Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2012, Vol. 7 Issue (5) : 459-476    https://doi.org/10.1007/s11515-012-1246-7
REVIEW
Cellular and molecular mechanisms implicated in pathogenesis of selective neurodegeneration in Huntington’s disease
Jeffrey P. CANTLE1,4, Xiao-Hong LU1,2,3, Xiaofeng GU1,2,3, X. William YANG1,2,3()
1. Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA; 2. Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA; 3. Brain Research Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA; 4. Interdepartmental Program for Neuroscience, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
 Download: PDF(374 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Huntington’s disease (HD) is one of the most common dominantly-inherited neurodegenerative disorders and is caused by a CAG repeat expansion in the huntingtin gene. HD is characterized by selective degeneration of subpopulations of neurons in the brain, however the precise underlying mechanisms how a ubiquitously expressed disease protein could target specific types of neurons for degeneration remains a critical, yet unanswered question for HD and other major neurodegenerative disorders. In this review, we describe the expanding view of selective neuronal vulnerability in HD, based on recent neuropathological and neuroimaging studies. We will also summarize the systematic effort to define the cell types in which mutant Huntingtin expression is critical for pathogenesis of vulnerable neurons in the striatum and cortex. Finally, we will describe selected, emerging molecular mechanisms that are implicated in selective disease processes in HD. Together, the field has begun to appreciate the distinct molecular pathogenic roles of mutant huntingtin in different cell types that may contribute to the selective neuronal vulnerability, with dissection of such mechanisms likely to yield novel molecular targets for HD therapy.

Keywords Huntington's disease      neurodegeneration      selective neuronal vulnerability      cortex      striatum      conditional mouse model      cell-autonomous toxicity      pathological cell-cell interaction      pathogenesis      therapeutic targets     
Corresponding Author(s): YANG X. William,Email:xwyang@mednet.ucla.edu   
Issue Date: 01 October 2012
 Cite this article:   
Xiao-Hong LU,Xiaofeng GU,X. William YANG, et al. Cellular and molecular mechanisms implicated in pathogenesis of selective neurodegeneration in Huntington’s disease[J]. Front Biol, 2012, 7(5): 459-476.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-012-1246-7
https://academic.hep.com.cn/fib/EN/Y2012/V7/I5/459
Fig.1  A two-step reductionist approach to dissect cellular and molecular pathogenic mechanisms in conditional HD mouse models. To elucidate how a ubiquitously expressed mHtt could elicit age-dependent, selective dysfunction and degeneration of specific neuronal types in the brain (e.g. MSNs and CPNs), a general stepwise reductionist approach can be used: First, models of HD are created in which the expression of mHtt or a toxic mHtt fragment can be regulated in specific genetically defined cell types by Cre recombinase. Examples of such models include RosaHD () in which mHtt-exon1 expression can be switched on in Cre-expressing cells, and BACHD in which full-length human mHtt expression can be genetically reduced in cell types expressing Cre (; Gray and Yang, data not shown). In the first reductionist step, by systematically crossing such conditional HD models with mice expressing Cre in distinct cell types, one can address whether mHtt expression in these cell types are necessary or sufficient to elicit cell-autonomous disease or pathological cell-cell interactions. Using a further reductionist step, one can investigate the molecular mechanisms operating within the critical genetically defined cell types, with particular focus on the mechanisms that are consistent with their pathogenic roles in the disease as defined by the first reductionist step (e.g. cell-autonomy pathological cell-cell interactions).
1 Aiken C T, Steffan J S, Guerrero C M, Khashwji H, Lukacsovich T, Simmons D, Purcell J M, Menhaji K, Zhu Y Z, Green K, Laferla F, Huang L, Thompson L M, Marsh J L (2009). Phosphorylation of threonine 3: implications for Huntingtin aggregation and neurotoxicity. J Biol Chem , 284(43): 29427–29436
pmid:19710014
2 Albin R L, Reiner A, Anderson K D, Dure L S 4th, Handelin B, Balfour R, Whetsell W O Jr, Penney J B, Young A B (1992). Preferential loss of striato-external pallidal projection neurons in presymptomatic Huntington’s disease. Ann Neurol , 31(4): 425–430
pmid:1375014
3 Albin R L, Reiner A, Anderson K D, Penney J B, Young A B (1990). Striatal and nigral neuron subpopulations in rigid Huntington’s disease: implications for the functional anatomy of chorea and rigidity-akinesia. Ann Neurol , 27(4): 357–365
pmid:1972318
4 Altar C A, Cai N, Bliven T, Juhasz M, Conner J M, Acheson A L, Lindsay R M, Wiegand S J (1997). Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature , 389(6653): 856–860
pmid:9349818
5 Arning L, Saft C, Wieczorek S, Andrich J, Kraus P H, Epplen J T (2007). NR2A and NR2B receptor gene variations modify age at onset in Huntington disease in a sex-specific manner. Hum Genet , 122(2): 175–182
pmid:17569088
6 Arregui L, Benítez J A, Razgado L F, Vergara P, Segovia J (2011). Adenoviral astrocyte-specific expression of BDNF in the striata of mice transgenic for Huntington’s disease delays the onset of the motor phenotype. Cell Mol Neurobiol , 31(8): 1229–1243
pmid:21681558
7 Atwal R S, Desmond C R, Caron N, Maiuri T, Xia J, Sipione S, Truant R (2011). Kinase inhibitors modulate huntingtin cell localization and toxicity. Nat Chem Biol , 7(7): 453–460
pmid:21623356
8 Averback P (1980). Histopathology of acute cell loss in Huntington’s chorea brain. J Pathol , 132(1): 55–61
pmid:6448921
9 Aylward E H, Sparks B F, Field K M, Yallapragada V, Shpritz B D, Rosenblatt A, Brandt J, Gourley L M, Liang K, Zhou H, Margolis R L, Ross C A (2004). Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology , 63(1): 66–72
pmid:15249612
10 Beal M F, Kowall N W, Ellison D W, Mazurek M F, Swartz K J, Martin J B (1986). Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature , 321(6066): 168–171
pmid:2422561
11 Behrens P F, Franz P, Woodman B, Lindenberg K S, Landwehrmeyer G B (2002). Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain , 125(Pt 8): 1908–1922
pmid:12135980
12 Bezprozvanny I, Hayden M R (2004). Deranged neuronal calcium signaling and Huntington disease. Biochem Biophys Res Commun , 322(4): 1310–1317
pmid:15336977
13 Bezzi P, Gundersen V, Galbete J L, Seifert G, Steinh?user C, Pilati E, Volterra A (2004). Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci , 7(6): 613–620
pmid:15156145
14 Biglan K M, Ross C A, Langbehn D R, Aylward E H, Stout J C, Queller S, Carlozzi N E, Duff K, Beglinger L J, Paulsen J S, PREDICT-HD Investigators of the Huntington Study Group (2009). Motor abnormalities in premanifest persons with Huntington’s disease: the PREDICT-HD study. Mov Disord , 24(12): 1763–1772
pmid:19562761
15 Bradford J, Shin J Y, Roberts M, Wang C E, Li X J, Li S (2009). Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci U S A , 106(52): 22480–22485
pmid:20018729
16 Bradford J, Shin J Y, Roberts M, Wang C E, Sheng G, Li S, Li X J (2010). Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J Biol Chem , 285(14): 10653–10661
pmid:20145253
17 Brown A M, Ransom B R (2007). Astrocyte glycogen and brain energy metabolism. Glia , 55(12): 1263–1271
pmid:17659525
18 Brown T B, Bogush A I, Ehrlich M E (2008). Neocortical expression of mutant huntingtin is not required for alterations in striatal gene expression or motor dysfunction in a transgenic mouse. Hum Mol Genet , 17(20): 3095–3104
pmid:18632688
19 Browne S E, Beal M F (2004). The energetics of Huntington’s disease. Neurochem Res , 29(3): 531–546
pmid:15038601
20 Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvári M, Piper M D, Hoddinott M, Sutphin G L, Leko V, McElwee J J, Vazquez-Manrique R P, Orfila A M, Ackerman D, Au C, Vinti G, Riesen M, Howard K, Neri C, Bedalov A, Kaeberlein M, Soti C, Partridge L, Gems D (2011). Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature , 477(7365): 482–485
pmid:21938067
21 Bydder G M, Steiner R E, Young I R, Hall A S, Thomas D J, Marshall J, Pallis C A, Legg N J (1982). Clinical NMR imaging of the brain: 140 cases. AJR Am J Roentgenol , 139(2): 215–236
pmid:6979874
22 Campesan S, Green E W, Breda C, Sathyasaikumar K V, Muchowski P J, Schwarcz R, Kyriacou C P, Giorgini F (2011). The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington’s disease. Curr Biol , 21(11): 961–966
pmid:21636279
23 Canals J M, Pineda J R, Torres-Peraza J F, Bosch M, Martín-Iba?ez R, Mu?oz M T, Mengod G, Ernfors P, Alberch J (2004). Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci , 24(35): 7727–7739
pmid:15342740
24 Cha J H J, Frey A S, Alsdorf S A, Kerner J A, Kosinski C M, Mangiarini L, Penney J B Jr, Davies S W, Bates G P, Young A B (1999). Altered neurotransmitter receptor expression in transgenic mouse models of Huntington’s disease. Philos Trans R Soc Lond B Biol Sci , 354(1386): 981–989
pmid:10434296
25 Che H V B, Metzger S, Portal E, Deyle C, Riess O, Nguyen H P (2011). Localization of sequence variations in PGC-1α influence their modifying effect in Huntington disease. Mol Neurodegener , 6(1): 1
pmid:21211002
26 Cho S R, Benraiss A, Chmielnicki E, Samdani A, Economides A, Goldman S A (2007). Induction of neostriatal neurogenesis slows disease progression in a transgenic murine model of Huntington disease. J Clin Invest , 117(10): 2889–2902
pmid:17885687
27 Choi Y S, Lee B, Cho H Y, Reyes I B, Pu X A, Saido T C, Hoyt K R, Obrietan K (2009). CREB is a key regulator of striatal vulnerability in chemical and genetic models of Huntington’s disease. Neurobiol Dis , 36(2): 259–268
pmid:19632326
28 Chou S Y, Weng J Y, Lai H L, Liao F, Sun S H, Tu P H, Dickson D W, Chern Y (2008). Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes. J Neurosci , 28(13): 3277–3290
pmid:18367595
29 Crook Z R, Housman D (2011). Huntington’s disease: can mice lead the way to treatment? Neuron , 69(3): 423–435
pmid:21315254
30 Cudkowicz M, Kowall N W (1990). Degeneration of pyramidal projection neurons in Huntington’s disease cortex. Ann Neurol , 27(2): 200–204
pmid:2138444
31 Cui L, Jeong H, Borovecki F, Parkhurst C N, Tanese N, Krainc D (2006). Transcriptional repression of PGC-1αby mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell , 127(1): 59–69
pmid:17018277
32 Damiano M, Galvan L, Déglon N, Brouillet E (2010). Mitochondria in Huntington’s disease. Biochim Biophys Acta , 1802(1): 52–61
pmid:19682570
33 de la Monte S M, Vonsattel J P, Richardson E P Jr, (1988). Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington’s disease. J Neuropathol Exp Neurol , 47(5): 516–525
pmid:2971785
34 Di Pardo A, Maglione V, Alpaugh M, Horkey M, Atwal R S, Sassone J, Ciammola A, Steffan J S, Fouad K, Truant R, Sipione S (2012). Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores normal motor behavior in Huntington disease mice. Proc Natl Acad Sci U S A , 109(9): 3528–3533
pmid:22331905
35 DiFiglia M, Sapp E, Chase K, Schwarz C, Meloni A, Young C, Martin E, Vonsattel J P, Carraway R, Reeves S A, et al (1995). Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron , 14(5): 1075–1081
pmid:7748555
36 DiFiglia M, Sapp E, Chase K O, Davies S W, Bates G P, Vonsattel J P, Aronin N (1997). Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science , 277(5334): 1990–1993
pmid:9302293
37 DiFiglia M, Sena-Esteves M, Chase K, Sapp E, Pfister E, Sass M, Yoder J, Reeves P, Pandey R K, Rajeev K G, Manoharan M, Sah D W, Zamore P D, Aronin N (2007). Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci U S A , 104(43): 17204–17209
pmid:17940007
38 DonmezG (2012). The neurobiology of sirtuins and their role in neurodegeneration. Trends Pharmacol Sci , 33(9): 494–501
doi: 10.1016/j.tips.2012.05.007
39 Duff K, Paulsen J S, Beglinger L J, Langbehn D R, Wang C, Stout J C, Ross C A, Aylward E, Carlozzi N E, Queller S, and the Predict-HD Investigators of the Huntington Study Group (2010). “Frontal” behaviors before the diagnosis of Huntington’s disease and their relationship to markers of disease progression: evidence of early lack of awareness. J Neuropsychiatry Clin Neurosci , 22(2): 196–207
pmid:20463114
40 Dumas E M, van den Bogaard S J A, Ruber M E, Reilman R R, Stout J C, Craufurd D, Hicks S L, Kennard C, Tabrizi S J, van Buchem M A, van der Grond J, Roos R A (2012). Early changes in white matter pathways of the sensorimotor cortex in premanifest Huntington’s disease. Hum Brain Mapp , 33(1): 203–212
pmid:21264990
41 Duyao M P, Auerbach A B, Ryan A, Persichetti F, Barnes G T, McNeil S M, Ge P, Vonsattel J P, Gusella J F, Joyner A L, (1995). Inactivation of the mouse Huntington’s disease gene homolog Hdh. Science , 269(5222): 407–410
pmid:7618107
42 Ehrnhoefer D E, Sutton L, Hayden M R(2011). Small Changes, Big Impact: Posttranslational Modifications and Function of Huntingtin in Huntington Disease. Neuroscientist , 17(5): 475–492
43 Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, Dufour N, Guillermier M, Brouillet E, Hantraye P, Déglon N, Ferrante R J, Bonvento G (2010). In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet , 19(15): 3053–3067
pmid:20494921
44 Ferrante R J, Kowall N W, Beal M F, Martin J B, Bird E D, Richardson E P Jr (1987). Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease. J Neuropathol Exp Neurol , 46(1): 12–27
pmid:2947977
45 Ferrante R J, Kowall N W, Beal M F, Richardson E P Jr, Bird E D, Martin J B (1985). Selective sparing of a class of striatal neurons in Huntington’s disease. Science , 230(4725): 561–563
pmid:2931802
46 Fiacco T A, McCarthy K D (2004). Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J Neurosci , 24(3): 722–732
pmid:14736858
47 Fusco F R, Chen Q, Lamoreaux W J, Figueredo-Cardenas G, Jiao Y, Coffman J A, Surmeier D J, Honig M G, Carlock L R, Reiner A (1999). Cellular localization of huntingtin in striatal and cortical neurons in rats: lack of correlation with neuronal vulnerability in Huntington’s disease. J Neurosci , 19(4): 1189–1202
pmid:9952397
48 Gafni J, Papanikolaou T, Degiacomo F, Holcomb J, Chen S, Menalled L, Kudwa A, Fitzpatrick J, Miller S, Ramboz S, Tuunanen P I, Lehtim?ki K K, Yang X W, Park L, Kwak S, Howland D, Park H, Ellerby L M (2012). Caspase-6 activity in a BACHD mouse modulates steady-state levels of mutant huntingtin protein but is not necessary for production of a 586 amino acid proteolytic fragment. J Neurosci , 32(22): 7454–7465
pmid:22649225
49 Gauthier L R, Charrin B C, Borrell-Pagès M, Dompierre J P, Rangone H, Cordelières F P, De Mey J, MacDonald M E, Lessmann V, Humbert S, Saudou F (2004). Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell , 118(1): 127–138
pmid:15242649
50 Glass C K, Saijo K, Winner B, Marchetto M C, Gage F H (2010). Mechanisms underlying inflammation in neurodegeneration. Cell , 140(6): 918–934
pmid:20303880
51 Gorski J A, Talley T, Qiu M, Puelles L, Rubenstein J L R, Jones K R (2002). Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci , 22(15): 6309–6314
pmid:12151506
52 Graham R K, Deng Y, Carroll J, Vaid K, Cowan C, Pouladi M A, Metzler M, Bissada N, Wang L, Faull R L M, Gray M, Yang X W, Raymond L A, Hayden M R (2010). Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo. J Neurosci , 30(45): 15019–15029
pmid:21068307
53 Graham R K, Deng Y, Slow E J, Haigh B, Bissada N, Lu G, Pearson J, Shehadeh J, Bertram L, Murphy Z, Warby S C, Doty C N, Roy S, Wellington C L, Leavitt B R, Raymond L A, Nicholson D W, Hayden M R (2006). Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell , 125(6): 1179–1191
pmid:16777606
54 Gray M, Shirasaki D I, Cepeda C, André V M, Wilburn B, Lu X H, Tao J, Yamazaki I, Li S H, Sun Y E, Li X J, Levine M S, Yang X W (2008). Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci , 28(24): 6182–6195
pmid:18550760
55 Graybiel A M (2000). The basal ganglia. Curr Biol , 10(14): R509–R511
pmid:10899013
56 Greiner E R, Yang X W (2011). Huntington’s disease: flipping a switch on huntingtin. Nat Chem Biol , 7(7): 412–414
pmid:21685885
57 Gu X, André V M, Cepeda C, Li S H, Li X J, Levine M S, Yang X W (2007). Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington’s disease. Mol Neurodegener , 2: 8
pmid:17470275
58 Gu X, Greiner E R, Mishra R, Kodali R, Osmand A, Finkbeiner S, Steffan J S, Thompson L M, Wetzel R, Yang X W (2009). Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron , 64(6): 828–840
pmid:20064390
59 Gu X, Li C, Wei W, Lo V, Gong S, Li S H, Iwasato T, Itohara S, Li X J, Mody I, Heintz N, Yang X W (2005). Pathological cell-cell interactions elicited by a neuropathogenic form of mutant Huntingtin contribute to cortical pathogenesis in HD mice. Neuron , 46(3): 433–444
pmid:15882643
60 Guarente L (2007). Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol , 72: 483–488
pmid:18419308
61 Guidetti P, Bates G P, Graham R K, Hayden M R, Leavitt B R, MacDonald M E, Slow E J, Wheeler V C, Woodman B, Schwarcz R (2006). Elevated brain 3-hydroxykynurenine and quinolinate levels in Huntington disease mice. Neurobiol Dis , 23(1): 190–197
pmid:16697652
62 Gutekunst C A, Li S H, Yi H, Mulroy J S, Kuemmerle S, Jones R, Rye D, Ferrante R J, Hersch S M, Li X J (1999). Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci , 19(7): 2522–2534
pmid:10087066
63 Hardingham G E, Bading H (2003). The Yin and Yang of NMDA receptor signalling. Trends Neurosci , 26(2): 81–89
pmid:12536131
64 Hardingham G E, Bading H(2010). Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci , 682(11): 1–15
65 Harper S Q, Staber P D, He X, Eliason S L, Martins I H, Mao Q, Yang L, Kotin R M, Paulson H L, Davidson B L (2005). RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A , 102(16): 5820–5825
pmid:15811941
66 Harris G J, Pearlson G D, Peyser C E, Aylward E H, Roberts J, Barta P E, Chase G A, Folstein S E (1992). Putamen volume reduction on magnetic resonance imaging exceeds caudate changes in mild Huntington’s disease. Ann Neurol , 31(1): 69–75
pmid:1531910
67 Harrison L M (2012). Rhes: A GTP-Binding Protein Integral to Striatal Physiology and Pathology. Cell Mol Neurobiol , 32(6): 907–918
68 Hedreen J C, Peyser C E, Folstein S E, Ross C A (1991). Neuronal loss in layers V and VI of cerebral cortex in Huntington’s disease. Neurosci Lett , 133(2): 257–261
pmid:1840078
69 Heng M Y, Detloff P J, Albin R L (2008). Rodent genetic models of Huntington disease. Neurobiol Dis , 32(1): 1–9
pmid:18638556
70 Heng M Y, Detloff P J, Wang P L, Tsien J Z, Albin R L (2009). In vivo evidence for NMDA receptor-mediated excitotoxicity in a murine genetic model of Huntington disease. J Neurosci , 29(10): 3200–3205
pmid:19279257
71 Hodgson J G, Agopyan N, Gutekunst C A, Leavitt B R, LePiane F, Singaraja R, Smith D J, Bissada N, McCutcheon K, Nasir J, Jamot L, Li X J, Stevens M E, Rosemond E, Roder J C, Phillips A G, Rubin E M, Hersch S M, Hayden M R (1999). A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron , 23(1): 181–192
pmid:10402204
72 Holmes S E, O’Hearn E, Rosenblatt A, Callahan C, Hwang H S, Ingersoll-Ashworth R G, Fleisher A, Stevanin G, Brice A, Potter N T, Ross C A, Margolis R L (2001). A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease-like 2. Nat Genet , 29(4): 377–378
pmid:11694876
73 Houtkooper R H, Pirinen E, Auwerx J (2012). Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol , 13(4): 225–238
pmid:22395773
74 Hult S, Soylu R, Bj?rklund T, Belgardt B F, Mauer J, Brüning J C, Kirik D, Petersén ? (2011). Mutant huntingtin causes metabolic imbalance by disruption of hypothalamic neurocircuits. Cell Metab , 13(4): 428–439
pmid:21459327
75 Humbert S, Bryson E A, Cordelières F P, Connors N C, Datta S R, Finkbeiner S, Greenberg M E, Saudou F (2002). The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves Huntingtin phosphorylation by Akt. Dev Cell , 2(6): 831–837
pmid:12062094
76 Iwasato T, Datwani A, Wolf A M, Nishiyama H, Taguchi Y, Tonegawa S, Kn?pfel T, Erzurumlu R S, Itohara S (2000). Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature , 406(6797): 726–731
pmid:10963597
77 Jauch D, Urbańska E M, Guidetti P, Bird E D, Vonsattel J P, Whetsell W O Jr, Schwarcz R (1995). Dysfunction of brain kynurenic acid metabolism in Huntington’s disease: focus on kynurenine aminotransferases. J Neurol Sci , 130(1): 39–47
pmid:7650530
78 Jeong H, Cohen D E, Cui L, Supinski A, Savas J N, Mazzulli J R, Yates J R 3rd, Bordone L, Guarente L, Krainc D (2012). Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med , 18(1): 159–165
pmid:22179316
79 Jeong H, Then F, Melia T J Jr, Mazzulli J R, Cui L, Savas J N, Voisine C, Paganetti P, Tanese N, Hart A C, Yamamoto A, Krainc D (2009). Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell , 137(1): 60–72
pmid:19345187
80 Jernigan T L, Salmon D P, Butters N, Hesselink J R (1991). Cerebral structure on MRI, Part II: Specific changes in Alzheimer’s and Huntington’s diseases. Biol Psychiatry , 29(1): 68–81
pmid:1825793
81 Jiang M, Wang J, Fu J, Du L, Jeong H, West T, Xiang L, Peng Q, Hou Z, Cai H, Seredenina T, Arbez N, Zhu S, Sommers K, Qian J, Zhang J, Mori S, Yang X W, Tamashiro K L, Aja S, Moran T H, Luthi-Carter R, Martin B, Maudsley S, Mattson M P, Cichewicz R H, Ross C A, Holtzman D M, Krainc D, Duan W (2012). Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med , 18(1): 153–158
pmid:22179319
82 Johri A, Calingasan N Y, Hennessey T M, Sharma A, Yang L, Wille E, Chandra A, Beal M F (2012). Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Hum Mol Genet , 21(5): 1124–1137
pmid:22095692
83 Kim J, Moody J P, Edgerly C K, Bordiuk O L, Cormier K, Smith K, Beal M F, Ferrante R J (2010). Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease. Hum Mol Genet , 19(20): 3919–3935
pmid:20660112
84 Kita H, Kitai S T (1988). Glutamate decarboxylase immunoreactive neurons in rat neostriatum: their morphological types and populations. Brain Res , 447(2): 346–352
pmid:3390703
85 Kl?ppel S, Draganski B, Golding C V, Chu C, Nagy Z, Cook P A, Hicks S L, Kennard C, Alexander D C, Parker G J M, Tabrizi S J, Frackowiak R S (2008). White matter connections reflect changes in voluntary-guided saccades in pre-symptomatic Huntington’s disease. Brain , 131(Pt 1): 196–204
pmid:18056161
86 Kolodziej L R, Paleolog E M, Williams R O (2011). Kynurenine metabolism in health and disease. Amino Acids , 41(5): 1173–1183
pmid:20972599
87 Kordasiewicz H B, Stanek L M, Wancewicz E V, Mazur C, McAlonis M M, Pytel K A, Artates J W, Weiss A, Cheng S H, Shihabuddin L S, Hung G, Bennett C F, Cleveland D W (2012). Sustained Therapeutic Reversal of Huntington’s Disease by Transient Repression of Huntingtin Synthesis. Neuron , 74(6): 1031–1044
pmid:22726834
88 Kovács K A, Steullet P, Steinmann M, Do K Q, Magistretti P J, Halfon O, Cardinaux J R (2007). TORC1 is a calcium- and cAMP-sensitive coincidence detector involved in hippocampal long-term synaptic plasticity. Proc Natl Acad Sci U S A , 104(11): 4700–4705
pmid:17360587
89 Lange H, Th?rner G, Hopf A, Schr?der K F (1976). Morphometric studies of the neuropathological changes in choreatic diseases. J Neurol Sci , 28(4): 401–425
pmid:133209
90 Levine M S, Klapstein G J, Koppel A, Gruen E, Cepeda C, Vargas M E, Jokel E S, Carpenter E M, Zanjani H, Hurst R S, Efstratiadis A, Zeitlin S, Chesselet M F (1999). Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington’s disease. J Neurosci Res , 58(4): 515–532
pmid:10533044
91 Li H, Li S H, Johnston H, Shelbourne P F, Li X J (2000). Amino-terminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity. Nat Genet , 25(4): 385–389
pmid:10932179
92 Li L, Fan M, Icton C D, Chen N, Leavitt B R, Hayden M R, Murphy T H, Raymond L A (2003). Role of NR2B-type NMDA receptors in selective neurodegeneration in Huntington disease. Neurobiol Aging , 24(8): 1113–1121
pmid:14643383
93 Li S, Zhang C, Takemori H, Zhou Y, Xiong Z Q (2009). TORC1 regulates activity-dependent CREB-target gene transcription and dendritic growth of developing cortical neurons. J Neurosci , 29(8): 2334–2343
pmid:19244510
94 Liévens J C, Woodman B, Mahal A, Spasic-Boscovic O, Samuel D, Kerkerian-Le Goff L, Bates G P (2001). Impaired glutamate uptake in the R6 Huntington’s disease transgenic mice. Neurobiol Dis , 8(5): 807–821
pmid:11592850
95 Lin J, Wu P H, Tarr P T, Lindenberg K S, St-Pierre J, Zhang C Y, Mootha V K, J?ger S, Vianna C R, Reznick R M, Cui L, Manieri M, Donovan M X, Wu Z, Cooper M P, Fan M C, Rohas L M, Zavacki A M, Cinti S, Shulman G I, Lowell B B, Krainc D, Spiegelman B M (2004). Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell , 119(1): 121–135
pmid:15454086
96 Lin J, Yang R, Tarr P T, Wu P H, Handschin C, Li S, Yang W, Pei L, Uldry M, Tontonoz P, Newgard C B, Spiegelman B M (2005). Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP. Cell , 120(2): 261–273
pmid:15680331
97 Lu X H, Yang X W (2012). “Huntingtin Holiday”: Progress toward an Antisense Therapy for Huntington’s Disease. Neuron , 74(6): 964–966
pmid:22726826
98 Lunkes A, Lindenberg K S, Ben-Ha?em L, Weber C, Devys D, Landwehrmeyer G B, Mandel J L, Trottier Y (2002). Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Mol Cell , 10(2): 259–269
pmid:12191472
99 Luthi-Carter R, Strand A, Peters N L, Solano S M, Hollingsworth Z R, Menon A S, Frey A S, Spektor B S, Penney E B, Schilling G, Ross C A, Borchelt D R, Tapscott S J, Young A B, Cha J H, Olson J M (2000). Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Hum Mol Genet , 9(9): 1259–1271
pmid:10814708
100 Macdonald V, Halliday G (2002). Pyramidal cell loss in motor cortices in Huntington’s disease. Neurobiol Dis , 10(3): 378–386
pmid:12270698
101 Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies S W, Bates G P (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell , 87(3): 493–506
pmid:8898202
102 Mann D M, Oliver R, Snowden J S (1993). The topographic distribution of brain atrophy in Huntington’s disease and progressive supranuclear palsy. Acta Neuropathol , 85(5): 553–559
pmid:8493863
103 Mantamadiotis T, Lemberger T, Bleckmann S C, Kern H, Kretz O, Martin Villalba A, Tronche F, Kellendonk C, Gau D, Kapfhammer J, Otto C, Schmid W, Schütz G (2002). Disruption of CREB function in brain leads to neurodegeneration. Nat Genet , 31(1): 47–54
pmid:11967539
104 Mattsson B, Gottfries C G, Roos B E, Winblad B (1974). Huntington’s chorea: pathology and brain amines. Acta Psychiatr Scand Suppl , 255: 269–277
pmid:4282558
105 McBride J L, Boudreau R L, Harper S Q, Staber P D, Monteys A M, Martins I, Gilmore B L, Burstein H, Peluso R W, Polisky B, Carter B J, Davidson B L (2008). Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci U S A , 105(15): 5868–5873
pmid:18398004
106 McGill J K, Beal M F (2006). PGC-1α, a new therapeutic target in Huntington’s disease? Cell , 127(3): 465–468
pmid:17081970
107 Menalled L, El-Khodor B F, Patry M, Suárez-Fari?as M, Orenstein S J, Zahasky B, Leahy C, Wheeler V, Yang X W, MacDonald M E, Morton A J, Bates G, Leeds J, Park L, Howland D, Signer E, Tobin A, Brunner D (2009). Systematic behavioral evaluation of Huntington’s disease transgenic and knock-in mouse models. Neurobiol Dis , 35(3): 319–336
pmid:19464370
108 Menalled L B, Sison J D, Dragatsis I, Zeitlin S, Chesselet M F O (2003). Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington’s disease with 140 CAG repeats. J Comp Neurol , 465(1): 11–26
pmid:12926013
109 Metzler M, Gan L, Mazarei G, Graham R K, Liu L, Bissada N, Lu G, Leavitt B R, Hayden M R (2010). Phosphorylation of huntingtin at Ser421 in YAC128 neurons is associated with protection of YAC128 neurons from NMDA-mediated excitotoxicity and is modulated by PP1 and PP2A. J Neurosci , 30(43): 14318–14329
pmid:20980587
110 Miller B R, Dorner J L, Shou M, Sari Y, Barton S J, Sengelaub D R, Kennedy R T, Rebec G V (2008). Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience , 153(1): 329–337
pmid:18353560
111 Miller J P, Holcomb J, Al-Ramahi I, de Haro M, Gafni J, Zhang N, Kim E, Sanhueza M, Torcassi C, Kwak S, Botas J, Hughes R E, Ellerby L M (2010). Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington’s disease. Neuron , 67(2): 199–212
pmid:20670829
112 Milnerwood A J, Cummings D M, Dallérac G M, Brown J Y, Vatsavayai S C, Hirst M C, Rezaie P, Murphy K P (2006). Early development of aberrant synaptic plasticity in a mouse model of Huntington’s disease. Hum Mol Genet , 15(10): 1690–1703
pmid:16600988
113 Milnerwood A J, Gladding C M, Pouladi M A, Kaufman A M, Hines R M, Boyd J D, Ko R W Y, Vasuta O C, Graham R K, Hayden M R, Murphy T H, Raymond L A (2010). Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron , 65(2): 178–190
pmid:20152125
114 Milnerwood A J, Raymond L A (2010). Early synaptic pathophysiology in neurodegeneration: insights from Huntington’s disease. Trends Neurosci , 33(11): 513–523
pmid:20850189
115 Myers R H, Vonsattel J P, Paskevich P A, Kiely D K, Stevens T J, Cupples L A, Richardson E P Jr, Bird E D (1991). Decreased neuronal and increased oligodendroglial densities in Huntington’s disease caudate nucleus. J Neuropathol Exp Neurol , 50(6): 729–742
pmid:1836225
116 Okamoto S I, Pouladi M A, Talantova M, Yao D, Xia P, Ehrnhoefer D E, Zaidi R, Clemente A, Kaul M, Graham R K, Zhang D, Vincent Chen H S, Tong G, Hayden M R, Lipton S A (2009). Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med ,
doi: 10.1038/nm.2056
117 Orr H T, Zoghbi H Y (2007). Trinucleotide repeat disorders. Annu Rev Neurosci , 30: 575–621
pmid:17417937
118 Parker J A, Arango M, Abderrahmane S, Lambert E, Tourette C, Catoire H, Néri C (2005). Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet , 37(4): 349–350
pmid:15793589
119 Paulsen J S, Hayden M, Stout J C, Langbehn D R, Aylward E, Ross C A, Guttman M, Nance M, Kieburtz K, Oakes D, Shoulson I, Kayson E, Johnson S, Penziner E, Predict-HD Investigators of the Huntington Study Group (2006). Preparing for preventive clinical trials: the Predict-HD study. Arch Neurol , 63(6): 883–890
pmid:16769871
120 Paulsen J S, Langbehn D R, Stout J C, Aylward E, Ross C A, Nance M, Guttman M, Johnson S, MacDonald M, Beglinger L J, Duff K, Kayson E, Biglan K, Shoulson I, Oakes D, Hayden M, Predict-HD Investigators and Coordinators of the Huntington Study Group (2008). Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry , 79(8): 874–880
pmid:18096682
121 Paulsen J S, Wang C, Duff K, Barker R, Nance M, Beglinger L, Moser D, Williams J K, Simpson S, Langbehn D, van Kammen D P, and the PREDICT-HD Investigators of the Huntington Study Group (2010). Challenges assessing clinical endpoints in early Huntington disease. Mov Disord , 25(15): 2595–2603
pmid:20623772
122 Petersén ?, Bj?rkqvist M (2006). Hypothalamic-endocrine aspects in Huntington’s disease. Eur J Neurosci , 24(4): 961–967
pmid:16925587
123 Pfrieger F W, Ungerer N (2011). Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res , 50(4): 357–371
pmid:21741992
124 Ramos, E. M., Latourelle, J. C., Lee, J.-H., Gillis, T., Mysore, J. S., Squitieri, F., Pardo, A., Donato, S., Hayden, M. R., Morrison, P. J., . (2012). Population stratification may bias analysis of PGC-1α as a modifier of age at Huntington disease motor onset. Hum. Genet .
125 Ratovitski T, Gucek M, Jiang H, Chighladze E, Waldron E, D’Ambola J, Hou Z, Liang Y, Poirier M A, Hirschhorn R R, Graham R, Hayden M R, Cole R N, Ross C A (2009). Mutant huntingtin N-terminal fragments of specific size mediate aggregation and toxicity in neuronal cells. J Biol Chem , 284(16): 10855–10867
pmid:19204007
126 Raymond L A, André V M, Cepeda C, Gladding C M, Milnerwood A J, Levine M S (2011). Pathophysiology of Huntington’s disease: time-dependent alterations in synaptic and receptor function. Neuroscience , 198: 252–273
pmid:21907762
127 Reading S A J, Yassa M A, Bakker A, Dziorny A C, Gourley L M, Yallapragada V, Rosenblatt A, Margolis R L, Aylward E H, Brandt J, Mori S, van Zijl P, Bassett S S, Ross C A (2005). Regional white matter change in pre-symptomatic Huntington’s disease: a diffusion tensor imaging study. Psychiatry Res , 140(1): 55–62
pmid:16199141
128 Reiner A, Albin R L, Anderson K D, D’Amato C J, Penney J B, Young A B (1988). Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A , 85(15): 5733–5737
pmid:2456581
129 Reiner A, Dragatsis I, Zeitlin S, Goldowitz D (2003). Wild-type huntingtin plays a role in brain development and neuronal survival. Mol Neurobiol , 28(3): 259–276
pmid:14709789
130 Roos R A, Bots G T, Hermans J (1986). Quantitative analysis of morphological features in Huntington’s disease. Acta Neurol Scand , 73(2): 131–135
pmid:2939683
131 Rosas H D, Feigin A S, Hersch S M (2004). Using advances in neuroimaging to detect, understand, and monitor disease progression in Huntington’s disease. NeuroRx , 1(2): 263–272
pmid:15717027
132 Rosas H D, Koroshetz W J, Chen Y I, Skeuse C, Vangel M, Cudkowicz M E, Caplan K, Marek K, Seidman L J, Makris N, Jenkins B G, Goldstein J M (2003). Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology , 60(10): 1615–1620
pmid:12771251
133 Rosas H D, Lee S Y, Bender A C, Zaleta A K, Vangel M, Yu P, Fischl B, Pappu V, Onorato C, Cha J H, Salat D H, Hersch S M (2010). Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection”. Neuroimage , 49(4): 2995–3004
pmid:19850138
134 Rosas H D, Salat D H, Lee S Y, Zaleta A K, Hevelone N, Hersch S M (2008). Complexity and heterogeneity: what drives the ever-changing brain in Huntington’s disease? Ann N Y Acad Sci , 1147: 196–205
pmid:19076442
135 Rosas H D, Tuch D S, Hevelone N D, Zaleta A K, Vangel M, Hersch S M, Salat D H (2006). Diffusion tensor imaging in presymptomatic and early Huntington’s disease: Selective white matter pathology and its relationship to clinical measures. Mov Disord , 21(9): 1317–1325
pmid:16755582
136 Ross C A, Tabrizi S J (2011). Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol , 10(1): 83–98
pmid:21163446
137 Runne H, Régulier E, Kuhn A, Zala D, Gokce O, Perrin V, Sick B, Aebischer P, Déglon N, Luthi-Carter R (2008). Dysregulation of gene expression in primary neuron models of Huntington’s disease shows that polyglutamine-related effects on the striatal transcriptome may not be dependent on brain circuitry. J Neurosci , 28(39): 9723–9731
pmid:18815258
138 Savoiardo M, Strada L, Oliva D, Girotti F, D’Incerti L (1991). Abnormal MRI signal in the rigid form of Huntington’s disease. J Neurol Neurosurg Psychiatry , 54(10): 888–891
pmid:1836015
139 Schilling G, Becher M W, Sharp A H, Jinnah H A, Duan K, Kotzuk J A, Slunt H H, Ratovitski T, Cooper J K, Jenkins N A, Copeland N G, Price D L, Ross C A, Borchelt D R (1999). Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet , 8(3): 397–407
pmid:9949199
140 Schwarcz R, Bennett J P Jr, Coyle J T Jr (1977). Loss of striatal serotonin synaptic receptor binding induced by kainic acid lesions: correlations with Huntington’s Disease. J Neurochem , 28(4): 867–869
pmid:142820
141 Schwarcz R, Guidetti P, Sathyasaikumar K V, Muchowski P J (2010). Of mice, rats and men: Revisiting the quinolinic acid hypothesis of Huntington’s disease. Prog Neurobiol , 90(2): 230–245
pmid:19394403
142 Sharma P, Savy L, Britton J, Taylor R, Howick A, Patton M (1996). Huntington’s disease: a molecular genetic and CT comparison. J Neurol Neurosurg Psychiatry , 60(2): 206–208
pmid:8708657
143 Shaywitz A J, Greenberg M E (1999). CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem, 68: 821–861
pmid:10872467
144 Shin J Y, Fang Z H, Yu Z X, Wang C E, Li S H, Li X J (2005). Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol , 171(6): 1001–1012
pmid:16365166
145 Simmons D A, Mehta R A, Lauterborn J C, Gall C M, Lynch G (2011). Brief ampakine treatments slow the progression of Huntington’s disease phenotypes in R6/2 mice. Neurobiol Dis , 41(2): 436–444
pmid:20977939
146 Simmons D A, Rex C S, Palmer L, Pandyarajan V, Fedulov V, Gall C M, Lynch G (2009). Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington’s disease knockin mice. Proc Natl Acad Sci U S A , 106(12): 4906–4911
pmid:19264961
147 Slow E J, van Raamsdonk J, Rogers D, Coleman S H, Graham R K, Deng Y, Oh R, Bissada N, Hossain S M, Yang Y Z, Li X J, Simpson E M, Gutekunst C A, Leavitt B R, Hayden M R (2003). Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet , 12(13): 1555–1567
pmid:12812983
148 Spampanato J, Gu X, Yang X W, Mody I (2008). Progressive synaptic pathology of motor cortical neurons in a BAC transgenic mouse model of Huntington’s disease. Neuroscience , 157(3): 606–620
pmid:18854207
149 Steffan J S, Agrawal N, Pallos J, Rockabrand E, Trotman L C, Slepko N, Illes K, Lukacsovich T, Zhu Y Z, Cattaneo E, Pandolfi P P, Thompson L M, Marsh J L (2004). SUMO modification of Huntingtin and Huntington’s disease pathology. Science , 304(5667): 100–104
pmid:15064418
150 Strand A D, Baquet Z C, Aragaki A K, Holmans P, Yang L, Cleren C, Beal M F, Jones L, Kooperberg C, Olson J M, Jones K R (2007). Expression profiling of Huntington’s disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J Neurosci , 27(43): 11758–11768
pmid:17959817
151 Subramaniam S, Sixt K M, Barrow R, Snyder S H (2009). Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science , 324(5932): 1327–1330
pmid:19498170
152 Subramaniam S, Snyder S H (2011). Huntington’s disease is a disorder of the corpus striatum: focus on Rhes (Ras homologue enriched in the striatum). Neuropharmacology , 60(7–8): 1187–1192
pmid:21044641
153 Tabrizi S J, Langbehn D R, Leavitt B R, Roos R A, Durr A, Craufurd D, Kennard C, Hicks S L, Fox N C, Scahill R I, Borowsky B, Tobin A J, Rosas H D, Johnson H, Reilmann R, Landwehrmeyer B, Stout J C, TRACK-HD investigators (2009). Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol , 8(9): 791–801
pmid:19646924
154 Tabrizi S J, Reilmann R, Roos R A C, Durr A, Leavitt B, Owen G, Jones R, Johnson H, Craufurd D, Hicks S L, Kennard C, Landwehrmeyer B, Stout J C, Borowsky B, Scahill R I, Frost C, Langbehn D R, TRACK-HD investigators (2012). Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol , 11(1): 42–53
pmid:22137354
155 Tallaksen-Greene S J, Janiszewska A, Benton K, Ruprecht L, Albin R L (2010). Lack of efficacy of NMDA receptor-NR2B selective antagonists in the R6/2 model of Huntington disease. Exp Neurol , 225(2): 402–407
pmid:20659453
156 Tebbenkamp A T N, Green C, Xu G, Denovan-Wright E M, Rising A C, Fromholt S E, Brown H H, Swing D, Mandel R J, Tessarollo L, Borchelt D R (2011). Transgenic mice expressing caspase-6-derived N-terminal fragments of mutant huntingtin develop neurologic abnormalities with predominant cytoplasmic inclusion pathology composed largely of a smaller proteolytic derivative. Hum Mol Genet , 20(14): 2770–2782
pmid:21515588
157 The Huntington’s Disease Collaborative Research Group (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell , 72(6): 971–983
pmid:8458085
158 Thomas E A, Coppola G, Tang B, Kuhn A, Kim S, Geschwind D H, Brown T B, Luthi-Carter R, Ehrlich M E (2011). In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons. Hum Mol Genet , 20(6): 1049–1060
pmid:21177255
159 Thompson L M, Aiken C T, Kaltenbach L S, Agrawal N, Illes K, Khoshnan A, Martinez-Vincente M, Arrasate M, O’Rourke J G, Khashwji H, Lukacsovich T, Zhu Y Z, Lau A L, Massey A, Hayden M R, Zeitlin S O, Finkbeiner S, Green K N, LaFerla F M, Bates G, Huang L, Patterson P H, Lo D C, Cuervo A M, Marsh J L, Steffan J S (2009). IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J Cell Biol , 187(7): 1083–1099
pmid:20026656
160 Tsunemi T, Ashe T D, Morrison B E, Soriano K R, Au J, Roque R A V, Lazarowski E R, Damian V A, Masliah E, La Spada A R (2012). PGC-1 rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med , 142(4): 142ra97
161 Valenza M, Leoni V, Karasinska J M, Petricca L, Fan J, Carroll J, Pouladi M A, Fossale E, Nguyen H P, Riess O, MacDonald M, Wellington C, DiDonato S, Hayden M, Cattaneo E (2010). Cholesterol defect is marked across multiple rodent models of Huntington’s disease and is manifest in astrocytes. J Neurosci , 30(32): 10844–10850
pmid:20702713
162 van den Bogaard S J A, Dumas E M, Acharya T P, Johnson H, Langbehn D R, Scahill R I, Tabrizi S J, van Buchem M A, van der Grond J, Roos R A C, the TRACK-HD Investigator Group (2011a). Early atrophy of pallidum and accumbens nucleus in Huntington’s disease. J Neurol , 258(3): 412–420
pmid:20936300
163 van den Bogaard S J A, Dumas E M, Ferrarini L, Milles J, van Buchem M A, van der Grond J, Roos R A C (2011b). Shape analysis of subcortical nuclei in Huntington’s disease, global versus local atrophy—results from the TRACK-HD study. J Neurol Sci , 307(1–2): 60–68
pmid:21624624
164 Vonsattel J P, DiFiglia M (1998). Huntington disease. J Neuropathol Exp Neurol , 57(5): 369–384
pmid:9596408
165 Vonsattel J P, Myers R H, Stevens T J, Ferrante R J, Bird E D, Richardson E P Jr (1985). Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol , 44(6): 559–577
pmid:2932539
166 Vonsattel J P G (2008). Huntington disease models and human neuropathology: similarities and differences. Acta Neuropathol , 115(1): 55–69
pmid:17978822
167 Waldron-Roby E, Ratovitski T, Wang X, Jiang M, Watkin E, Arbez N, Graham R K, Hayden M R, Hou Z, Mori S, Swing D, Pletnikov M, Duan W, Tessarollo L, Ross C A (2012). Transgenic mouse model expressing the caspase 6 fragment of mutant huntingtin. J Neurosci , 32(1): 183–193
pmid:22219281
168 Wang L, Lin F, Wang J, Wu J, Han R, Zhu L, Zhang G, DiFiglia M, Qin Z (2012). Truncated N-terminal huntingtin fragment with expanded-polyglutamine (htt552-100Q) suppresses brain-derived neurotrophic factor transcription in astrocytes. Acta Biochim Biophys Sin (Shanghai) , 44(3): 249–258
pmid:22234237
169 Warby S C, Doty C N, Graham R K, Shively J, Singaraja R R, Hayden M R (2009). Phosphorylation of huntingtin reduces the accumulation of its nuclear fragments. Mol Cell Neurosci , 40(2): 121–127
pmid:18992820
170 Wellington C L, Ellerby L M, Leavitt B R, Roy S, Nicholson D W, Hayden M R (2003). Huntingtin proteolysis in Huntington disease. Clin Neurosci Res , 3: 129–139
171 Weydt P, Pineda V V, Torrence A E, Libby R T, Satterfield T F, Lazarowski E R, Gilbert M L, Morton G J, Bammler T K, Strand A D, Cui L, Beyer R P, Easley C N, Smith A C, Krainc D, Luquet S, Sweet I R, Schwartz M W, La Spada A R (2006). Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metab , 4(5): 349–362
pmid:17055784
172 White J K, Auerbach W, Duyao M P, Vonsattel J P, Gusella J F, Joyner A L, MacDonald M E (1997). Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion. Nat Genet , 17(4): 404–410
pmid:9398841
173 Wilburn B, Rudnicki D D, Zhao J, Weitz T M, Cheng Y, Gu X, Greiner E, Park C S, Wang N, Sopher B L, La Spada A R, Osmand A, Margolis R L, Sun Y E, Yang X W (2011). An antisense CAG repeat transcript at JPH3 locus mediates expanded polyglutamine protein toxicity in Huntington’s disease-like 2 mice. Neuron , 70(3): 427– 440
pmid:21555070
174 Woodman B, Butler R, Landles C, Lupton M K, Tse J, Hockly E, Moffitt H, Sathasivam K, Bates G P (2007). The Hdh(Q150/Q150) knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes. Brain Res Bull , 72(2–3): 83–97
pmid:17352931
175 Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla R C, Spiegelman B M (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell , 98(1): 115–124
pmid:10412986
176 Xie Y, Hayden M R, Xu B (2010). BDNF overexpression in the forebrain rescues Huntington’s disease phenotypes in YAC128 mice. J Neurosci , 30(44): 14708–14718
pmid:21048129
177 Yanai A, Huang K, Kang R, Singaraja R R, Arstikaitis P, Gan L, Orban P C, Mullard A, Cowan C M, Raymond L A, Drisdel R C, Green W N, Ravikumar B, Rubinsztein D C, El-Husseini A, Hayden M R (2006). Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nat Neurosci , 9(6): 824–831
pmid:16699508
178 Yang, X. W., and Gray, M. (2011). Mouse Models for Validating Preclinical Candidates for Huntington’s Disease. Neurobiology of Huntington’s Disease: Applications to Drug Discovery .
179 Zeron M M, Hansson O, Chen N, Wellington C L, Leavitt B R, Brundin P, Hayden M R, Raymond L A (2002). Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease. Neuron , 33(6): 849–860
pmid:11906693
180 Zheng, B., Liao, Z., Locascio, J. J., Lesniak, K. A., Roderick, S. S., Watt, M. L., Eklund, A. C., Zhang-James, Y., Kim, P. D., Hauser, M. A., . (2010). PGC-1, A Potential Therapeutic Target for Early Intervention in Parkinson's Disease. Sci. Transl. Med . 2, 52ra73–52ra73 .
181 Zuccato C, Ciammola A, Rigamonti D, Leavitt B R, Goffredo D, Conti L, MacDonald M E, Friedlander R M, Silani V, Hayden M R, Timmusk T, Sipione S, Cattaneo E (2001). Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science , 293(5529): 493–498
pmid:11408619
182 Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, Conti L, Cataudella T, Leavitt B R, Hayden M R, Timmusk T, Rigamonti D, Cattaneo E (2003). Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet , 35(1): 76–83
pmid:12881722
183 Zuccato C, Valenza M, Cattaneo E (2010). Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev , 90(3): 905–981
pmid:20664076
184 Zwilling D, Huang S Y, Sathyasaikumar K V, Notarangelo F M, Guidetti P, Wu H Q, Lee J, Truong J, Andrews-Zwilling Y, Hsieh E W, Louie J Y, Wu T, Scearce-Levie K, Patrick C, Adame A, Giorgini F, Moussaoui S, Laue G, Rassoulpour A, Flik G,Huang Y, Muchowski J M, Masliah E, Schwarcz R, Muchowski P J (2011). Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell , 145(6): 863–874
pmid:21640374
[1] Gregory W. Kirschen, Hanxiao Liu, Tracy Lang, Xuelin Liang, Shaoyu Ge, Qiaojie Xiong. The radial organization of neuronal primary cilia is acutely disrupted by seizure and ischemic brain injury[J]. Front. Biol., 2017, 12(2): 124-138.
[2] Fu-Ming Zhou,Li Li,Juming Yue,John A. Dani. Transcription factor Pitx3 mutant mice as a model for Parkinson’s disease[J]. Front. Biol., 2016, 11(6): 427-438.
[3] Richard König,Bruno Benedetti,Peter Rotheneichner,Anna O′ Sullivan,Christina Kreutzer,Maria Belles,Juan Nacher,Thomas M. Weiger,Ludwig Aigner,Sébastien Couillard-Després. Distribution and fate of DCX/PSA-NCAM expressing cells in the adult mammalian cortex: A local reservoir for adult cortical neuroplasticity?[J]. Front. Biol., 2016, 11(3): 193-213.
[4] Xin Xin Yu,Vimala Bondada,Colin Rogers,Carolyn A. Meyer,Chen Guang Yu. Targeting ERK1/2-calpain 1-NF-κB signal transduction in secondary tissue damage and astrogliosis after spinal cord injury[J]. Front. Biol., 2015, 10(5): 427-438.
[5] Taiyong BI, Fang FANG. Neural plasticity in high-level visual cortex underlying object perceptual learning[J]. Front Biol, 2013, 8(4): 434-443.
[6] Abiodun AJAYI, Xin YU, Anna-Lena STR?M. The role of NADPH oxidase (NOX) enzymes in neurodegenerative disease[J]. Front Biol, 2013, 8(2): 175-188.
[7] Chen Guang YU. Distinct roles for ERK1 and ERK2 in pathophysiology of CNS[J]. Front Biol, 2012, 7(3): 267-276.
[8] Kimberly M. CHRISTIAN, Hongjun SONG, Guo-li MING. Application of reprogrammed patient cells to investigate the etiology of neurological and psychiatric disorders[J]. Front Biol, 2012, 7(3): 179-188.
[9] Chunsheng QU, Jieguang CHEN. Advances in genomic study of cortical projection neurons[J]. Front Biol, 2010, 5(6): 524-531.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed