Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (2) : 175-188    https://doi.org/10.1007/s11515-012-1250-y
REVIEW
The role of NADPH oxidase (NOX) enzymes in neurodegenerative disease
Abiodun AJAYI, Xin YU, Anna-Lena STR?M()
Department of Neurochemistry, Stockholm University, 10691 Stockholm, Sweden
 Download: PDF(430 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recently, mounting evidence implicating reactive oxygen species (ROS) generated by NADPH oxidase (NOX) enzymes in the pathogenesis of several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Alzheimer’s (AD), Parkinson’s (PD) and polyglutamine disease, have arisen. NOX enzymes are transmembrane proteins and generate reactive oxygen species by transporting electrons across lipid membranes. Under normal healthy conditions, low levels of ROS produced by NOX enzymes have been shown to play a role in neuronal differentiation and synaptic plasticity. However, in chronic neurodegenerative diseases over-activation of NOX in neurons, as well as in astrocytes and microglia, has been linked to pathogenic processes such as oxidative stress, exitotoxicity and neuroinflammation. In this review, we summarize the current knowledge about NOX functions in the healthy central nervous system and especially the role of NOX enzymes in neurodegenerative disease processes.

Keywords neurodegeneration      oxidative stress      NADPH oxidase      microglia      inflammation     
Corresponding Author(s): STR?M Anna-Lena,Email:anna-lena.strom@neurochem.su.se   
Issue Date: 01 April 2013
 Cite this article:   
Abiodun AJAYI,Xin YU,Anna-Lena STR?M. The role of NADPH oxidase (NOX) enzymes in neurodegenerative disease[J]. Front Biol, 2013, 8(2): 175-188.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-012-1250-y
https://academic.hep.com.cn/fib/EN/Y2013/V8/I2/175
Fig.1  The NOX family members and their activation. (A) Schematic diagrams of the NADPH oxidases and their regulatory subunits. The p22phox subunit interacts with NOX1-4. NOX2 activation also involves association with rac, p47phox, p67phox and p40phox. NOX1 activity is believed to primarily involve association with rac, NOXO1 and NOXA1. However, the p47phox and p67phox can replace NOXO1 and NOXA1, respectively. NOX3 subunit dependency is less characterized, but activity is believed to involve rac, p47phox and NOXA1. NOX4 is constitutively active, but the activity is stimulated by p22phox. NOX5 and DUOX1/2 containEF-hands (EF) and are activated by Ca binding. DUOX 1/2 also requires the association with DUOX maturation factors A1/2, respectively. (B) Summary of some key stimuli and pathways known to activate NOX enzymes in various cell types. Translocation of cytosolic regulatory subunits play an essential role in activation of NOX1-3. During NOX2 activation, the translocation of p47phox is controlled by a stepwise phosphorylation of p47phox. PKC, which can be activated by multiple pathways, including increased cytosolic Ca levels, is one important kinase responsible for p47phox phosphorylation. Other kinases involved include Akt and MAPKs (ERK1/2 and p38), which can beactivated by signaling from receptor tyrosine kinases (RTKs) including the insulin, Trk, PDGF and VEGF receptors. NOX2 activation also involves Rac translocation, and this step is controlled by phosphorylation of GDP dissociation inhibitors (GDIs) by src and possibly PKC. Elevated cytoplasmic Ca concentrations, through opening of membrane ion channels or intracellular stores, are a key in NOX5 and DUOX1/2 activation. TGF-β receptor signaling has been shown to induceexpression of NOX4 on both the endoplasmic reticulum and the plasma membrane. Transcription of NOX4 can also be induced by RTK signaling. NOX enzymes have also been reported to interact with and be activated by adaptor proteins involved in Toll-like receptor (TLR) and cytokine receptor (CR) signaling.
Fig.2  Cellular signaling by NOX enzymes. The ROS produced by NOX enzymes affect a number of redox-sensitive molecules, including protein tyrosine phosphatases (PTPs), dual-specificity phosphatases (DSPs), and transcription factors such as AP-1, NFAT, NF-?B, HIF-1 and p53. Other redox sensitive targets include the apoptosis signal-regulating kinase 1 (ASK1) and the tyrosine-protein kinasesrc. Src and PTPs control signaling in the PI3K-Akt survival pathway. DSPs and ASK1 are important regulators of ERK1/2, p38 and JNK mitogen activated kinase (MAPK) pathways, which are important for a number of functions including survival, apoptosis, inflammation and stress responses. NOX enzymes have also been shown to regulate intracellular or plasma membrane ion channels. RTK= receptor tyrosin kinase, CR= cytokine receptor.
Fig.3  The roles of NOX in neurodegenerative disease. NOX enzymes are expressed in neurons, astrocytes and microglia. Over-activation of NOX in neurons can lead to neuronal damage and release of injury signals which activatesurrounding astrocytes and microglia. Activated astrocytes and microglia in turn upregulate their NOX activity resulting in release of ROS and further oxidative damage to neurons. Chronic activation of NOX in microglia can also result in microglial priming and release of additional neurotoxic molecules. In astrocytes, the ROS can damage glutamate transporters resulting in decreased clearance of glutamate from the synaptic cleft. This in turn can result in over-activation of NMDA receptors, increased NOX activationand excitotoxicity in neurons. Excitotoxicity results in increased Ca levels, mitochondrial damage and increased mitochondrial ROS production in the neuron.
1 Abeti R, Abramov A Y, Duchen M R (2011). Beta-amyloid activates PARP causing astrocytic metabolic failure and neuronal death. Brain , 134(Pt 6): 1658-1672
doi: 10.1093/brain/awr104 pmid:21616968
2 Abramov A Y, Canevari L, Duchen M R (2004). Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci , 24(2): 565-575
doi: 10.1523/JNEUROSCI.4042-03.2004 pmid:14724257
3 Abramov A Y, Jacobson J, Wientjes F, Hothersall J, Canevari L, Duchen M R (2005). Expression and modulation of an NADPH oxidase in mammalian astrocytes. J Neurosci , 25(40): 9176-9184
doi: 10.1523/JNEUROSCI.1632-05.2005 pmid:16207877
4 Ajayi A, Yu X, Lindberg S, Langel U, Str?m A L (2012). Expanded ataxin-7 cause toxicity by inducing ROS production from NADPH oxidase complexes in a stable inducible Spinocerebellar ataxia type 7 (SCA7) model. BMC Neurosci , 13(1): 86
doi: 10.1186/1471-2202-13-86 pmid:22827889
5 Amaral J D, Xavier J M, Steer C J, Rodrigues C M (2010). The role of p53 in apoptosis. Discov Med , 9(45): 145-152
pmid:20193641
6 Anantharam V, Kaul S, Song C, Kanthasamy A, Kanthasamy A G (2007). Pharmacological inhibition of neuronal NADPH oxidase protects against 1-methyl-4-phenylpyridinium (MPP+)-induced oxidative stress and apoptosis in mesencephalic dopaminergic neuronal cells. Neurotoxicology , 28(5): 988-997
doi: 10.1016/j.neuro.2007.08.008 pmid:17904225
7 Ansari M A, Scheff S W (2011). NADPH-oxidase activation and cognition in Alzheimer disease progression. Free Radic Biol Med , 51(1): 171-178
doi: 10.1016/j.freeradbiomed.2011.03.025 pmid:21457777
8 Atkins C M, Sweatt J D (1999). Reactive oxygen species mediate activity-dependent neuron-glia signaling in output fibers of the hippocampus. J Neurosci , 19(17): 7241-7248
pmid:10460230
9 Bánfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause K H (2004). NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem , 279(44): 46065-46072
doi: 10.1074/jbc.M403046200 pmid:15326186
10 Barber S C, Shaw P J (2010). Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med , 48(5): 629-641
doi: 10.1016/j.freeradbiomed.2009.11.018 pmid:19969067
11 Barger S W, Goodwin M E, Porter M M, Beggs M L (2007). Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation. J Neurochem , 101(5): 1205-1213
doi: 10.1111/j.1471-4159.2007.04487.x pmid:17403030
12 Barnham K J, Masters C L, Bush A I (2004). Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov , 3(3): 205-214
doi: 10.1038/nrd1330 pmid:15031734
13 B?umer A T, Ten Freyhaus H, Sauer H, Wartenberg M, Kappert K, Schnabel P, Konkol C, Hescheler J, Vantler M, Rosenkranz S (2008). Phosphatidylinositol 3-kinase-dependent membrane recruitment of Rac-1 and p47phox is critical for alpha-platelet-derived growth factor receptor-induced production of reactive oxygen species. J Biol Chem , 283(12): 7864-7876
doi: 10.1074/jbc.M704997200 pmid:18070887
14 Bedard K, Krause K H (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev , 87(1): 245-313
doi: 10.1152/physrev.00044.2005 pmid:17237347
15 Benarroch E E (2005). Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc , 80(10): 1326-1338
doi: 10.4065/80.10.1326 pmid:16212146
16 Bertoni A, Giuliano P, Galgani M, Rotoli D, Ulianich L, Adornetto A, Santillo M R, Porcellini A, Avvedimento V E (2011). Early and late events induced by polyQ-expanded proteins: identification of a common pathogenic property of polYQ-expanded proteins. J Biol Chem , 286(6): 4727-4741
doi: 10.1074/jbc.M110.156521 pmid:21115499
17 Bhatt L, Groeger G, McDermott K, Cotter T G (2010). Rod and cone photoreceptor cells produce ROS in response to stress in a live retinal explant system. Mol Vis , 16: 283-293
pmid:20177432
18 Bianca V D, Dusi S, Bianchini E, Dal Prà I, Rossi F (1999). beta-amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer’s disease. J Biol Chem , 274(22): 15493-15499
doi: 10.1074/jbc.274.22.15493 pmid:10336441
19 Block M L, Zecca L, Hong J S (2007). Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci , 8(1): 57-69
doi: 10.1038/nrn2038 pmid:17180163
20 Boillée S, Yamanaka K, Lobsiger C S, Copeland N G, Jenkins N A, Kassiotis G, Kollias G, Cleveland D W (2006). Onset and progression in inherited ALS determined by motor neurons and microglia. Science , 312(5778): 1389-1392
doi: 10.1126/science.1123511 pmid:16741123
21 Bokoch G M, Diebold B, Kim J S, Gianni D (2009). Emerging evidence for the importance of phosphorylation in the regulation of NADPH oxidases. Antioxid Redox Signal , 11(10): 2429-2441
doi: 10.1089/ars.2009.2590 pmid:19358632
22 Brennan A M, Suh S W, Won S J, Narasimhan P, Kauppinen T M, Lee H, Edling Y, Chan P H, Swanson R A (2009). NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci , 12(7): 857-863
doi: 10.1038/nn.2334 pmid:19503084
23 Brown D I, Griendling K K (2009). Nox proteins in signal transduction. Free Radic Biol Med , 47(9): 1239-1253
doi: 10.1016/j.freeradbiomed.2009.07.023 pmid:19628035
24 Bruce-Keller A J, Gupta S, Knight A G, Beckett T L, McMullen J M, Davis P R, Murphy M P, Van Eldik L J, St Clair D, Keller J N (2011). Cognitive impairment in humanized APP×PS1 mice is linked to Aβ(1-2) and NOX activation. Neurobiol Dis , 44(3): 317-326
doi: 10.1016/j.nbd.2011.07.012 pmid:21798347
25 Bruce-Keller A J, Gupta S, Parrino T E, Knight A G, Ebenezer P J, Weidner A M, LeVine H 3rd, Keller J N, Markesbery W R (2010). NOX activity is increased in mild cognitive impairment. Antioxid Redox Signal , 12(12): 1371-1382
doi: 10.1089/ars.2009.2823 pmid:19929442
26 Caunt C J, Keyse S M (2012) Dual-specificity MAP kinase phosphatases (MKPs). FEBS J.
doi: 10.1111/j.1742-4658.2012.08716.x
27 Cavaliere F, Urra O, Alberdi E, Matute C (2012). Oligodendrocyte differentiation from adult multipotent stem cells is modulated by glutamate. Cell Death Dis , 3(2): e268
doi: 10.1038/cddis.2011.144 pmid:22297298
28 Chaitanya G V, Steven A J, Babu P P (2010). PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal , 8(1): 31
doi: 10.1186/1478-811X-8-31 pmid:21176168
29 Chen K, Craige S E, Keaney J F Jr (2009). Downstream targets and intracellular compartmentalization in Nox signaling. Antioxid Redox Signal , 11(10): 2467-2480
doi: 10.1089/ars.2009.2594 pmid:19309256
30 Cheng G, Ritsick D, Lambeth J D (2004). Nox3 regulation by NOXO1, p47phox, and p67phox. J Biol Chem , 279(33): 34250-34255
doi: 10.1074/jbc.M400660200 pmid:15181005
31 Chéret C, Gervais A, Lelli A, Colin C, Amar L, Ravassard P, Mallet J, Cumano A, Krause K H, Mallat M (2008). Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J Neurosci , 28(46): 12039-12051
doi: 10.1523/JNEUROSCI.3568-08.2008 pmid:19005069
32 Choi S H, Aid S, Kim H W, Jackson S H, Bosetti F (2012). Inhibition of NADPH oxidase promotes alternative and anti-inflammatory microglial activation during neuroinflammation. J Neurochem , 120(2): 292-301
doi: 10.1111/j.1471-4159.2011.07572.x pmid:22050439
33 Coraci I S, Husemann J, Berman J W, Hulette C, Dufour J H, Campanella G K, Luster A D, Silverstein S C, El-Khoury J B (2002). CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am J Pathol , 160(1): 101-112
doi: 10.1016/S0002-9440(10)64354-4 pmid:11786404
34 Costa R O, Lacor P N, Ferreira I L, Resende R, Auberson Y P, Klein W L, Oliveira C R, Rego A C, Pereira C M (2012). Endoplasmic reticulum stress occurs downstream of GluN2B subunit of N-methyl-d-aspartate receptor in mature hippocampal cultures treated with amyloid-β oligomers. Aging Cell , 11(5): 823-833
doi: 10.1111/j.1474-9726.2012.00848.x pmid:22708890
35 Coyoy A, Valencia A, Guemez-Gamboa A, Morán J (2008). Role of NADPH oxidase in the apoptotic death of cultured cerebellar granule neurons. Free Radic Biol Med , 45(8): 1056-1064
doi: 10.1016/j.freeradbiomed.2008.06.027 pmid:18675340
36 Cristóv?o A C, Choi D H, Baltazar G, Beal M F, Kim Y S (2009). The role of NADPH oxidase 1-derived reactive oxygen species in paraquat-mediated dopaminergic cell death. Antioxid Redox Signal , 11(9): 2105-2118
doi: 10.1089/ars.2009.2459 pmid:19450058
37 Cross A R (2000). p40(phox) Participates in the activation of NADPH oxidase by increasing the affinity of p47(phox) for flavocytochrome b(558). Biochem J , 349(Pt 1): 113-117
doi: 10.1042/0264-6021:3490113 pmid:10861218
38 Damiano S, Fusco R, Morano A, De Mizio M, Paternò R, De Rosa A, Spinelli R, Amente S, Frunzio R, Mondola P, Miot F, Laccetti P, Santillo M, Avvedimento E V (2012). Reactive oxygen species regulate the levels of dual oxidase (Duox1-2) in human neuroblastoma cells. PLoS ONE , 7(4): e34405
doi: 10.1371/journal.pone.0034405 pmid:22523549
39 DeLeo F R, Allen L A, Apicella M, Nauseef W M (1999). NADPH oxidase activation and assembly during phagocytosis. J Immunol , 163(12): 6732-6740
pmid:10586071
40 DeLeo F R, Burritt J B, Yu L, Jesaitis A J, Dinauer M C, Nauseef W M (2000). Processing and maturation of flavocytochrome b558 include incorporation of heme as a prerequisite for heterodimer assembly. J Biol Chem , 275(18): 13986-13993
doi: 10.1074/jbc.275.18.13986 pmid:10788525
41 Di Maio R, Mastroberardino P G, Hu X, Montero L, Greenamyre J T (2011). Pilocapine alters NMDA receptor expression and function in hippocampal neurons: NADPH oxidase and ERK1/2 mechanisms. Neurobiol Dis , 42(3): 482-495
doi: 10.1016/j.nbd.2011.02.012 pmid:21397025
42 Dickinson B C, Peltier J, Stone D, Schaffer D V, Chang C J (2011). Nox2 redox signaling maintains essential cell populations in the brain. Nat Chem Biol , 7(2): 106-112
doi: 10.1038/nchembio.497 pmid:21186346
43 Diebold B A, Bokoch G M (2001). Molecular basis for Rac2 regulation of phagocyte NADPH oxidase. Nat Immunol , 2(3): 211-215
doi: 10.1038/85259 pmid:11224519
44 Dumont M, Stack C, Elipenhali C, Calingasan N Y, Wille E, Beal M F (2011). Apocynin administration does not improve behavioral and neuropathological deficits in a transgenic mouse model of Alzheimer’s disease. Neurosci Lett , 492(3): 150-154
doi: 10.1016/j.neulet.2011.01.077 pmid:21300136
45 Dunckley T, Huentelman M J, Craig D W, Pearson J V, Szelinger S, Joshipura K, Halperin R F, Stamper C, Jensen K R, Letizia D, Hesterlee S E, Pestronk A, Levine T, Bertorini T, Graves M C, Mozaffar T, Jackson C E, Bosch P, McVey A, Dick A, Barohn R, Lomen-Hoerth C, Rosenfeld J, O’connor D T, Zhang K, Crook R, Ryberg H, Hutton M, Katz J, Simpson E P, Mitsumoto H, Bowser R, Miller R G, Appel S H, Stephan D A (2007). Whole-genome analysis of sporadic amyotrophic lateral sclerosis. N Engl J Med , 357(8): 775-788
doi: 10.1056/NEJMoa070174 pmid:17671248
46 Dvorakova M, H?hler B, Richter E, Burritt J B, Kummer W (1999). Rat sensory neurons contain cytochrome b558 large subunit immunoreactivity. Neuroreport , 10(12): 2615-2617
doi: 10.1097/00001756-199908200-00032 pmid:10574379
47 Fatokun A A, Stone T W, Smith R A (2008). Oxidative stress in neurodegeneration and available means of protection. Front Biosci , 13(13): 3288-3311
doi: 10.2741/2926 pmid:18508433
48 Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci.
49 Gao H M, Zhou H, Hong J S (2012). NADPH oxidases: novel therapeutic targets for neurodegenerative diseases. Trends Pharmacol Sci , 33(6): 295-303
doi: 10.1016/j.tips.2012.03.008 pmid:22503440
50 Girouard H, Wang G, Gallo E F, Anrather J, Zhou P, Pickel V M, Iadecola C (2009). NMDA receptor activation increases free radical production through nitric oxide and NOX2. J Neurosci , 29(8): 2545-2552
doi: 10.1523/JNEUROSCI.0133-09.2009 pmid:19244529
51 Gough D R, Cotter T G (2011). Hydrogen peroxide: a Jekyll and Hyde signalling molecule. Cell Death Dis , 2(10): e213
doi: 10.1038/cddis.2011.96 pmid:21975295
52 Grasberger H, Refetoff S (2006). Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. J Biol Chem , 281(27): 18269-18272
doi: 10.1074/jbc.C600095200 pmid:16651268
53 Grimm S, Hoehn A, Davies K J, Grune T (2011). Protein oxidative modifications in the ageing brain: consequence for the onset of neurodegenerative disease. Free Radic Res , 45(1): 73-88
doi: 10.3109/10715762.2010.512040 pmid:20815785
54 Groeger G, Mackey A M, Pettigrew C A, Bhatt L, Cotter T G (2009). Stress-induced activation of Nox contributes to cell survival signalling via production of hydrogen peroxide. J Neurochem , 109(5): 1544-1554
doi: 10.1111/j.1471-4159.2009.06081.x pmid:19344371
55 Groemping Y, Rittinger K (2005). Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J , 386(Pt 3): 401-416
doi: 10.1042/BJ20041835 pmid:15588255
56 Halliwell B (2001). Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging , 18(9): 685-716
doi: 10.2165/00002512-200118090-00004 pmid:11599635
57 Han C H, Freeman J L, Lee T, Motalebi S A, Lambeth J D (1998). Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain in p67(phox). J Biol Chem , 273(27): 16663-16668
doi: 10.1074/jbc.273.27.16663 pmid:9642219
58 Harraz M M, Marden J J, Zhou W, Zhang Y, Williams A, Sharov V S, Nelson K, Luo M, Paulson H, Sch?neich C, Engelhardt J F (2008). SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. J Clin Invest , 118(2): 659-670
pmid:18219391
59 Harrigan T J, Abdullaev I F, Jourd’heuil D, Mongin A A (2008). Activation of microglia with zymosan promotes excitatory amino acid release via volume-regulated anion channels: the role of NADPH oxidases. J Neurochem , 106(6): 2449-2462
doi: 10.1111/j.1471-4159.2008.05553.x pmid:18624925
60 He Y, Cui J, Lee J C, Ding S, Chalimoniuk M, Simonyi A, Sun A Y, Gu Z, Weisman G A, Wood W G, Sun G Y (2011). Prolonged exposure of cortical neurons to oligomeric amyloid-β impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (-)-epigallocatechin-3-gallate. ASN Neuro , 3(1): e00050
doi: 10.1042/AN20100025 pmid:21434871
61 Heumüller S, Wind S, Barbosa-Sicard E, Schmidt H H, Busse R, Schr?der K, Brandes R P (2008). Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension , 51(2): 211-217
doi: 10.1161/HYPERTENSIONAHA.107.100214 pmid:18086956
62 Hsieh H L, Lin C C, Shih R H, Hsiao L D, Yang C M (2012). NADPH oxidase-mediated redox signal contributes to lipoteichoic acid-induced MMP-9 upregulation in brain astrocytes. J Neuroinflammation , 9(1): 110
doi: 10.1186/1742-2094-9-110 pmid:22643046
63 Huang J, Hitt N D, Kleinberg M E (1995). Stoichiometry of p22-phox and gp91-phox in phagocyte cytochrome b558. Biochemistry , 34(51): 16753-16757
doi: 10.1021/bi00051a024 pmid:8527449
64 Huo Y, Rangarajan P, Ling E A, Dheen S T (2011). Dexamethasone inhibits the Nox-dependent ROS production via suppression of MKP-1-dependent MAPK pathways in activated microglia. BMC Neurosci , 12(1): 49
doi: 10.1186/1471-2202-12-49 pmid:21615929
65 Ibi M, Katsuyama M, Fan C, Iwata K, Nishinaka T, Yokoyama T, Yabe-Nishimura C (2006). NOX1/NADPH oxidase negatively regulates nerve growth factor-induced neurite outgrowth. Free Radic Biol Med , 40(10): 1785-1795
doi: 10.1016/j.freeradbiomed.2006.01.009 pmid:16678016
66 Jana A, Pahan K (2004). Fibrillar amyloid-beta peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase. Implications for Alzheimer’s disease. J Biol Chem , 279(49): 51451-51459
doi: 10.1074/jbc.M404635200 pmid:15452132
67 Jiang F, Zhang Y, Dusting G J (2011). NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev , 63(1): 218-242
doi: 10.1124/pr.110.002980 pmid:21228261
68 Kahles T, Brandes R P (2012) Which NADPH oxidase isoform is relevant for ischemic stroke? The case for Nox 2. Antioxid Redox Signal .
doi: 10.1089/ars.2012.4721
69 Katsuyama M, Matsuno K, Yabe-Nishimura C (2012). Physiological roles of NOX/NADPH oxidase, the superoxide-generating enzyme. J Clin Biochem Nutr , 50(1): 9-22
doi: 10.3164/jcbn.11-06SR pmid:22247596
70 Kauppinen T M, Swanson R A (2007). The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neuroscience , 145(4): 1267-1272
doi: 10.1016/j.neuroscience.2006.09.034 pmid:17084037
71 Kawahara T, Ritsick D, Cheng G, Lambeth J D (2005). Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation. J Biol Chem , 280(36): 31859-31869
doi: 10.1074/jbc.M501882200 pmid:15994299
72 Kettenmann H, Hanisch U K, Noda M, Verkhratsky A (2011). Physiology of microglia. Physiol Rev , 91(2): 461-553
doi: 10.1152/physrev.00011.2010 pmid:21527731
73 Kishida K T, Hoeffer C A, Hu D, Pao M, Holland S M, Klann E (2006). Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Mol Cell Biol , 26(15): 5908-5920
doi: 10.1128/MCB.00269-06 pmid:16847341
74 Kishida K T, Pao M, Holland S M, Klann E (2005). NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1. J Neurochem , 94(2): 299-306
doi: 10.1111/j.1471-4159.2005.03189.x pmid:15998281
75 Kiss P J, Knisz J, Zhang Y, Baltrusaitis J, Sigmund C D, Thalmann R, Smith R J, Verpy E, Bánfi B (2006). Inactivation of NADPH oxidase organizer 1 results in severe imbalance. Curr Biol , 16(2): 208-213
doi: 10.1016/j.cub.2005.12.025 pmid:16431374
76 Knapp L T, Klann E (2002). Role of reactive oxygen species in hippocampal long-term potentiation: contributory or inhibitory? J Neurosci Res , 70(1): 1-7
doi: 10.1002/jnr.10371 pmid:12237859
77 Koga H, Terasawa H, Nunoi H, Takeshige K, Inagaki F, Sumimoto H (1999). Tetratricopeptide repeat (TPR) motifs of p67(phox) participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J Biol Chem , 274(35): 25051-25060
doi: 10.1074/jbc.274.35.25051 pmid:10455184
78 Lapouge K, Smith S J, Groemping Y, Rittinger K (2002). Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidase. A central role for p67phox. J Biol Chem , 277(12): 10121-10128
doi: 10.1074/jbc.M112065200 pmid:11796733
79 Lapouge K, Smith S J, Walker P A, Gamblin S J, Smerdon S J, Rittinger K (2000). Structure of the TPR domain of p67phox in complex with Rac.GTP. Mol Cell , 6(4): 899-907
pmid:11090627
80 Lavigne M C, Malech H L, Holland S M, Leto T L (2001). Genetic requirement of p47phox for superoxide production by murine microglia. FASEB J , 15(2): 285-287
pmid:11156938
81 Li B, Bedard K, Sorce S, Hinz B, Dubois-Dauphin M, Krause K H (2009). NOX4 expression in human microglia leads to constitutive generation of reactive oxygen species and to constitutive IL-6 expression. J Innate Immun , 1(6): 570-581
doi: 10.1159/000235563 pmid:20375612
82 Li Q, Spencer N Y, Pantazis N J, Engelhardt J F (2011). Alsin and SOD1(G93A) proteins regulate endosomal reactive oxygen species production by glial cells and proinflammatory pathways responsible for neurotoxicity. J Biol Chem , 286(46): 40151-40162
doi: 10.1074/jbc.M111.279711 pmid:21937428
83 Liu Q, Kang J H, Zheng R L (2005). NADPH oxidase produces reactive oxygen species and maintains survival of rat astrocytes. Cell Biochem Funct , 23(2): 93-100
doi: 10.1002/cbf.1171 pmid:15386527
84 Liu Y, Hao W, Dawson A, Liu S, Fassbender K (2009). Expression of amyotrophic lateral sclerosis-linked SOD1 mutant increases the neurotoxic potential of microglia via TLR2. J Biol Chem , 284(6): 3691-3699
doi: 10.1074/jbc.M804446200 pmid:19091752
85 Lull M E, Levesque S, Surace M J, Block M L (2011). Chronic apocynin treatment attenuates beta amyloid plaque size and microglial number in hAPP(751)(SL) mice. PLoS ONE , 6(5): e20153
doi: 10.1371/journal.pone.0020153 pmid:21655287
86 Mackey A M, Sanvicens N, Groeger G, Doonan F, Wallace D, Cotter T G (2008). Redox survival signalling in retina-derived 661W cells. Cell Death Differ , 15(8): 1291-1303
doi: 10.1038/cdd.2008.43 pmid:18404155
87 Malaplate-Armand C, Florent-Béchard S, Youssef I, Koziel V, Sponne I, Kriem B, Leininger-Muller B, Olivier J L, Oster T, Pillot T (2006). Soluble oligomers of amyloid-beta peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol Dis , 23(1): 178-189
doi: 10.1016/j.nbd.2006.02.010 pmid:16626961
88 Maldonado P D, Molina-Jijón E, Villeda-Hernández J, Galván-Arzate S, Santamaría A, Pedraza-Chaverrí J (2010). NAD(P)H oxidase contributes to neurotoxicity in an excitotoxic/prooxidant model of Huntington’s disease in rats: protective role of apocynin. J Neurosci Res , 88(3): 620-629
pmid:19795371
89 Mander P K, Jekabsone A, Brown G C (2006). Microglia proliferation is regulated by hydrogen peroxide from NADPH oxidase. J Immunol , 176(2): 1046-1052
pmid:16393992
90 Marden J J, Harraz M M, Williams A J, Nelson K, Luo M, Paulson H, Engelhardt J F (2007). Redox modifier genes in amyotrophic lateral sclerosis in mice. J Clin Invest , 117(10): 2913-2919
doi: 10.1172/JCI31265 pmid:17853944
91 Markowitz A J, White M G, Kolson D L, Jordan-Sciutto K L (2007). Cellular interplay between neurons and glia: toward a comprehensive mechanism for excitotoxic neuronal loss in neurodegeneration. Cellscience , 4(1): 111-146
pmid:19122795
92 Martyn K D, Frederick L M, von Loehneysen K, Dinauer M C, Knaus U G (2006). Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal , 18(1): 69-82
doi: 10.1016/j.cellsig.2005.03.023 pmid:15927447
93 Massaad C A, Klann E (2011). Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal , 14(10): 2013-2054
doi: 10.1089/ars.2010.3208 pmid:20649473
94 Mizuki K, Kadomatsu K, Hata K, Ito T, Fan Q W, Kage Y, Fukumaki Y, Sakaki Y, Takeshige K, Sumimoto H (1998). Functional modules and expression of mouse p40(phox) and p67(phox), SH3-domain-containing proteins involved in the phagocyte NADPH oxidase complex. Eur J Biochem , 251(3): 573-582
doi: 10.1046/j.1432-1327.1998.2510573.x pmid:9490028
95 Morand S, Ueyama T, Tsujibe S, Saito N, Korzeniowska A, Leto T L (2009). Duox maturation factors form cell surface complexes with Duox affecting the specificity of reactive oxygen species generation. FASEB J , 23(4): 1205-1218
doi: 10.1096/fj.08-120006 pmid:19074510
96 Moreira P I, Zhu X, Wang X, Lee H G, Nunomura A, Petersen R B, Perry G, Smith M A (2010). Mitochondria: a therapeutic target in neurodegeneration. Biochim Biophys Acta , 1802(1): 212-220
doi: 10.1016/j.bbadis.2009.10.007 pmid:19853657
97 Munnamalai V, Suter D M (2009). Reactive oxygen species regulate F-actin dynamics in neuronal growth cones and neurite outgrowth. J Neurochem , 108(3): 644-661
doi: 10.1111/j.1471-4159.2008.05787.x pmid:19054285
98 Nauseef W M (2004). Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol , 122(4): 277-291
doi: 10.1007/s00418-004-0679-8 pmid:15293055
99 Nisimoto Y, Motalebi S, Han C H, Lambeth J D (1999). The p67(phox) activation domain regulates electron flow from NADPH to flavin in flavocytochrome b(558). J Biol Chem , 274(33): 22999-23005
doi: 10.1074/jbc.274.33.22999 pmid:10438466
100 Nitti M, Furfaro A L, Cevasco C, Traverso N, Marinari U M, Pronzato M A, Domenicotti C (2010). PKC delta and NADPH oxidase in retinoic acid-induced neuroblastoma cell differentiation. Cell Signal , 22(5): 828-835
doi: 10.1016/j.cellsig.2010.01.007 pmid:20074641
101 Noh K M, Koh J Y (2000). Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci , 20(23): RC111
pmid:11090611
102 Ostman A, Frijhoff J, Sandin A, B?hmer F D (2011). Regulation of protein tyrosine phosphatases by reversible oxidation. J Biochem , 150(4): 345-356
doi: 10.1093/jb/mvr104 pmid:21856739
103 Pandey D, Fulton D J (2011). Molecular regulation of NADPH oxidase 5 via the MAPK pathway. Am J Physiol Heart Circ Physiol , 300(4): H1336-H1344
doi: 10.1152/ajpheart.01163.2010 pmid:21297032
104 Pandey D, Gratton J P, Rafikov R, Black S M, Fulton D J (2011). Calcium/calmodulin-dependent kinase II mediates the phosphorylation and activation of NADPH oxidase 5. Mol Pharmacol , 80(3): 407-415
doi: 10.1124/mol.110.070193 pmid:21642394
105 Pao M, Wiggs E A, Anastacio M M, Hyun J, DeCarlo E S, Miller J T, Anderson V L, Malech H L, Gallin J I, Holland S M (2004). Cognitive function in patients with chronic granulomatous disease: a preliminary report. Psychosomatics , 45(3): 230-234
doi: 10.1176/appi.psy.45.3.230 pmid:15123849
106 Park L, Zhou P, Pitstick R, Capone C, Anrather J, Norris E H, Younkin L, Younkin S, Carlson G, McEwen B S, Iadecola C (2008). Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci USA , 105(4): 1347-1352
doi: 10.1073/pnas.0711568105 pmid:18202172
107 Parkos C A, Dinauer M C, Jesaitis A J, Orkin S H, Curnutte J T (1989). Absence of both the 91kD and 22kD subunits of human neutrophil cytochrome b in two genetic forms of chronic granulomatous disease. Blood , 73(6): 1416-1420
pmid:2713485
108 Pawate S, Shen Q, Fan F, Bhat N R (2004). Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res , 77(4): 540-551
doi: 10.1002/jnr.20180 pmid:15264224
109 Puntambekar P, Mukherjea D, Jajoo S, Ramkumar V (2005). Essential role of Rac1/NADPH oxidase in nerve growth factor induction of TRPV1 expression. J Neurochem , 95(6): 1689-1703
doi: 10.1111/j.1471-4159.2005.03518.x pmid:16283857
110 Qin B, Cartier L, Dubois-Dauphin M, Li B, Serrander L, Krause K H (2006). A key role for the microglial NADPH oxidase in APP-dependent killing of neurons. Neurobiol Aging , 27(11): 1577-1587
doi: 10.1016/j.neurobiolaging.2005.09.036 pmid:16260066
111 Rebola N, Srikumar B N, Mulle C (2010). Activity-dependent synaptic plasticity of NMDA receptors. J Physiol , 588(Pt 1): 93-99
doi: 10.1113/jphysiol.2009.179382 pmid:19822542
112 Reinhardt H C, Schumacher B (2012). The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet , 28(3): 128-136
doi: 10.1016/j.tig.2011.12.002 pmid:22265392
113 Rigutto S, Hoste C, Grasberger H, Milenkovic M, Communi D, Dumont J E, Corvilain B, Miot F, De Deken X (2009). Activation of dual oxidases Duox1 and Duox2: differential regulation mediated by camp-dependent protein kinase and protein kinase C-dependent phosphorylation. J Biol Chem , 284(11): 6725-6734
doi: 10.1074/jbc.M806893200 pmid:19144650
114 Roepstorff K, Rasmussen I, Sawada M, Cudre-Maroux C, Salmon P, Bokoch G, van Deurs B, Vilhardt F (2008). Stimulus-dependent regulation of the phagocyte NADPH oxidase by a VAV1, Rac1, and PAK1 signaling axis. J Biol Chem , 283(12): 7983-7993
doi: 10.1074/jbc.M708281200 pmid:18160398
115 Sankarapandi S, Zweier J L, Mukherjee G, Quinn M T, Huso D L (1998). Measurement and characterization of superoxide generation in microglial cells: evidence for an NADPH oxidase-dependent pathway. Arch Biochem Biophys , 353(2): 312-321
doi: 10.1006/abbi.1998.0658 pmid:9606965
116 Sarfstein R, Gorzalczany Y, Mizrahi A, Berdichevsky Y, Molshanski-Mor S, Weinbaum C, Hirshberg M, Dagher M C, Pick E (2004). Dual role of Rac in the assembly of NADPH oxidase, tethering to the membrane and activation of p67phox: a study based on mutagenesis of p67phox-Rac1 chimeras. J Biol Chem , 279(16): 16007-16016
doi: 10.1074/jbc.M312394200 pmid:14761978
117 Savchenko V L (2012). Regulation of NADPH oxidase gene expression with PKA and cytokine IL-4 in neurons and microglia. Neurotox Res ,
doi: 10.1007/s12640-012-9327-6
118 Sedeek M, Montezano A C, Hebert R L, Gray S P, Di Marco E, Jha J C, Cooper M E, Jandeleit-Dahm K, Schiffrin E L, Wilkinson-Berka J L, Touyz R M (2012). Oxidative stress, Nox isoforms and complications of diabetes—potential targets for novel therapies. J Cardiovasc Transl Res , 5(4): 509-518
doi: 10.1007/s12265-012-9387-2 pmid:22711281
119 Serrano F, Kolluri N S, Wientjes F B, Card J P, Klann E (2003). NADPH oxidase immunoreactivity in the mouse brain. Brain Res , 988(1-2): 193-198
doi: 10.1016/S0006-8993(03)03364-X pmid:14519542
120 Shelat P B, Chalimoniuk M, Wang J H, Strosznajder J B, Lee J C, Sun A Y, Simonyi A, Sun G Y (2008). Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem , 106(1): 45-55
doi: 10.1111/j.1471-4159.2008.05347.x pmid:18346200
121 Shimohama S, Tanino H, Kawakami N, Okamura N, Kodama H, Yamaguchi T, Hayakawa T, Nunomura A, Chiba S, Perry G, Smith M A, Fujimoto S (2000). Activation of NADPH oxidase in Alzheimer’s disease brains. Biochem Biophys Res Commun , 273(1): 5-9
doi: 10.1006/bbrc.2000.2897 pmid:10873554
122 Sorce S, Krause K H, Jaquet V (2012). Targeting NOX enzymes in the central nervous system: therapeutic opportunities. Cell Mol Life Sci , 69(14): 2387-2407
doi: 10.1007/s00018-012-1014-5 pmid:22643836
123 Stolk J, Hiltermann T J, Dijkman J H, Verhoeven A J (1994). Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am J Respir Cell Mol Biol , 11(1): 95-102
pmid:8018341
124 Strosznajder J B, Czapski G A, Adamczyk A, Strosznajder R P (2012). Poly(ADP-ribose) polymerase-1 in amyloid beta toxicity and Alzheimer’s disease. Mol Neurobiol , 46(1): 78-84
doi: 10.1007/s12035-012-8258-9 pmid:22430645
125 Sumimoto H, Hata K, Mizuki K, Ito T, Kage Y, Sakaki Y, Fukumaki Y, Nakamura M, Takeshige K (1996). Assembly and activation of the phagocyte NADPH oxidase. Specific interaction of the N-terminal Src homology 3 domain of p47phox with p22phox is required for activation of the NADPH oxidase. J Biol Chem , 271(36): 22152-22158
doi: 10.1074/jbc.271.36.22152 pmid:8703027
126 Sumimoto H, Miyano K, Takeya R (2005). Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun , 338(1): 677-686
doi: 10.1016/j.bbrc.2005.08.210 pmid:16157295
127 Suzukawa K, Miura K, Mitsushita J, Resau J, Hirose K, Crystal R, Kamata T (2000). Nerve growth factor-induced neuronal differentiation requires generation of Rac1-regulated reactive oxygen species. J Biol Chem , 275(18): 13175-13178
doi: 10.1074/jbc.275.18.13175 pmid:10788420
128 Szaingurten-Solodkin I, Hadad N, Levy R (2009). Regulatory role of cytosolic phospholipase A2alpha in NADPH oxidase activity and in inducible nitric oxide synthase induction by aggregated Abeta1-42 in microglia. Glia , 57(16): 1727-1740
doi: 10.1002/glia.20886 pmid:19455582
129 Tammariello S P, Quinn M T, Estus S (2000). NADPH oxidase contributes directly to oxidative stress and apoptosis in nerve growth factor-deprived sympathetic neurons. J Neurosci , 20(1): RC53
pmid:10627630
130 Tejada-Simon M V, Serrano F, Villasana L E, Kanterewicz B I, Wu G Y, Quinn M T, Klann E (2005). Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol Cell Neurosci , 29(1): 97-106
doi: 10.1016/j.mcn.2005.01.007 pmid:15866050
131 Traynelis S F, Wollmuth L P, McBain C J, Menniti F S, Vance K M, Ogden K K, Hansen K B, Yuan H, Myers S J, Dingledine R (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev , 62(3): 405-496
doi: 10.1124/pr.109.002451 pmid:20716669
132 Trumbull K A, McAllister D, Gandelman M M, Fung W Y, Lew T, Brennan L, Lopez N, Morré J, Kalyanaraman B, Beckman J S (2012). Diapocynin and apocynin administration fails to significantly extend survival in G93A SOD1 ALS mice. Neurobiol Dis , 45(1): 137-144
doi: 10.1016/j.nbd.2011.07.015 pmid:21820513
133 Ueno N, Takeya R, Miyano K, Kikuchi H, Sumimoto H (2005). The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators. J Biol Chem , 280(24): 23328-23339
doi: 10.1074/jbc.M414548200 pmid:15824103
134 Verkhratsky A, Parpura V (2010). Recent advances in (patho)physiology of astroglia. Acta Pharmacol Sin , 31(9): 1044-1054
doi: 10.1038/aps.2010.108 pmid:20694024
135 Wilkinson B L, Cramer P E, Varvel N H, Reed-Geaghan E, Jiang Q, Szabo A, Herrup K, Lamb B T, Landreth G E (2012). Ibuprofen attenuates oxidative damage through NOX2 inhibition in Alzheimer’s disease. Neurobiol Aging , 33:197e21-197e32 .
136 Wu D C, Ré D B, Nagai M, Ischiropoulos H, Przedborski S (2006). The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice. Proc Natl Acad Sci USA , 103(32): 12132-12137
doi: 10.1073/pnas.0603670103 pmid:16877542
137 Wu D C, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S (2003). NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA , 100(10): 6145-6150
doi: 10.1073/pnas.0937239100 pmid:12721370
138 Zawada W M, Banninger G P, Thornton J, Marriott B, Cantu D, Rachubinski A L, Das M, Griffin W S, Jones S M (2011). Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. J Neuroinflammation , 8(1): 129
doi: 10.1186/1742-2094-8-129 pmid:21975039
139 Zhang D, Hu X, Qian L, Chen S H, Zhou H, Wilson B, Miller D S, Hong J S (2011). Microglial MAC1 receptor and PI3K are essential in mediating β-amyloid peptide-induced microglial activation and subsequent neurotoxicity. J Neuroinflammation , 8(1): 3
doi: 10.1186/1742-2094-8-3 pmid:21232086
140 Zhang W, Wang T, Pei Z, Miller D S, Wu X, Block M L, Wilson B, Zhang W, Zhou Y, Hong J S, Zhang J (2005). Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J , 19(6): 533-542
doi: 10.1096/fj.04-2751com pmid:15791003
141 Zhou H, Zhang F, Chen S H, Zhang D, Wilson B, Hong J S, Gao H M (2012). Rotenone activates phagocyte NADPH oxidase by binding to its membrane subunit gp91phox. Free Radic Biol Med , 52(2): 303-313
doi: 10.1016/j.freeradbiomed.2011.10.488 pmid:22094225
142 Zhu D, Hu C, Sheng W, Tan K S, Haidekker M A, Sun A Y, Sun G Y, Lee J C (2009). NAD(P)H oxidase-mediated reactive oxygen species production alters astrocyte membrane molecular order via phospholipase A2. Biochem J , 421(2): 201-210
doi: 10.1042/BJ20090356 pmid:19392662
143 Zhu D, Lai Y, Shelat P B, Hu C, Sun G Y, Lee J C (2006). Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. J Neurosci , 26(43): 11111-11119
doi: 10.1523/JNEUROSCI.3505-06.2006 pmid:17065451
[1] Hanane Gourine, Hadria Grar, Wafaa Dib, Nabila Mehedi, Ahmed Boualga, Djamel Saidi, Omar Kheroua. Effect of a normal protein diet on oxidative stress and organ damage in malnourished rats[J]. Front. Biol., 2018, 13(5): 366-375.
[2] Volodymyr Padalko, Viktoriya Dzyuba, Olena Kozlova, Hanna Sheremet, Olena Protsenko. Zingiber officinale extends Drosophila melanogaster life span in xenobiotic-induced oxidative stress conditions[J]. Front. Biol., 2018, 13(2): 130-136.
[3] Nima Heidary, Hedayat Sahraei, Mohammad Reza Afarinesh, Zahra Bahari, Gholam Hossein Meftahi. Investigating the inhibition of NMDA glutamate receptors in the basolateral nucleus of the amygdala on the pain and inflammation induced by formalin in male Wistar rats[J]. Front. Biol., 2018, 13(2): 149-155.
[4] Vadim V. Davydov, Alexander V. Shestopalov, Evgenya R. Grabovetskaya. Physiological significance of oxidative stress and its role in adaptation of the human body to deleterious factors[J]. Front. Biol., 2018, 13(1): 19-27.
[5] Bharti Chaudhary, Sonam Agarwal, Renu Bist. Invulnerability of bromelain against oxidative degeneration and cholinergic deficits imposed by dichlorvos in mice brains[J]. Front. Biol., 2018, 13(1): 56-62.
[6] Amir Abdoli. High salt and fat intake, inflammation, and risk of cancer[J]. Front. Biol., 2017, 12(6): 387-391.
[7] Jun Sun. Intestinal organoid as an in vitromodel in studying host-microbial interactions[J]. Front. Biol., 2017, 12(2): 94-102.
[8] Jian Zou,Jinbo Yu,Yuqing Zhu,Jiali Zhu,Jing Du,Xu Yang. Application of glutathione to antagonize H2O2-induced oxidative stress in rat tracheal epithelial cells[J]. Front. Biol., 2016, 11(1): 59-63.
[9] Zhuo Wu,Jingquan Li,Ping Ma,Baizhan Li,Yang Xu. Long-term dermal exposure to diisononyl phthalate exacerbates atopic dermatitis through oxidative stress in an FITC-induced mouse model[J]. Front. Biol., 2015, 10(6): 537-545.
[10] Xin Xin Yu,Vimala Bondada,Colin Rogers,Carolyn A. Meyer,Chen Guang Yu. Targeting ERK1/2-calpain 1-NF-κB signal transduction in secondary tissue damage and astrogliosis after spinal cord injury[J]. Front. Biol., 2015, 10(5): 427-438.
[11] Yu Lu,Biao Yan,Xudong Liu,Yuchao Zhang,Shibi Zeng,Hao Hu,Rong Xiang,Yu Xu,Ying Yu,Xu Yang. Comparative study of oxidative stress induced by sand flower and schistose nanosized layered double hydroxides in N2a cells[J]. Front. Biol., 2015, 10(3): 279-286.
[12] Jacqueline A. GLEAVE,Peter D. PERRI,Joanne E. NASH. Mitochondrial dysfunction in Parkinson’s disease: a possible target for neuroprotection[J]. Front. Biol., 2014, 9(6): 489-503.
[13] Noor GAMMOH,Simon WILKINSON. Autophagy in cancer biology and therapy[J]. Front. Biol., 2014, 9(1): 35-50.
[14] Tanapat PALAGA, Lisa M. MINTER. Notch signaling and its emerging role in autoimmunity[J]. Front Biol, 2013, 8(3): 279-294.
[15] Jeffrey P. CANTLE, Xiao-Hong LU, Xiaofeng GU, X. William YANG. Cellular and molecular mechanisms implicated in pathogenesis of selective neurodegeneration in Huntington’s disease[J]. Front Biol, 2012, 7(5): 459-476.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed