|
|
|
The role of NADPH oxidase (NOX) enzymes in neurodegenerative disease |
Abiodun AJAYI, Xin YU, Anna-Lena STR?M( ) |
| Department of Neurochemistry, Stockholm University, 10691 Stockholm, Sweden |
|
|
|
|
Abstract Recently, mounting evidence implicating reactive oxygen species (ROS) generated by NADPH oxidase (NOX) enzymes in the pathogenesis of several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Alzheimer’s (AD), Parkinson’s (PD) and polyglutamine disease, have arisen. NOX enzymes are transmembrane proteins and generate reactive oxygen species by transporting electrons across lipid membranes. Under normal healthy conditions, low levels of ROS produced by NOX enzymes have been shown to play a role in neuronal differentiation and synaptic plasticity. However, in chronic neurodegenerative diseases over-activation of NOX in neurons, as well as in astrocytes and microglia, has been linked to pathogenic processes such as oxidative stress, exitotoxicity and neuroinflammation. In this review, we summarize the current knowledge about NOX functions in the healthy central nervous system and especially the role of NOX enzymes in neurodegenerative disease processes.
|
| Keywords
neurodegeneration
oxidative stress
NADPH oxidase
microglia
inflammation
|
|
Corresponding Author(s):
STR?M Anna-Lena,Email:anna-lena.strom@neurochem.su.se
|
|
Issue Date: 01 April 2013
|
|
| 1 |
Abeti R, Abramov A Y, Duchen M R (2011). Beta-amyloid activates PARP causing astrocytic metabolic failure and neuronal death. Brain , 134(Pt 6): 1658-1672 doi: 10.1093/brain/awr104 pmid:21616968
|
| 2 |
Abramov A Y, Canevari L, Duchen M R (2004). Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci , 24(2): 565-575 doi: 10.1523/JNEUROSCI.4042-03.2004 pmid:14724257
|
| 3 |
Abramov A Y, Jacobson J, Wientjes F, Hothersall J, Canevari L, Duchen M R (2005). Expression and modulation of an NADPH oxidase in mammalian astrocytes. J Neurosci , 25(40): 9176-9184 doi: 10.1523/JNEUROSCI.1632-05.2005 pmid:16207877
|
| 4 |
Ajayi A, Yu X, Lindberg S, Langel U, Str?m A L (2012). Expanded ataxin-7 cause toxicity by inducing ROS production from NADPH oxidase complexes in a stable inducible Spinocerebellar ataxia type 7 (SCA7) model. BMC Neurosci , 13(1): 86 doi: 10.1186/1471-2202-13-86 pmid:22827889
|
| 5 |
Amaral J D, Xavier J M, Steer C J, Rodrigues C M (2010). The role of p53 in apoptosis. Discov Med , 9(45): 145-152 pmid:20193641
|
| 6 |
Anantharam V, Kaul S, Song C, Kanthasamy A, Kanthasamy A G (2007). Pharmacological inhibition of neuronal NADPH oxidase protects against 1-methyl-4-phenylpyridinium (MPP+)-induced oxidative stress and apoptosis in mesencephalic dopaminergic neuronal cells. Neurotoxicology , 28(5): 988-997 doi: 10.1016/j.neuro.2007.08.008 pmid:17904225
|
| 7 |
Ansari M A, Scheff S W (2011). NADPH-oxidase activation and cognition in Alzheimer disease progression. Free Radic Biol Med , 51(1): 171-178 doi: 10.1016/j.freeradbiomed.2011.03.025 pmid:21457777
|
| 8 |
Atkins C M, Sweatt J D (1999). Reactive oxygen species mediate activity-dependent neuron-glia signaling in output fibers of the hippocampus. J Neurosci , 19(17): 7241-7248 pmid:10460230
|
| 9 |
Bánfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause K H (2004). NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem , 279(44): 46065-46072 doi: 10.1074/jbc.M403046200 pmid:15326186
|
| 10 |
Barber S C, Shaw P J (2010). Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med , 48(5): 629-641 doi: 10.1016/j.freeradbiomed.2009.11.018 pmid:19969067
|
| 11 |
Barger S W, Goodwin M E, Porter M M, Beggs M L (2007). Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation. J Neurochem , 101(5): 1205-1213 doi: 10.1111/j.1471-4159.2007.04487.x pmid:17403030
|
| 12 |
Barnham K J, Masters C L, Bush A I (2004). Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov , 3(3): 205-214 doi: 10.1038/nrd1330 pmid:15031734
|
| 13 |
B?umer A T, Ten Freyhaus H, Sauer H, Wartenberg M, Kappert K, Schnabel P, Konkol C, Hescheler J, Vantler M, Rosenkranz S (2008). Phosphatidylinositol 3-kinase-dependent membrane recruitment of Rac-1 and p47phox is critical for alpha-platelet-derived growth factor receptor-induced production of reactive oxygen species. J Biol Chem , 283(12): 7864-7876 doi: 10.1074/jbc.M704997200 pmid:18070887
|
| 14 |
Bedard K, Krause K H (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev , 87(1): 245-313 doi: 10.1152/physrev.00044.2005 pmid:17237347
|
| 15 |
Benarroch E E (2005). Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc , 80(10): 1326-1338 doi: 10.4065/80.10.1326 pmid:16212146
|
| 16 |
Bertoni A, Giuliano P, Galgani M, Rotoli D, Ulianich L, Adornetto A, Santillo M R, Porcellini A, Avvedimento V E (2011). Early and late events induced by polyQ-expanded proteins: identification of a common pathogenic property of polYQ-expanded proteins. J Biol Chem , 286(6): 4727-4741 doi: 10.1074/jbc.M110.156521 pmid:21115499
|
| 17 |
Bhatt L, Groeger G, McDermott K, Cotter T G (2010). Rod and cone photoreceptor cells produce ROS in response to stress in a live retinal explant system. Mol Vis , 16: 283-293 pmid:20177432
|
| 18 |
Bianca V D, Dusi S, Bianchini E, Dal Prà I, Rossi F (1999). beta-amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer’s disease. J Biol Chem , 274(22): 15493-15499 doi: 10.1074/jbc.274.22.15493 pmid:10336441
|
| 19 |
Block M L, Zecca L, Hong J S (2007). Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci , 8(1): 57-69 doi: 10.1038/nrn2038 pmid:17180163
|
| 20 |
Boillée S, Yamanaka K, Lobsiger C S, Copeland N G, Jenkins N A, Kassiotis G, Kollias G, Cleveland D W (2006). Onset and progression in inherited ALS determined by motor neurons and microglia. Science , 312(5778): 1389-1392 doi: 10.1126/science.1123511 pmid:16741123
|
| 21 |
Bokoch G M, Diebold B, Kim J S, Gianni D (2009). Emerging evidence for the importance of phosphorylation in the regulation of NADPH oxidases. Antioxid Redox Signal , 11(10): 2429-2441 doi: 10.1089/ars.2009.2590 pmid:19358632
|
| 22 |
Brennan A M, Suh S W, Won S J, Narasimhan P, Kauppinen T M, Lee H, Edling Y, Chan P H, Swanson R A (2009). NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci , 12(7): 857-863 doi: 10.1038/nn.2334 pmid:19503084
|
| 23 |
Brown D I, Griendling K K (2009). Nox proteins in signal transduction. Free Radic Biol Med , 47(9): 1239-1253 doi: 10.1016/j.freeradbiomed.2009.07.023 pmid:19628035
|
| 24 |
Bruce-Keller A J, Gupta S, Knight A G, Beckett T L, McMullen J M, Davis P R, Murphy M P, Van Eldik L J, St Clair D, Keller J N (2011). Cognitive impairment in humanized APP×PS1 mice is linked to Aβ(1-2) and NOX activation. Neurobiol Dis , 44(3): 317-326 doi: 10.1016/j.nbd.2011.07.012 pmid:21798347
|
| 25 |
Bruce-Keller A J, Gupta S, Parrino T E, Knight A G, Ebenezer P J, Weidner A M, LeVine H 3rd, Keller J N, Markesbery W R (2010). NOX activity is increased in mild cognitive impairment. Antioxid Redox Signal , 12(12): 1371-1382 doi: 10.1089/ars.2009.2823 pmid:19929442
|
| 26 |
Caunt C J, Keyse S M (2012) Dual-specificity MAP kinase phosphatases (MKPs). FEBS J. doi: 10.1111/j.1742-4658.2012.08716.x
|
| 27 |
Cavaliere F, Urra O, Alberdi E, Matute C (2012). Oligodendrocyte differentiation from adult multipotent stem cells is modulated by glutamate. Cell Death Dis , 3(2): e268 doi: 10.1038/cddis.2011.144 pmid:22297298
|
| 28 |
Chaitanya G V, Steven A J, Babu P P (2010). PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal , 8(1): 31 doi: 10.1186/1478-811X-8-31 pmid:21176168
|
| 29 |
Chen K, Craige S E, Keaney J F Jr (2009). Downstream targets and intracellular compartmentalization in Nox signaling. Antioxid Redox Signal , 11(10): 2467-2480 doi: 10.1089/ars.2009.2594 pmid:19309256
|
| 30 |
Cheng G, Ritsick D, Lambeth J D (2004). Nox3 regulation by NOXO1, p47phox, and p67phox. J Biol Chem , 279(33): 34250-34255 doi: 10.1074/jbc.M400660200 pmid:15181005
|
| 31 |
Chéret C, Gervais A, Lelli A, Colin C, Amar L, Ravassard P, Mallet J, Cumano A, Krause K H, Mallat M (2008). Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci , 28(46): 12039-12051 doi: 10.1523/JNEUROSCI.3568-08.2008 pmid:19005069
|
| 32 |
Choi S H, Aid S, Kim H W, Jackson S H, Bosetti F (2012). Inhibition of NADPH oxidase promotes alternative and anti-inflammatory microglial activation during neuroinflammation. J Neurochem , 120(2): 292-301 doi: 10.1111/j.1471-4159.2011.07572.x pmid:22050439
|
| 33 |
Coraci I S, Husemann J, Berman J W, Hulette C, Dufour J H, Campanella G K, Luster A D, Silverstein S C, El-Khoury J B (2002). CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am J Pathol , 160(1): 101-112 doi: 10.1016/S0002-9440(10)64354-4 pmid:11786404
|
| 34 |
Costa R O, Lacor P N, Ferreira I L, Resende R, Auberson Y P, Klein W L, Oliveira C R, Rego A C, Pereira C M (2012). Endoplasmic reticulum stress occurs downstream of GluN2B subunit of N-methyl-d-aspartate receptor in mature hippocampal cultures treated with amyloid-β oligomers. Aging Cell , 11(5): 823-833 doi: 10.1111/j.1474-9726.2012.00848.x pmid:22708890
|
| 35 |
Coyoy A, Valencia A, Guemez-Gamboa A, Morán J (2008). Role of NADPH oxidase in the apoptotic death of cultured cerebellar granule neurons. Free Radic Biol Med , 45(8): 1056-1064 doi: 10.1016/j.freeradbiomed.2008.06.027 pmid:18675340
|
| 36 |
Cristóv?o A C, Choi D H, Baltazar G, Beal M F, Kim Y S (2009). The role of NADPH oxidase 1-derived reactive oxygen species in paraquat-mediated dopaminergic cell death. Antioxid Redox Signal , 11(9): 2105-2118 doi: 10.1089/ars.2009.2459 pmid:19450058
|
| 37 |
Cross A R (2000). p40(phox) Participates in the activation of NADPH oxidase by increasing the affinity of p47(phox) for flavocytochrome b(558). Biochem J , 349(Pt 1): 113-117 doi: 10.1042/0264-6021:3490113 pmid:10861218
|
| 38 |
Damiano S, Fusco R, Morano A, De Mizio M, Paternò R, De Rosa A, Spinelli R, Amente S, Frunzio R, Mondola P, Miot F, Laccetti P, Santillo M, Avvedimento E V (2012). Reactive oxygen species regulate the levels of dual oxidase (Duox1-2) in human neuroblastoma cells. PLoS ONE , 7(4): e34405 doi: 10.1371/journal.pone.0034405 pmid:22523549
|
| 39 |
DeLeo F R, Allen L A, Apicella M, Nauseef W M (1999). NADPH oxidase activation and assembly during phagocytosis. J Immunol , 163(12): 6732-6740 pmid:10586071
|
| 40 |
DeLeo F R, Burritt J B, Yu L, Jesaitis A J, Dinauer M C, Nauseef W M (2000). Processing and maturation of flavocytochrome b558 include incorporation of heme as a prerequisite for heterodimer assembly. J Biol Chem , 275(18): 13986-13993 doi: 10.1074/jbc.275.18.13986 pmid:10788525
|
| 41 |
Di Maio R, Mastroberardino P G, Hu X, Montero L, Greenamyre J T (2011). Pilocapine alters NMDA receptor expression and function in hippocampal neurons: NADPH oxidase and ERK1/2 mechanisms. Neurobiol Dis , 42(3): 482-495 doi: 10.1016/j.nbd.2011.02.012 pmid:21397025
|
| 42 |
Dickinson B C, Peltier J, Stone D, Schaffer D V, Chang C J (2011). Nox2 redox signaling maintains essential cell populations in the brain. Nat Chem Biol , 7(2): 106-112 doi: 10.1038/nchembio.497 pmid:21186346
|
| 43 |
Diebold B A, Bokoch G M (2001). Molecular basis for Rac2 regulation of phagocyte NADPH oxidase. Nat Immunol , 2(3): 211-215 doi: 10.1038/85259 pmid:11224519
|
| 44 |
Dumont M, Stack C, Elipenhali C, Calingasan N Y, Wille E, Beal M F (2011). Apocynin administration does not improve behavioral and neuropathological deficits in a transgenic mouse model of Alzheimer’s disease. Neurosci Lett , 492(3): 150-154 doi: 10.1016/j.neulet.2011.01.077 pmid:21300136
|
| 45 |
Dunckley T, Huentelman M J, Craig D W, Pearson J V, Szelinger S, Joshipura K, Halperin R F, Stamper C, Jensen K R, Letizia D, Hesterlee S E, Pestronk A, Levine T, Bertorini T, Graves M C, Mozaffar T, Jackson C E, Bosch P, McVey A, Dick A, Barohn R, Lomen-Hoerth C, Rosenfeld J, O’connor D T, Zhang K, Crook R, Ryberg H, Hutton M, Katz J, Simpson E P, Mitsumoto H, Bowser R, Miller R G, Appel S H, Stephan D A (2007). Whole-genome analysis of sporadic amyotrophic lateral sclerosis. N Engl J Med , 357(8): 775-788 doi: 10.1056/NEJMoa070174 pmid:17671248
|
| 46 |
Dvorakova M, H?hler B, Richter E, Burritt J B, Kummer W (1999). Rat sensory neurons contain cytochrome b558 large subunit immunoreactivity. Neuroreport , 10(12): 2615-2617 doi: 10.1097/00001756-199908200-00032 pmid:10574379
|
| 47 |
Fatokun A A, Stone T W, Smith R A (2008). Oxidative stress in neurodegeneration and available means of protection. Front Biosci , 13(13): 3288-3311 doi: 10.2741/2926 pmid:18508433
|
| 48 |
Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci.
|
| 49 |
Gao H M, Zhou H, Hong J S (2012). NADPH oxidases: novel therapeutic targets for neurodegenerative diseases. Trends Pharmacol Sci , 33(6): 295-303 doi: 10.1016/j.tips.2012.03.008 pmid:22503440
|
| 50 |
Girouard H, Wang G, Gallo E F, Anrather J, Zhou P, Pickel V M, Iadecola C (2009). NMDA receptor activation increases free radical production through nitric oxide and NOX2. J Neurosci , 29(8): 2545-2552 doi: 10.1523/JNEUROSCI.0133-09.2009 pmid:19244529
|
| 51 |
Gough D R, Cotter T G (2011). Hydrogen peroxide: a Jekyll and Hyde signalling molecule. Cell Death Dis , 2(10): e213 doi: 10.1038/cddis.2011.96 pmid:21975295
|
| 52 |
Grasberger H, Refetoff S (2006). Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. J Biol Chem , 281(27): 18269-18272 doi: 10.1074/jbc.C600095200 pmid:16651268
|
| 53 |
Grimm S, Hoehn A, Davies K J, Grune T (2011). Protein oxidative modifications in the ageing brain: consequence for the onset of neurodegenerative disease. Free Radic Res , 45(1): 73-88 doi: 10.3109/10715762.2010.512040 pmid:20815785
|
| 54 |
Groeger G, Mackey A M, Pettigrew C A, Bhatt L, Cotter T G (2009). Stress-induced activation of Nox contributes to cell survival signalling via production of hydrogen peroxide. J Neurochem , 109(5): 1544-1554 doi: 10.1111/j.1471-4159.2009.06081.x pmid:19344371
|
| 55 |
Groemping Y, Rittinger K (2005). Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J , 386(Pt 3): 401-416 doi: 10.1042/BJ20041835 pmid:15588255
|
| 56 |
Halliwell B (2001). Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging , 18(9): 685-716 doi: 10.2165/00002512-200118090-00004 pmid:11599635
|
| 57 |
Han C H, Freeman J L, Lee T, Motalebi S A, Lambeth J D (1998). Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain in p67(phox). J Biol Chem , 273(27): 16663-16668 doi: 10.1074/jbc.273.27.16663 pmid:9642219
|
| 58 |
Harraz M M, Marden J J, Zhou W, Zhang Y, Williams A, Sharov V S, Nelson K, Luo M, Paulson H, Sch?neich C, Engelhardt J F (2008). SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. J Clin Invest , 118(2): 659-670 pmid:18219391
|
| 59 |
Harrigan T J, Abdullaev I F, Jourd’heuil D, Mongin A A (2008). Activation of microglia with zymosan promotes excitatory amino acid release via volume-regulated anion channels: the role of NADPH oxidases. J Neurochem , 106(6): 2449-2462 doi: 10.1111/j.1471-4159.2008.05553.x pmid:18624925
|
| 60 |
He Y, Cui J, Lee J C, Ding S, Chalimoniuk M, Simonyi A, Sun A Y, Gu Z, Weisman G A, Wood W G, Sun G Y (2011). Prolonged exposure of cortical neurons to oligomeric amyloid-β impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (-)-epigallocatechin-3-gallate. ASN Neuro , 3(1): e00050 doi: 10.1042/AN20100025 pmid:21434871
|
| 61 |
Heumüller S, Wind S, Barbosa-Sicard E, Schmidt H H, Busse R, Schr?der K, Brandes R P (2008). Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension , 51(2): 211-217 doi: 10.1161/HYPERTENSIONAHA.107.100214 pmid:18086956
|
| 62 |
Hsieh H L, Lin C C, Shih R H, Hsiao L D, Yang C M (2012). NADPH oxidase-mediated redox signal contributes to lipoteichoic acid-induced MMP-9 upregulation in brain astrocytes. J Neuroinflammation , 9(1): 110 doi: 10.1186/1742-2094-9-110 pmid:22643046
|
| 63 |
Huang J, Hitt N D, Kleinberg M E (1995). Stoichiometry of p22-phox and gp91-phox in phagocyte cytochrome b558. Biochemistry , 34(51): 16753-16757 doi: 10.1021/bi00051a024 pmid:8527449
|
| 64 |
Huo Y, Rangarajan P, Ling E A, Dheen S T (2011). Dexamethasone inhibits the Nox-dependent ROS production via suppression of MKP-1-dependent MAPK pathways in activated microglia. BMC Neurosci , 12(1): 49 doi: 10.1186/1471-2202-12-49 pmid:21615929
|
| 65 |
Ibi M, Katsuyama M, Fan C, Iwata K, Nishinaka T, Yokoyama T, Yabe-Nishimura C (2006). NOX1/NADPH oxidase negatively regulates nerve growth factor-induced neurite outgrowth. Free Radic Biol Med , 40(10): 1785-1795 doi: 10.1016/j.freeradbiomed.2006.01.009 pmid:16678016
|
| 66 |
Jana A, Pahan K (2004). Fibrillar amyloid-beta peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase. Implications for Alzheimer’s disease. J Biol Chem , 279(49): 51451-51459 doi: 10.1074/jbc.M404635200 pmid:15452132
|
| 67 |
Jiang F, Zhang Y, Dusting G J (2011). NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev , 63(1): 218-242 doi: 10.1124/pr.110.002980 pmid:21228261
|
| 68 |
Kahles T, Brandes R P (2012) Which NADPH oxidase isoform is relevant for ischemic stroke? The case for Nox 2. Antioxid Redox Signal . doi: 10.1089/ars.2012.4721
|
| 69 |
Katsuyama M, Matsuno K, Yabe-Nishimura C (2012). Physiological roles of NOX/NADPH oxidase, the superoxide-generating enzyme. J Clin Biochem Nutr , 50(1): 9-22 doi: 10.3164/jcbn.11-06SR pmid:22247596
|
| 70 |
Kauppinen T M, Swanson R A (2007). The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neuroscience , 145(4): 1267-1272 doi: 10.1016/j.neuroscience.2006.09.034 pmid:17084037
|
| 71 |
Kawahara T, Ritsick D, Cheng G, Lambeth J D (2005). Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation. J Biol Chem , 280(36): 31859-31869 doi: 10.1074/jbc.M501882200 pmid:15994299
|
| 72 |
Kettenmann H, Hanisch U K, Noda M, Verkhratsky A (2011). Physiology of microglia. Physiol Rev , 91(2): 461-553 doi: 10.1152/physrev.00011.2010 pmid:21527731
|
| 73 |
Kishida K T, Hoeffer C A, Hu D, Pao M, Holland S M, Klann E (2006). Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Mol Cell Biol , 26(15): 5908-5920 doi: 10.1128/MCB.00269-06 pmid:16847341
|
| 74 |
Kishida K T, Pao M, Holland S M, Klann E (2005). NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1. J Neurochem , 94(2): 299-306 doi: 10.1111/j.1471-4159.2005.03189.x pmid:15998281
|
| 75 |
Kiss P J, Knisz J, Zhang Y, Baltrusaitis J, Sigmund C D, Thalmann R, Smith R J, Verpy E, Bánfi B (2006). Inactivation of NADPH oxidase organizer 1 results in severe imbalance. Curr Biol , 16(2): 208-213 doi: 10.1016/j.cub.2005.12.025 pmid:16431374
|
| 76 |
Knapp L T, Klann E (2002). Role of reactive oxygen species in hippocampal long-term potentiation: contributory or inhibitory? J Neurosci Res , 70(1): 1-7 doi: 10.1002/jnr.10371 pmid:12237859
|
| 77 |
Koga H, Terasawa H, Nunoi H, Takeshige K, Inagaki F, Sumimoto H (1999). Tetratricopeptide repeat (TPR) motifs of p67(phox) participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J Biol Chem , 274(35): 25051-25060 doi: 10.1074/jbc.274.35.25051 pmid:10455184
|
| 78 |
Lapouge K, Smith S J, Groemping Y, Rittinger K (2002). Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidase. A central role for p67phox. J Biol Chem , 277(12): 10121-10128 doi: 10.1074/jbc.M112065200 pmid:11796733
|
| 79 |
Lapouge K, Smith S J, Walker P A, Gamblin S J, Smerdon S J, Rittinger K (2000). Structure of the TPR domain of p67phox in complex with Rac.GTP. Mol Cell , 6(4): 899-907 pmid:11090627
|
| 80 |
Lavigne M C, Malech H L, Holland S M, Leto T L (2001). Genetic requirement of p47phox for superoxide production by murine microglia. FASEB J , 15(2): 285-287 pmid:11156938
|
| 81 |
Li B, Bedard K, Sorce S, Hinz B, Dubois-Dauphin M, Krause K H (2009). NOX4 expression in human microglia leads to constitutive generation of reactive oxygen species and to constitutive IL-6 expression. J Innate Immun , 1(6): 570-581 doi: 10.1159/000235563 pmid:20375612
|
| 82 |
Li Q, Spencer N Y, Pantazis N J, Engelhardt J F (2011). Alsin and SOD1(G93A) proteins regulate endosomal reactive oxygen species production by glial cells and proinflammatory pathways responsible for neurotoxicity. J Biol Chem , 286(46): 40151-40162 doi: 10.1074/jbc.M111.279711 pmid:21937428
|
| 83 |
Liu Q, Kang J H, Zheng R L (2005). NADPH oxidase produces reactive oxygen species and maintains survival of rat astrocytes. Cell Biochem Funct , 23(2): 93-100 doi: 10.1002/cbf.1171 pmid:15386527
|
| 84 |
Liu Y, Hao W, Dawson A, Liu S, Fassbender K (2009). Expression of amyotrophic lateral sclerosis-linked SOD1 mutant increases the neurotoxic potential of microglia via TLR2. J Biol Chem , 284(6): 3691-3699 doi: 10.1074/jbc.M804446200 pmid:19091752
|
| 85 |
Lull M E, Levesque S, Surace M J, Block M L (2011). Chronic apocynin treatment attenuates beta amyloid plaque size and microglial number in hAPP(751)(SL) mice. PLoS ONE , 6(5): e20153 doi: 10.1371/journal.pone.0020153 pmid:21655287
|
| 86 |
Mackey A M, Sanvicens N, Groeger G, Doonan F, Wallace D, Cotter T G (2008). Redox survival signalling in retina-derived 661W cells. Cell Death Differ , 15(8): 1291-1303 doi: 10.1038/cdd.2008.43 pmid:18404155
|
| 87 |
Malaplate-Armand C, Florent-Béchard S, Youssef I, Koziel V, Sponne I, Kriem B, Leininger-Muller B, Olivier J L, Oster T, Pillot T (2006). Soluble oligomers of amyloid-beta peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol Dis , 23(1): 178-189 doi: 10.1016/j.nbd.2006.02.010 pmid:16626961
|
| 88 |
Maldonado P D, Molina-Jijón E, Villeda-Hernández J, Galván-Arzate S, Santamaría A, Pedraza-Chaverrí J (2010). NAD(P)H oxidase contributes to neurotoxicity in an excitotoxic/prooxidant model of Huntington’s disease in rats: protective role of apocynin. J Neurosci Res , 88(3): 620-629 pmid:19795371
|
| 89 |
Mander P K, Jekabsone A, Brown G C (2006). Microglia proliferation is regulated by hydrogen peroxide from NADPH oxidase. J Immunol , 176(2): 1046-1052 pmid:16393992
|
| 90 |
Marden J J, Harraz M M, Williams A J, Nelson K, Luo M, Paulson H, Engelhardt J F (2007). Redox modifier genes in amyotrophic lateral sclerosis in mice. J Clin Invest , 117(10): 2913-2919 doi: 10.1172/JCI31265 pmid:17853944
|
| 91 |
Markowitz A J, White M G, Kolson D L, Jordan-Sciutto K L (2007). Cellular interplay between neurons and glia: toward a comprehensive mechanism for excitotoxic neuronal loss in neurodegeneration. Cellscience , 4(1): 111-146 pmid:19122795
|
| 92 |
Martyn K D, Frederick L M, von Loehneysen K, Dinauer M C, Knaus U G (2006). Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal , 18(1): 69-82 doi: 10.1016/j.cellsig.2005.03.023 pmid:15927447
|
| 93 |
Massaad C A, Klann E (2011). Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal , 14(10): 2013-2054 doi: 10.1089/ars.2010.3208 pmid:20649473
|
| 94 |
Mizuki K, Kadomatsu K, Hata K, Ito T, Fan Q W, Kage Y, Fukumaki Y, Sakaki Y, Takeshige K, Sumimoto H (1998). Functional modules and expression of mouse p40(phox) and p67(phox), SH3-domain-containing proteins involved in the phagocyte NADPH oxidase complex. Eur J Biochem , 251(3): 573-582 doi: 10.1046/j.1432-1327.1998.2510573.x pmid:9490028
|
| 95 |
Morand S, Ueyama T, Tsujibe S, Saito N, Korzeniowska A, Leto T L (2009). Duox maturation factors form cell surface complexes with Duox affecting the specificity of reactive oxygen species generation. FASEB J , 23(4): 1205-1218 doi: 10.1096/fj.08-120006 pmid:19074510
|
| 96 |
Moreira P I, Zhu X, Wang X, Lee H G, Nunomura A, Petersen R B, Perry G, Smith M A (2010). Mitochondria: a therapeutic target in neurodegeneration. Biochim Biophys Acta , 1802(1): 212-220 doi: 10.1016/j.bbadis.2009.10.007 pmid:19853657
|
| 97 |
Munnamalai V, Suter D M (2009). Reactive oxygen species regulate F-actin dynamics in neuronal growth cones and neurite outgrowth. J Neurochem , 108(3): 644-661 doi: 10.1111/j.1471-4159.2008.05787.x pmid:19054285
|
| 98 |
Nauseef W M (2004). Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol , 122(4): 277-291 doi: 10.1007/s00418-004-0679-8 pmid:15293055
|
| 99 |
Nisimoto Y, Motalebi S, Han C H, Lambeth J D (1999). The p67(phox) activation domain regulates electron flow from NADPH to flavin in flavocytochrome b(558). J Biol Chem , 274(33): 22999-23005 doi: 10.1074/jbc.274.33.22999 pmid:10438466
|
| 100 |
Nitti M, Furfaro A L, Cevasco C, Traverso N, Marinari U M, Pronzato M A, Domenicotti C (2010). PKC delta and NADPH oxidase in retinoic acid-induced neuroblastoma cell differentiation. Cell Signal , 22(5): 828-835 doi: 10.1016/j.cellsig.2010.01.007 pmid:20074641
|
| 101 |
Noh K M, Koh J Y (2000). Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci , 20(23): RC111 pmid:11090611
|
| 102 |
Ostman A, Frijhoff J, Sandin A, B?hmer F D (2011). Regulation of protein tyrosine phosphatases by reversible oxidation. J Biochem , 150(4): 345-356 doi: 10.1093/jb/mvr104 pmid:21856739
|
| 103 |
Pandey D, Fulton D J (2011). Molecular regulation of NADPH oxidase 5 via the MAPK pathway. Am J Physiol Heart Circ Physiol , 300(4): H1336-H1344 doi: 10.1152/ajpheart.01163.2010 pmid:21297032
|
| 104 |
Pandey D, Gratton J P, Rafikov R, Black S M, Fulton D J (2011). Calcium/calmodulin-dependent kinase II mediates the phosphorylation and activation of NADPH oxidase 5. Mol Pharmacol , 80(3): 407-415 doi: 10.1124/mol.110.070193 pmid:21642394
|
| 105 |
Pao M, Wiggs E A, Anastacio M M, Hyun J, DeCarlo E S, Miller J T, Anderson V L, Malech H L, Gallin J I, Holland S M (2004). Cognitive function in patients with chronic granulomatous disease: a preliminary report. Psychosomatics , 45(3): 230-234 doi: 10.1176/appi.psy.45.3.230 pmid:15123849
|
| 106 |
Park L, Zhou P, Pitstick R, Capone C, Anrather J, Norris E H, Younkin L, Younkin S, Carlson G, McEwen B S, Iadecola C (2008). Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci USA , 105(4): 1347-1352 doi: 10.1073/pnas.0711568105 pmid:18202172
|
| 107 |
Parkos C A, Dinauer M C, Jesaitis A J, Orkin S H, Curnutte J T (1989). Absence of both the 91kD and 22kD subunits of human neutrophil cytochrome b in two genetic forms of chronic granulomatous disease. Blood , 73(6): 1416-1420 pmid:2713485
|
| 108 |
Pawate S, Shen Q, Fan F, Bhat N R (2004). Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res , 77(4): 540-551 doi: 10.1002/jnr.20180 pmid:15264224
|
| 109 |
Puntambekar P, Mukherjea D, Jajoo S, Ramkumar V (2005). Essential role of Rac1/NADPH oxidase in nerve growth factor induction of TRPV1 expression. J Neurochem , 95(6): 1689-1703 doi: 10.1111/j.1471-4159.2005.03518.x pmid:16283857
|
| 110 |
Qin B, Cartier L, Dubois-Dauphin M, Li B, Serrander L, Krause K H (2006). A key role for the microglial NADPH oxidase in APP-dependent killing of neurons. Neurobiol Aging , 27(11): 1577-1587 doi: 10.1016/j.neurobiolaging.2005.09.036 pmid:16260066
|
| 111 |
Rebola N, Srikumar B N, Mulle C (2010). Activity-dependent synaptic plasticity of NMDA receptors. J Physiol , 588(Pt 1): 93-99 doi: 10.1113/jphysiol.2009.179382 pmid:19822542
|
| 112 |
Reinhardt H C, Schumacher B (2012). The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet , 28(3): 128-136 doi: 10.1016/j.tig.2011.12.002 pmid:22265392
|
| 113 |
Rigutto S, Hoste C, Grasberger H, Milenkovic M, Communi D, Dumont J E, Corvilain B, Miot F, De Deken X (2009). Activation of dual oxidases Duox1 and Duox2: differential regulation mediated by camp-dependent protein kinase and protein kinase C-dependent phosphorylation. J Biol Chem , 284(11): 6725-6734 doi: 10.1074/jbc.M806893200 pmid:19144650
|
| 114 |
Roepstorff K, Rasmussen I, Sawada M, Cudre-Maroux C, Salmon P, Bokoch G, van Deurs B, Vilhardt F (2008). Stimulus-dependent regulation of the phagocyte NADPH oxidase by a VAV1, Rac1, and PAK1 signaling axis. J Biol Chem , 283(12): 7983-7993 doi: 10.1074/jbc.M708281200 pmid:18160398
|
| 115 |
Sankarapandi S, Zweier J L, Mukherjee G, Quinn M T, Huso D L (1998). Measurement and characterization of superoxide generation in microglial cells: evidence for an NADPH oxidase-dependent pathway. Arch Biochem Biophys , 353(2): 312-321 doi: 10.1006/abbi.1998.0658 pmid:9606965
|
| 116 |
Sarfstein R, Gorzalczany Y, Mizrahi A, Berdichevsky Y, Molshanski-Mor S, Weinbaum C, Hirshberg M, Dagher M C, Pick E (2004). Dual role of Rac in the assembly of NADPH oxidase, tethering to the membrane and activation of p67phox: a study based on mutagenesis of p67phox-Rac1 chimeras. J Biol Chem , 279(16): 16007-16016 doi: 10.1074/jbc.M312394200 pmid:14761978
|
| 117 |
Savchenko V L (2012). Regulation of NADPH oxidase gene expression with PKA and cytokine IL-4 in neurons and microglia. Neurotox Res , doi: 10.1007/s12640-012-9327-6
|
| 118 |
Sedeek M, Montezano A C, Hebert R L, Gray S P, Di Marco E, Jha J C, Cooper M E, Jandeleit-Dahm K, Schiffrin E L, Wilkinson-Berka J L, Touyz R M (2012). Oxidative stress, Nox isoforms and complications of diabetes—potential targets for novel therapies. J Cardiovasc Transl Res , 5(4): 509-518 doi: 10.1007/s12265-012-9387-2 pmid:22711281
|
| 119 |
Serrano F, Kolluri N S, Wientjes F B, Card J P, Klann E (2003). NADPH oxidase immunoreactivity in the mouse brain. Brain Res , 988(1-2): 193-198 doi: 10.1016/S0006-8993(03)03364-X pmid:14519542
|
| 120 |
Shelat P B, Chalimoniuk M, Wang J H, Strosznajder J B, Lee J C, Sun A Y, Simonyi A, Sun G Y (2008). Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem , 106(1): 45-55 doi: 10.1111/j.1471-4159.2008.05347.x pmid:18346200
|
| 121 |
Shimohama S, Tanino H, Kawakami N, Okamura N, Kodama H, Yamaguchi T, Hayakawa T, Nunomura A, Chiba S, Perry G, Smith M A, Fujimoto S (2000). Activation of NADPH oxidase in Alzheimer’s disease brains. Biochem Biophys Res Commun , 273(1): 5-9 doi: 10.1006/bbrc.2000.2897 pmid:10873554
|
| 122 |
Sorce S, Krause K H, Jaquet V (2012). Targeting NOX enzymes in the central nervous system: therapeutic opportunities. Cell Mol Life Sci , 69(14): 2387-2407 doi: 10.1007/s00018-012-1014-5 pmid:22643836
|
| 123 |
Stolk J, Hiltermann T J, Dijkman J H, Verhoeven A J (1994). Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am J Respir Cell Mol Biol , 11(1): 95-102 pmid:8018341
|
| 124 |
Strosznajder J B, Czapski G A, Adamczyk A, Strosznajder R P (2012). Poly(ADP-ribose) polymerase-1 in amyloid beta toxicity and Alzheimer’s disease. Mol Neurobiol , 46(1): 78-84 doi: 10.1007/s12035-012-8258-9 pmid:22430645
|
| 125 |
Sumimoto H, Hata K, Mizuki K, Ito T, Kage Y, Sakaki Y, Fukumaki Y, Nakamura M, Takeshige K (1996). Assembly and activation of the phagocyte NADPH oxidase. Specific interaction of the N-terminal Src homology 3 domain of p47phox with p22phox is required for activation of the NADPH oxidase. J Biol Chem , 271(36): 22152-22158 doi: 10.1074/jbc.271.36.22152 pmid:8703027
|
| 126 |
Sumimoto H, Miyano K, Takeya R (2005). Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun , 338(1): 677-686 doi: 10.1016/j.bbrc.2005.08.210 pmid:16157295
|
| 127 |
Suzukawa K, Miura K, Mitsushita J, Resau J, Hirose K, Crystal R, Kamata T (2000). Nerve growth factor-induced neuronal differentiation requires generation of Rac1-regulated reactive oxygen species. J Biol Chem , 275(18): 13175-13178 doi: 10.1074/jbc.275.18.13175 pmid:10788420
|
| 128 |
Szaingurten-Solodkin I, Hadad N, Levy R (2009). Regulatory role of cytosolic phospholipase A2alpha in NADPH oxidase activity and in inducible nitric oxide synthase induction by aggregated Abeta1-42 in microglia. Glia , 57(16): 1727-1740 doi: 10.1002/glia.20886 pmid:19455582
|
| 129 |
Tammariello S P, Quinn M T, Estus S (2000). NADPH oxidase contributes directly to oxidative stress and apoptosis in nerve growth factor-deprived sympathetic neurons. J Neurosci , 20(1): RC53 pmid:10627630
|
| 130 |
Tejada-Simon M V, Serrano F, Villasana L E, Kanterewicz B I, Wu G Y, Quinn M T, Klann E (2005). Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol Cell Neurosci , 29(1): 97-106 doi: 10.1016/j.mcn.2005.01.007 pmid:15866050
|
| 131 |
Traynelis S F, Wollmuth L P, McBain C J, Menniti F S, Vance K M, Ogden K K, Hansen K B, Yuan H, Myers S J, Dingledine R (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev , 62(3): 405-496 doi: 10.1124/pr.109.002451 pmid:20716669
|
| 132 |
Trumbull K A, McAllister D, Gandelman M M, Fung W Y, Lew T, Brennan L, Lopez N, Morré J, Kalyanaraman B, Beckman J S (2012). Diapocynin and apocynin administration fails to significantly extend survival in G93A SOD1 ALS mice. Neurobiol Dis , 45(1): 137-144 doi: 10.1016/j.nbd.2011.07.015 pmid:21820513
|
| 133 |
Ueno N, Takeya R, Miyano K, Kikuchi H, Sumimoto H (2005). The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators. J Biol Chem , 280(24): 23328-23339 doi: 10.1074/jbc.M414548200 pmid:15824103
|
| 134 |
Verkhratsky A, Parpura V (2010). Recent advances in (patho)physiology of astroglia. Acta Pharmacol Sin , 31(9): 1044-1054 doi: 10.1038/aps.2010.108 pmid:20694024
|
| 135 |
Wilkinson B L, Cramer P E, Varvel N H, Reed-Geaghan E, Jiang Q, Szabo A, Herrup K, Lamb B T, Landreth G E (2012). Ibuprofen attenuates oxidative damage through NOX2 inhibition in Alzheimer’s disease. Neurobiol Aging , 33:197e21-197e32 .
|
| 136 |
Wu D C, Ré D B, Nagai M, Ischiropoulos H, Przedborski S (2006). The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice. Proc Natl Acad Sci USA , 103(32): 12132-12137 doi: 10.1073/pnas.0603670103 pmid:16877542
|
| 137 |
Wu D C, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S (2003). NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA , 100(10): 6145-6150 doi: 10.1073/pnas.0937239100 pmid:12721370
|
| 138 |
Zawada W M, Banninger G P, Thornton J, Marriott B, Cantu D, Rachubinski A L, Das M, Griffin W S, Jones S M (2011). Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. J Neuroinflammation , 8(1): 129 doi: 10.1186/1742-2094-8-129 pmid:21975039
|
| 139 |
Zhang D, Hu X, Qian L, Chen S H, Zhou H, Wilson B, Miller D S, Hong J S (2011). Microglial MAC1 receptor and PI3K are essential in mediating β-amyloid peptide-induced microglial activation and subsequent neurotoxicity. J Neuroinflammation , 8(1): 3 doi: 10.1186/1742-2094-8-3 pmid:21232086
|
| 140 |
Zhang W, Wang T, Pei Z, Miller D S, Wu X, Block M L, Wilson B, Zhang W, Zhou Y, Hong J S, Zhang J (2005). Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J , 19(6): 533-542 doi: 10.1096/fj.04-2751com pmid:15791003
|
| 141 |
Zhou H, Zhang F, Chen S H, Zhang D, Wilson B, Hong J S, Gao H M (2012). Rotenone activates phagocyte NADPH oxidase by binding to its membrane subunit gp91phox. Free Radic Biol Med , 52(2): 303-313 doi: 10.1016/j.freeradbiomed.2011.10.488 pmid:22094225
|
| 142 |
Zhu D, Hu C, Sheng W, Tan K S, Haidekker M A, Sun A Y, Sun G Y, Lee J C (2009). NAD(P)H oxidase-mediated reactive oxygen species production alters astrocyte membrane molecular order via phospholipase A2. Biochem J , 421(2): 201-210 doi: 10.1042/BJ20090356 pmid:19392662
|
| 143 |
Zhu D, Lai Y, Shelat P B, Hu C, Sun G Y, Lee J C (2006). Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. J Neurosci , 26(43): 11111-11119 doi: 10.1523/JNEUROSCI.3505-06.2006 pmid:17065451
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|