254
doi: 10.1016/0022-2836(90)90024-G pmid:1967656
94 Stehle T, Schulz G E (1992). Refined structure of the complex between guanylate kinase and its substrate GMP at 2.0 A resolution . J Mol Biol , 224(4): 1127–1141
doi: 10.1016/0022-2836(92)90474-X pmid:1314905
95 Sun M, Liu L, Zeng X, Xu M, Liu L, Fang M, Xie W (2009). Genetic interaction between Neurexin and CAKI/CMG is important for synaptic function in Drosophila neuromuscular junction. Neurosci Res , 64(4): 362–371
doi: 10.1016/j.neures.2009.04.009 pmid:19379781
96 Tabuchi K, Biederer T, Butz S, Sudhof T C (2002). CASK participates in alternative tripartite complexes in which Mint 1 competes for binding with caskin 1, a novel CASK-binding protein. J Neurosci , 22(11): 4264–4273
pmid:12040031
97 Takahashi S X, Miriyala J, Tay L H, Yue D T, Colecraft H M (2005). A CaVbeta SH3/guanylate kinase domain interaction regulates multiple properties of voltage-gated Ca2+ channels. J Gen Physiol , 126(4): 365–377
doi: 10.1085/jgp.200509354 pmid:16186563
98 Tanentzapf G, Tepass U (2003). Interactions between the crumbs, lethal giant larvae and bazooka pathways in epithelial polarization. Nat Cell Biol , 5(1): 46–52
doi: 10.1038/ncb896 pmid:12510193
99 Tarpey P, Parnau J, Blow M, Woffendin H, Bignell G, Cox C, Cox J, Davies H, Edkins S, Holden S, Korny A, Mallya U, Moon J, O’Meara S, Parker A, Stephens P, Stevens C, Teague J, Donnelly A, Mangelsdorf M, Mulley J, Partington M, Turner G, Stevenson R, Schwartz C, Young I, Easton D, Bobrow M, Futreal P A, Stratton M R, Gecz J, Wooster R, Raymond F L (2004). Mutations in the DLG3 gene cause nonsyndromic X-linked mental retardation. Am J Hum Genet , 75(2): 318–324
doi: 10.1086/422703 pmid:15185169
100 Tarpey P S, Smith R, Pleasance E, Whibley A, Edkins S, Hardy C, O’Meara S, Latimer C, Dicks E, Menzies A, Stephens P, Blow M, Greenman C, Xue Y, Tyler-Smith C, Thompson D, Gray K, Andrews J, Barthorpe S, Buck G, Cole J, Dunmore R, Jones D, Maddison M, Mironenko T, Turner R, Turrell K, Varian J, West S, Widaa S, Wray P, Teague J, Butler A, Jenkinson A, Jia M, Richardson D, Shepherd R, Wooster R, Tejada M I, Martinez F, Carvill G, Goliath R, de Brouwer A P, van Bokhoven H, Van Esch H, Chelly J, Raynaud M, Ropers H H, Abidi F E, Srivastava A K, Cox J, Luo Y, Mallya U, Moon J, Parnau J, Mohammed S, Tolmie J L, Shoubridge C, Corbett M, Gardner A, Haan E, Rujirabanjerd S, Shaw M, Vandeleur L, Fullston T, Easton D F, Boyle J, Partington M, Hackett A, Field M, Skinner C, Stevenson R E, Bobrow M, Turner G, Schwartz C E, Gecz J, Raymond F L, Futreal P A, Stratton M R (2009). A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nat Genet , 41(5): 535–543
doi: 10.1038/ng.367 pmid:19377476
101 Tavares G A, Panepucci E H, Brunger A T (2001). Structural characterization of the intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95. Mol Cell , 8(6): 1313–1325
doi: 10.1016/S1097-2765(01)00416-6 pmid:11779506
102 te Velthuis A J, Admiraal J F, Bagowski C P (2007). Molecular evolution of the MAGUK family in metazoan genomes. BMC Evol Biol , 7(1): 129
doi: 10.1186/1471-2148-7-129 pmid:17678554
103 Valdar W S (2002). Scoring residue conservation. Proteins , 48(2): 227–241
doi: 10.1002/prot.10146 pmid:12112692
104 Van Petegem F, Clark K A, Chatelain F C, Minor D L Jr (2004). Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain. Nature , 429(6992): 671–675
doi: 10.1038/nature02588 pmid:15141227
105 Wang C K, Pan L, Chen J, Zhang M (2010). Extensions of PDZ domains as important structural and functional elements. Protein Cell , 1(8): 737–751
doi: 10.1007/s13238-010-0099-6 pmid:21203915
106 Wang G S, Hong C J, Yen T Y, Huang H Y, Ou Y, Huang T N, Jung W G, Kuo T Y, Sheng M, Wang T F, Hsueh Y P (2004). Transcriptional modification by a CASK-interacting nucleosome assembly protein. Neuron , 42(1): 113–128
doi: 10.1016/S0896-6273(04)00139-4 pmid:15066269
107 Wei Z, Zheng S, Spangler S A, Yu C, Hoogenraad C C, Zhang M (2011). Liprin-mediated large signaling complex organization revealed by the liprin-α/CASK and liprin-α/liprin-β complex structures. Mol Cell , 43(4): 586–598
doi: 10.1016/j.molcel.2011.07.021 pmid:21855798
108 Welch J M, Lu J, Rodriguiz R M, Trotta N C, Peca J, Ding J D, Feliciano C, Chen M, Adams J P, Luo J, Dudek S M, Weinberg R J, Calakos N, Wetsel W C, Feng G (2007). Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature , 448(7156): 894–900
doi: 10.1038/nature06104 pmid:17713528
109 Woods D F, Bryant P J (1991). The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell , 66(3): 451–464
doi: 10.1016/0092-8674(81)90009-X pmid:1651169
110 Woods D F, Bryant P J (1993). ZO-1, DlgA and PSD-95/SAP90: homologous proteins in tight, septate and synaptic cell junctions. Mech Dev , 44(2-3): 85–89
doi: 10.1016/0925-4773(93)90059-7 pmid:8155583
111 Woods D F, Hough C, Peel D, Callaini G, Bryant P J (1996). Dlg protein is required for junction structure, cell polarity, and proliferation control in Drosophila epithelia. J Cell Biol , 134(6): 1469–1482
doi: 10.1083/jcb.134.6.1469 pmid:8830775
112 Wu H, Feng W, Chen J, Chan L N, Huang S, Zhang M (2007). PDZ domains of Par-3 as potential phosphoinositide signaling integrators. Mol Cell , 28(5): 886–898
doi: 10.1016/j.molcel.2007.10.028 pmid:18082612
113 Yaffe M B, Elia A E (2001). Phosphoserine/threonine-binding domains. Curr Opin Cell Biol , 13(2): 131–138
doi: 10.1016/S0955-0674(00)00189-7 pmid:11248545
114 Yu H, Chen J K, Feng S, Dalgarno D C, Brauer A W, Schreiber S L (1994). Structural basis for the binding of proline-rich peptides to SH3 domains. Cell , 76(5): 933–945
doi: 10.1016/0092-8674(94)90367-0 pmid:7510218
115 Zhang J, Yang X, Wang Z, Zhou H, Xie X, Shen Y, Long J (2012). Structure of an l27 domain heterotrimer from cell polarity complex patj/pals1/mals2 reveals mutually independent l27 domain assembly mode. J Biol Chem , 287(14): 11132–11140
doi: 10.1074/jbc.M111.321216 pmid:22337881
116 Zhang M, Wang W (2003). Organization of signaling complexes by PDZ-domain scaffold proteins. Acc Chem Res , 36(7): 530–538
doi: 10.1021/ar020210b pmid:12859214
117 Zhang Y, Luan Z, Liu A, Hu G (2001). The scaffolding protein CASK mediates the interaction between rabphilin3a and beta-neurexins. FEBS Lett , 497(2-3): 99–102
doi: 10.1016/S0014-5793(01)02450-4 pmid:11377421
118 Zheng C Y, Seabold G K, Horak M, Petralia R S (2011). MAGUKs, synaptic development, and synaptic plasticity. Neuroscientist , 17(5): 493–512
doi: 10.1177/1073858410386384 pmid:21498811
119 Zheng Z, Zhu H, Wan Q, Liu J, Xiao Z, Siderovski D P, Du Q (2010). LGN regulates mitotic spindle orientation during epithelial morphogenesis. J Cell Biol , 189(2): 275–288
doi: 10.1083/jcb.200910021 pmid:20385777
120 Zhu J, Shang Y, Xia C, Wang W, Wen W, Zhang M (2011a). Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules. EMBO J , 30(24): 4986–4997
doi: 10.1038/emboj.2011.428 pmid:22117215
121 Zhu J, Wen W, Zheng Z, Shang Y, Wei Z, Xiao Z, Pan Z, Du Q, Wang W, Zhang M (2011b). LGN/mInsc and LGN/NuMA complex structures suggest distinct functions in asymmetric cell division for the Par3/mInsc/LGN and Gαi/LGN/NuMA pathways. Mol Cell , 43(3): 418–431
doi: 10.1016/j.molcel.2011.07.011 pmid:21816348
122 Züchner S, Wendland J R, Ashley-Koch A E, Collins A L, Tran-Viet K N, Quinn K, Timpano K C, Cuccaro M L, Pericak-Vance M A, Steffens D C, Krishnan K R, Feng G, Murphy D L (2009). Multiple rare SAPAP3 missense variants in trichotillomania and OCD. Mol Psychiatry , 14(1): 6–9
doi: 10.1038/mp.2008.83 pmid:19096451
[1] Yicheng Ding,Linda Howard,Louise Gallagher,Sanbing Shen. Regulation and postsynaptic binding of neurexins – drug targets for neurodevelopmental and neuropsychiatric disorders[J]. Front. Biol., 2015, 10(3): 239-251.
[2] Aaron MCGEE,Guohui LI,Zhongming LU,Shenfeng QIU. Convergent synaptic and circuit substrates underlying autism genetic risks[J]. Front. Biol., 2014, 9(2): 137-150.
[3] Darren GOFFIN, Zhaolan (Joe) ZHOU. The neural circuit basis of Rett syndrome[J]. Front Biol, 2012, 7(5): 428-435.
[4] Bei WU, Chen ZHANG. Neurexins and neuroligins: new partners for GABAA receptors at synapses[J]. Front Biol, 2011, 6(3): 251-260.
[5] Richard D. Smrt, Xinyu Zhao, . Epigenetic regulation of neuronal dendrite and dendritic spine development[J]. Front. Biol., 2010, 5(4): 304-323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed