|
|
|
The role of human rhinovirus in immunology, COPD, and corresponding treatments |
William J. ROBERTS1,2, Georgianna G. SERGAKIS2, Li ZUO1,2( ) |
| 1. Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; 2. Respiratory Therapy Division, School of Health and Rehabilitation Sciences, Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA |
|
|
|
|
Abstract The common cold is most often a result of human rhinovirus (HRV) infection. Common cold symptoms including rhinorrhea and nasal obstruction frequently occur during HRV infection of the upper respiratory tract. Conversely, HRV may also infect the epithelial cells of the lower respiratory tract. Symptom severity associated with HRV infection ranges from mild to potentially serious depending on a person’s susceptibility and pre-existing condition, such as chronic obstructive pulmonary disease. An over active host immune response is believed to be the primary contributor to HRV pathogenesis. Enhanced activity of various host cell cytokines and granulocytes mediate specific cellular pathways inducing many of the symptoms associated with HRV infection. There are over 100 serotypes of HRV which can be further categorized based on the specific characteristics of each type. The two main categories of HRV consist of the major and minor groups. The unique host cell receptor is the distinguishing factor between these two groups. Yet, these viruses may also differ in mechanism of infection and replication. Due to the high frequency of hospital and clinical visits and the corresponding economic burden, novel therapies are of interest. Several different treatment options varying from herbal remedies to anti-viral drugs have been studied. However, the vast number of HRV serotypes complicates the progress of developing a universal treatment for attenuating HRV infection.
|
| Keywords
human rhinovirus
common cold
immunology
COPD
|
|
Corresponding Author(s):
ZUO Li,Email:zuo.4@osu.edu
|
|
Issue Date: 01 August 2013
|
|
| 1 |
Alper C M, Doyle W J, Skoner D P, Buchman C A, Cohen S, Gwaltney J M (1998). Prechallenge antibodies moderate disease expression in adults experimentally exposed to rhinovirus strain hanks. Clin Infect Dis , 27(1): 119–128 doi: 10.1086/514634 pmid:9675465
|
| 2 |
Alper C M, Doyle W J, Skoner D P, Buchman C A, Seroky J T, Gwaltney J M, Cohen S A (1996). Prechallenge antibodies: moderators of infection rate, signs, and symptoms in adults experimentally challenged with rhinovirus type 39. Laryngoscope , 106(10): 1298–1305 doi: 10.1097/00005537-199610000-00025 pmid:8849805
|
| 3 |
Andries K, Dewindt B, Snoeks J, Wouters L, Moereels H, Lewi P J, Janssen P A (1990). Two groups of rhinoviruses revealed by a panel of antiviral compounds present sequence divergence and differential pathogenicity. J Virol , 64(3): 1117–1123 pmid:2154596
|
| 4 |
Arruda E, Pitk?ranta A, Witek T J Jr, Doyle C A, Hayden F G (1997). Frequency and natural history of rhinovirus infections in adults during autumn. J Clin Microbiol , 35(11): 2864–2868 pmid:9350748
|
| 5 |
Barral P M, Sarkar D, Fisher P B, Racaniello V R (2009). RIG-I is cleaved during picornavirus infection. Virology , 391(2): 171–176 doi: 10.1016/j.virol.2009.06.045 pmid:19628239
|
| 6 |
Bella J, Rossmann M G (2000). ICAM-1 receptors and cold viruses. Pharm Acta Helv , 74(2-3): 291–297 doi: 10.1016/S0031-6865(99)00056-4 pmid:10812972
|
| 7 |
Binford S L, Maldonado F, Brothers M A, Weady P T, Zalman L S, Meador J W 3rd, Matthews D A, Patick A K (2005). Conservation of amino acids in human rhinovirus 3C protease correlates with broad-spectrum antiviral activity of rupintrivir, a novel human rhinovirus 3C protease inhibitor. Antimicrob Agents Chemother , 49(2): 619–626 doi: 10.1128/AAC.49.2.619-626.2005 pmid:15673742
|
| 8 |
Bochkov Y A, Palmenberg A C, Lee W M, Rathe J A, Amineva S P, Sun X, Pasic T R, Jarjour N N, Liggett S B, Gern J E (2011). Molecular modeling, organ culture and reverse genetics for a newly identified human rhinovirus C. Nat Med , 17(5): 627–632 doi: 10.1038/nm.2358 pmid:21483405
|
| 9 |
Brabec M, Schober D, Wagner E, Bayer N, Murphy R F, Blaas D, Fuchs R (2005). Opening of size-selective pores in endosomes during human rhinovirus serotype 2 in vivo uncoating monitored by single-organelle flow analysis. J Virol , 79(2): 1008–1016 doi: 10.1128/JVI.79.2.1008-1016.2005 pmid:15613329
|
| 10 |
Brabec-Zaruba M, Pfanzagl B, Blaas D, Fuchs R (2009). Site of human rhinovirus RNA uncoating revealed by fluorescent in situ hybridization. J Virol , 83(8): 3770–3777 doi: 10.1128/JVI.00265-08 pmid:19158243
|
| 11 |
Calverley P, Pauwels R, Vestbo J, Jones P, Pride N, Gulsvik A, Anderson J, Maden C, and the TRial of Inhaled STeroids ANd long-acting beta2 agonists study group (2003). Combined salmeterol and fluticasone in the treatment of chronic obstructive pulmonary disease: a randomised controlled trial. Lancet , 361(9356): 449–456 doi: 10.1016/S0140-6736(03)12459-2 pmid:12583942
|
| 12 |
Casaburi R, Mahler D A, Jones P W, Wanner A, San P G, ZuWallack R L, Menjoge S S, Serby C W, Witek T Jr (2002). A long-term evaluation of once-daily inhaled tiotropium in chronic obstructive pulmonary disease. Eur Respir J , 19(2): 217–224 doi: 10.1183/09031936.02.00269802 pmid:11866001
|
| 13 |
Colonno R J, Callahan P L, Long W J (1986). Isolation of a monoclonal antibody that blocks attachment of the major group of human rhinoviruses. J Virol , 57(1): 7–12 pmid:3001366
|
| 14 |
De Palma A M, Vliegen I, De Clercq E, Neyts J (2008). Selective inhibitors of picornavirus replication. Med Res Rev , 28(6): 823–884 doi: 10.1002/med.20125 pmid:18381747
|
| 15 |
Di Pierro F, Rapacioli G, Ferrara T, Togni S (2012). Use of a standardized extract from Echinacea angustifolia (Polinacea) for the prevention of respiratory tract infections. Altern Med Rev , 17(1): 36–41 pmid:22502621
|
| 16 |
Donaldson G C, Seemungal T A, Bhowmik A, Wedzicha J A (2002). Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax , 57(10): 847–852 doi: 10.1136/thorax.57.10.847 pmid:12324669
|
| 17 |
Douglas R M, Hemil? H, Chalker E, Treacy B (2007). Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev , (3): CD000980 pmid:17636648
|
| 18 |
Douglass J A, Dhami D, Gurr C E, Bulpitt M, Shute J K, Howarth P H, Lindley I J, Church M K, Holgate S T (1994). Influence of interleukin-8 challenge in the nasal mucosa in atopic and nonatopic subjects. Am J Respir Crit Care Med , 150(4): 1108–1113 pmid:7921444
|
| 19 |
Drahos J, Racaniello V R (2009). Cleavage of IPS-1 in cells infected with human rhinovirus. J Virol , 83(22): 11581–11587 doi: 10.1128/JVI.01490-09 pmid:19740998
|
| 20 |
Edwards M R, Hewson C A, Laza-Stanca V, Lau H T, Mukaida N, Hershenson M B, Johnston S L (2007). Protein kinase R, IkappaB kinase-beta and NF-kappaB are required for human rhinovirus induced pro-inflammatory cytokine production in bronchial epithelial cells. Mol Immunol , 44(7): 1587–1597 doi: 10.1016/j.molimm.2006.08.014 pmid:16989899
|
| 21 |
Fashner J, Ericson K, Werner S (2012). Treatment of the common cold in children and adults. Am Fam Physician , 86(2): 153–159 pmid:22962927
|
| 22 |
Fehniger T A, Caligiuri M A (2001). Interleukin 15: biology and relevance to human disease. Blood , 97(1): 14–32 doi: 10.1182/blood.V97.1.14 pmid:11133738
|
| 23 |
Fraenkel D J, Bardin P G, Sanderson G, Lampe F, Johnston S L, Holgate S T (1995). Lower airways inflammation during rhinovirus colds in normal and in asthmatic subjects. Am J Respir Crit Care Med , 151(3 Pt 1): 879–886 pmid:7881686
|
| 24 |
Fuchs R, Blaas D (2010). Uncoating of human rhinoviruses. Rev Med Virol , 20(5): 281–297 doi: 10.1002/rmv.654 pmid:20629045
|
| 25 |
Gavala M L, Bertics P J, Gern J E (2011). Rhinoviruses, allergic inflammation, and asthma. Immunol Rev , 242(1): 69–90 doi: 10.1111/j.1600-065X.2011.01031.x pmid:21682739
|
| 26 |
Giranda V L, Heinz B A, Oliveira M A, Minor I, Kim K H, Kolatkar P R, Rossmann M G, Rueckert R R (1992). Acid-induced structural changes in human rhinovirus 14: possible role in uncoating. Proc Natl Acad Sci USA , 89(21): 10213–10217 doi: 10.1073/pnas.89.21.10213 pmid:1332036
|
| 27 |
Gwaltney J M Jr, Hendley J O, Simon G, Jordan W S Jr (1967). Rhinovirus infections in an industrial population. II. Characteristics of illness and antibody response. JAMA , 202(6): 494–500 doi: 10.1001/jama.1967.03130190100014 pmid:4293015
|
| 28 |
Haghighat A, Svitkin Y, Novoa I, Kuechler E, Skern T, Sonenberg N (1996). The eIF4G-eIF4E complex is the target for direct cleavage by the rhinovirus 2A proteinase. J Virol , 70(12): 8444–8450 pmid:8970966
|
| 29 |
Harris J M 2nd, Gwaltney J M Jr (1996). Incubation periods of experimental rhinovirus infection and illness. Clin Infect Dis , 23(6): 1287–1290 doi: 10.1093/clinids/23.6.1287 pmid:8953073
|
| 30 |
Hayden F G, Gwaltney J M Jr, Colonno R J (1988). Modification of experimental rhinovirus colds by receptor blockade. Antiviral Res , 9(4): 233–247 doi: 10.1016/0166-3542(88)90055-1 pmid:2849376
|
| 31 |
Hemil? H (1996). Vitamin C and common cold incidence: a review of studies with subjects under heavy physical stress. Int J Sports Med , 17(5): 379–383 doi: 10.1055/s-2007-972864 pmid:8858411
|
| 32 |
Hemil? H (1997). Vitamin C intake and susceptibility to the common cold. Br J Nutr , 77(1): 59–72 doi: 10.1017/S0007114500002889 pmid:9059230
|
| 33 |
Hendley J O, Gwaltney J M Jr (1988). Mechanisms of transmission of rhinovirus infections. Epidemiol Rev , 10: 243–258 pmid:2852117
|
| 34 |
Hewson C A, Jardine A, Edwards M R, Laza-Stanca V, Johnston S L (2005). Toll-like receptor 3 is induced by and mediates antiviral activity against rhinovirus infection of human bronchial epithelial cells. J Virol , 79(19): 12273–12279 doi: 10.1128/JVI.79.19.12273-12279.2005 pmid:16160153
|
| 35 |
Jakiela B, Brockman-Schneider R, Amineva S, Lee W M, Gern J E (2008). Basal cells of differentiated bronchial epithelium are more susceptible to rhinovirus infection. Am J Respir Cell Mol Biol , 38(5): 517–523 doi: 10.1165/rcmb.2007-0050OC pmid:18063839
|
| 36 |
Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K, Tsujimura T, Takeda K, Fujita T, Takeuchi O, Akira S (2005). Cell type-specific involvement of RIG-I in antiviral response. Immunity , 23(1): 19–28 doi: 10.1016/j.immuni.2005.04.010 pmid:16039576
|
| 37 |
Kaul P, Biagioli M C, Singh I, Turner R B (2000). Rhinovirus-induced oxidative stress and interleukin-8 elaboration involves p47-phox but is independent of attachment to intercellular adhesion molecule-1 and viral replication. J Infect Dis , 181(6): 1885–1890 doi: 10.1086/315504 pmid:10837166
|
| 38 |
Kelly J T, Busse W W (2008). Host immune responses to rhinovirus: Mechanisms in asthma. J Allergy Clin Immunol , 122: 671–682 ; quiz 683–674
|
| 39 |
Kennedy J L, Turner R B, Braciale T, Heymann P W, Borish L (2012). Pathogenesis of rhinovirus infection. Curr Opin Virol , 2(3): 287–293 doi: 10.1016/j.coviro.2012.03.008 pmid:22542099
|
| 40 |
Khan A G, Pichler J, Rosemann A, Blaas D (2007). Human rhinovirus type 54 infection via heparan sulfate is less efficient and strictly dependent on low endosomal pH. J Virol , 81(9): 4625–4632 doi: 10.1128/JVI.02160-06 pmid:17301156
|
| 41 |
Kim J, Sanders S P, Siekierski E S, Casolaro V, Proud D (2000). Role of NF-kappa B in cytokine production induced from human airway epithelial cells by rhinovirus infection. J Immunol , 165(6): 3384–3392 pmid:10975857
|
| 42 |
Kim W K, Gern J E (2012). Updates in the relationship between human rhinovirus and asthma. Allergy Asthma Immunol Res , 4(3): 116–121 doi: 10.4168/aair.2012.4.3.116 pmid:22548203
|
| 43 |
Ko F W, Ip M, Chan P K, Ng S S, Chau S S, Hui D S (2008). A one-year prospective study of infectious etiology in patients hospitalized with acute exacerbations of COPD and concomitant pneumonia. Respir Med , 102(8): 1109–1116 doi: 10.1016/j.rmed.2008.03.019 pmid:18573648
|
| 44 |
Laine P, Blomqvist S, Savolainen C, Andries K, Hovi T (2006). Alignment of capsid protein VP1 sequences of all human rhinovirus prototype strains: conserved motifs and functional domains. J Gen Virol , 87(Pt 1): 129–138 doi: 10.1099/vir.0.81137-0 pmid:16361425
|
| 45 |
Levandowski R A, Ou D W, Jackson G G (1986). Acute-phase decrease of T lymphocyte subsets in rhinovirus infection. J Infect Dis , 153(4): 743–748 doi: 10.1093/infdis/153.4.743 pmid:2936833
|
| 46 |
Liebig H D, Ziegler E, Yan R, Hartmuth K, Klump H, Kowalski H, Blaas D, Sommergruber W, Frasel L, Lamphear B, (1993). Purification of two picornaviral 2A proteinases: interaction with eIF-4 gamma and influence on in vitro translation. Biochemistry , 32(29): 7581–7588 doi: 10.1021/bi00080a033 pmid:8338854
|
| 47 |
Lopez-Souza N, Dolganov G, Dubin R, Sachs L A, Sassina L, Sporer H, Yagi S, Schnurr D, Boushey H A, Widdicombe J H (2004). Resistance of differentiated human airway epithelium to infection by rhinovirus. Am J Physiol Lung Cell Mol Physiol , 286(2): L373–L381 doi: 10.1152/ajplung.00300.2003 pmid:14711802
|
| 48 |
Mallia P, Message S D, Gielen V, Contoli M, Gray K, Kebadze T, Aniscenko J, Laza-Stanca V, Edwards M R, Slater L, Papi A, Stanciu L A, Kon O M, Johnson M, Johnston S L (2011). Experimental rhinovirus infection as a human model of chronic obstructive pulmonary disease exacerbation. Am J Respir Crit Care Med , 183(6): 734–742 doi: 10.1164/rccm.201006-0833OC pmid:20889904
|
| 49 |
Mallia P, Message S D, Kebadze T, Parker H L, Kon O M, Johnston S L (2006). An experimental model of rhinovirus induced chronic obstructive pulmonary disease exacerbations: a pilot study. Respir Res , 7(1): 116 doi: 10.1186/1465-9921-7-116 pmid:16956406
|
| 50 |
Marlin S D, Staunton D E, Springer T A, Stratowa C, Sommergruber W, Merluzzi V J (1990). A soluble form of intercellular adhesion molecule-1 inhibits rhinovirus infection. Nature , 344(6261): 70–72 doi: 10.1038/344070a0 pmid:1968231
|
| 51 |
McManus T E, Marley A M, Baxter N, Christie S N, O’Neill H J, Elborn J S, Coyle P V, Kidney J C (2008). Respiratory viral infection in exacerbations of COPD. Respir Med , 102(11): 1575–1580 doi: 10.1016/j.rmed.2008.06.006 pmid:18672353
|
| 52 |
Message S D, Johnston S L (2001). The immunology of virus infection in asthma. Eur Respir J , 18(6): 1013–1025 doi: 10.1183/09031936.01.00228701 pmid:11829084
|
| 53 |
Mukaida N, Okamoto S, Ishikawa Y, Matsushima K (1994). Molecular mechanism of interleukin-8 gene expression. J Leukoc Biol , 56(5): 554–558 pmid:7525815
|
| 54 |
Müller-Jakic B, Breu W, Pr?bstle A, Redl K, Greger H, Bauer R (1994). In vitro inhibition of cyclooxygenase and 5-lipoxygenase by alkamides from Echinacea and Achillea species. Planta Med , 60(1): 37–40 doi: 10.1055/s-2006-959404 pmid:8134414
|
| 55 |
Newcomb D C, Sajjan U, Nanua S, Jia Y, Goldsmith A M, Bentley J K, Hershenson M B (2005). Phosphatidylinositol 3-kinase is required for rhinovirus-induced airway epithelial cell interleukin-8 expression. J Biol Chem , 280(44): 36952–36961 doi: 10.1074/jbc.M502449200 pmid:16120607
|
| 56 |
Niewoehner D E (2002). The role of systemic corticosteroids in acute exacerbation of chronic obstructive pulmonary disease. Am J Respir Med , 1(4): 243–248 doi: 10.1007/BF03256615 pmid:14720044
|
| 57 |
Olson N H, Kolatkar P R, Oliveira M A, Cheng R H, Greve J M, McClelland A, Baker T S, Rossmann M G (1993). Structure of a human rhinovirus complexed with its receptor molecule. Proc Natl Acad Sci USA , 90(2): 507–511 doi: 10.1073/pnas.90.2.507 pmid:8093643
|
| 58 |
Papadopoulos N G, Bates P J, Bardin P G, Papi A, Leir S H, Fraenkel D J, Meyer J, Lackie P M, Sanderson G, Holgate S T, Johnston S L (2000). Rhinoviruses infect the lower airways. J Infect Dis , 181(6): 1875–1884 doi: 10.1086/315513 pmid:10837165
|
| 59 |
Papi A, Bellettato C M, Braccioni F, Romagnoli M, Casolari P, Caramori G, Fabbri L M, Johnston S L (2006). Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med , 173(10): 1114–1121 doi: 10.1164/rccm.200506-859OC pmid:16484677
|
| 60 |
Papi A, Contoli M, Gasparini P, Bristot L, Edwards M R, Chicca M, Leis M, Ciaccia A, Caramori G, Johnston S L, Pinamonti S (2008). Role of xanthine oxidase activation and reduced glutathione depletion in rhinovirus induction of inflammation in respiratory epithelial cells. J Biol Chem , 283(42): 28595–28606 doi: 10.1074/jbc.M805766200 pmid:18678861
|
| 61 |
Papi A, Papadopoulos N G, Stanciu L A, Bellettato C M, Pinamonti S, Degitz K, Holgate S T, Johnston S L (2002). Reducing agents inhibit rhinovirus-induced up-regulation of the rhinovirus receptor intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells. FASEB J , 16(14): 1934–1936 pmid:12368227
|
| 62 |
Pappas D E, Hendley J O, Hayden F G, Winther B (2008). Symptom profile of common colds in school-aged children. Pediatr Infect Dis J , 27(1): 8–11 doi: 10.1097/INF.0b013e31814847d9 pmid:18162930
|
| 63 |
Patick A K, Brothers M A, Maldonado F, Binford S, Maldonado O, Fuhrman S, Petersen A, Smith G J 3rd, Zalman L S, Burns-Naas L A, Tran J Q (2005).In vitro antiviral activity and single-dose pharmacokinetics in humans of a novel, orally bioavailable inhibitor of human rhinovirus 3C protease. Antimicrob Agents Chemother , 49(6): 2267–2275 doi: 10.1128/AAC.49.6.2267-2275.2005 pmid:15917520
|
| 64 |
Potena A, Caramori G, Casolari P, Contoli M, Johnston S L, Papi A (2007). Pathophysiology of viral-induced exacerbations of COPD. Int J Chron Obstruct Pulmon Dis , 2(4): 477–483 pmid:18268922
|
| 65 |
Prchla E, Plank C, Wagner E, Blaas D, Fuchs R (1995). Virus-mediated release of endosomal content in vitro: different behavior of adenovirus and rhinovirus serotype 2. J Cell Biol , 131(1): 111–123 doi: 10.1083/jcb.131.1.111 pmid:7559769
|
| 66 |
Rabin R L, Park M K, Liao F, Swofford R, Stephany D, Farber J M (1999). Chemokine receptor responses on T cells are achieved through regulation of both receptor expression and signaling. J Immunol , 162(7): 3840–3850 pmid:10201901
|
| 67 |
Retamales I, Elliott W M, Meshi B, Coxson H O, Pare P D, Sciurba F C, Rogers R M, Hayashi S, Hogg J C (2001). Amplification of inflammation in emphysema and its association with latent adenoviral infection. Am J Respir Crit Care Med , 164(3): 469–473 pmid:11500352
|
| 68 |
Rollinger J M, Schmidtke M (2011). The human rhinovirus: human-pathological impact, mechanisms of antirhinoviral agents, and strategies for their discovery. Med Res Rev , 31(1): 42–92 doi: 10.1002/med.20176 pmid:19714577
|
| 69 |
Sajjan U S, Jia Y, Newcomb D C, Bentley J K, Lukacs N W, LiPuma J J, Hershenson M B (2006). H. influenzae potentiates airway epithelial cell responses to rhinovirus by increasing ICAM-1 and TLR3 expression. FASEB J , 20(12): 2121–2123 doi: 10.1096/fj.06-5806fje pmid:16914605
|
| 70 |
Sasazuki S, Sasaki S, Tsubono Y, Okubo S, Hayashi M, Tsugane S (2006). Effect of vitamin C on common cold: randomized controlled trial. Eur J Clin Nutr , 60(1): 9–17 doi: 10.1038/sj.ejcn.1602261 pmid:16118650
|
| 71 |
Savolainen-Kopra C, Korpela T, Simonen-Tikka M L, Amiryousefi A, Ziegler T, Roivainen M, Hovi T (2012). Single treatment with ethanol hand rub is ineffective against human rhinovirus—hand washing with soap and water removes the virus efficiently. J Med Virol , 84(3): 543–547 doi: 10.1002/jmv.23222 pmid:22246844
|
| 72 |
Schneider W J, Nimpf J (2003). LDL receptor relatives at the crossroad of endocytosis and signaling. Cell Mol Life Sci , 60(5): 892–903 doi: 10.1007/s00018-003-2183-Z pmid:12827279
|
| 73 |
Science M, Johnstone J, Roth D E, Guyatt G, Loeb M (2012). Zinc for the treatment of the common cold: a systematic review and meta-analysis of randomized controlled trials. CMAJ , 184(10): E551–E561 doi: 10.1503/cmaj.111990 pmid:22566526
|
| 74 |
Skern T, Torgersen H, Auer H, Kuechler E, Blaas D (1991). Human rhinovirus mutants resistant to low pH. Virology , 183(2): 757–763 doi: 10.1016/0042-6822(91)91006-3 pmid:1649506
|
| 75 |
Slater L, Bartlett N W, Haas J J, Zhu J, Message S D, Walton R P, Sykes A, Dahdaleh S, Clarke D L, Belvisi M G, Kon O M, Fujita T, Jeffery P K, Johnston S L, Edwards M R (2010). Co-ordinated role of TLR3, RIG-I and MDA5 in the innate response to rhinovirus in bronchial epithelium. PLoS Pathog , 6(11): e1001178 doi: 10.1371/journal.ppat.1001178 pmid:21079690
|
| 76 |
Snyers L, Zwickl H, Blaas D (2003). Human rhinovirus type 2 is internalized by clathrin-mediated endocytosis. J Virol , 77(9): 5360–5369 doi: 10.1128/JVI.77.9.5360-5369.2003 pmid:12692238
|
| 77 |
Sommergruber W, Ahorn H, Klump H, Seipelt J, Zoephel A, Fessl F, Krystek E, Blaas D, Kuechler E, Liebig H D, Skern T (1994). 2A proteinases of coxsackie- and rhinovirus cleave peptides derived from eIF-4 gamma via a common recognition motif. Virology , 198(2): 741–745 doi: 10.1006/viro.1994.1089 pmid:8291255
|
| 78 |
Strickland D K, Gonias S L, Argraves W S (2002). Diverse roles for the LDL receptor family. Trends Endocrinol Metab , 13(2): 66–74 doi: 10.1016/S1043-2760(01)00526-4 pmid:11854021
|
| 79 |
Sullivan S D, Ramsey S D, Lee T A (2000). The economic burden of COPD. Chest , 117(2 Suppl): 5S–9S doi: 10.1378/chest.117.2_suppl.5S pmid:10673466
|
| 80 |
Triantafilou K, Vakakis E, Richer E A, Evans G L, Villiers J P, Triantafilou M (2011). Human rhinovirus recognition in non-immune cells is mediated by Toll-like receptors and MDA-5, which trigger a synergetic pro-inflammatory immune response. Virulence , 2(1): 22–29 doi: 10.4161/viru.2.1.13807 pmid:21224721
|
| 81 |
Turner R B (2001). The treatment of rhinovirus infections: progress and potential. Antiviral Res , 49(1): 1–14 doi: 10.1016/S0166-3542(00)00135-2 pmid:11166856
|
| 82 |
Turner R B, Hendley J O (2005). Virucidal hand treatments for prevention of rhinovirus infection. J Antimicrob Chemother , 56(5): 805–807 doi: 10.1093/jac/dki329 pmid:16159927
|
| 83 |
Turner R B, Hendley J O, Gwaltney J M Jr (1982). Shedding of infected ciliated epithelial cells in rhinovirus colds. J Infect Dis , 145(6): 849–853 doi: 10.1093/infdis/145.6.849 pmid:6282984
|
| 84 |
Turner R B, Wecker M T, Pohl G, Witek T J, McNally E, St George R, Winther B, Hayden F G (1999). Efficacy of tremacamra, a soluble intercellular adhesion molecule 1, for experimental rhinovirus infection: a randomized clinical trial. JAMA , 281(19): 1797–1804 doi: 10.1001/jama.281.19.1797 pmid:10340366
|
| 85 |
Turner R B, Weingand K W, Yeh C H, Leedy D W (1998). Association between interleukin-8 concentration in nasal secretions and severity of symptoms of experimental rhinovirus colds. Clin Infect Dis , 26(4): 840–846 doi: 10.1086/513922 pmid:9564459
|
| 86 |
Tyrrell D A, Cohen S, Schlarb J E (1993). Signs and symptoms in common colds. Epidemiol Infect , 111(1): 143–156 doi: 10.1017/S0950268800056764 pmid:8394240
|
| 87 |
Uncapher C R, DeWitt C M, Colonno R J (1991). The major and minor group receptor families contain all but one human rhinovirus serotype. Virology , 180(2): 814–817 doi: 10.1016/0042-6822(91)90098-V pmid:1846502
|
| 88 |
Vlasak M, Roivainen M, Reithmayer M, Goesler I, Laine P, Snyers L, Hovi T, Blaas D (2005). The minor receptor group of human rhinovirus (HRV) includes HRV23 and HRV25, but the presence of a lysine in the VP1 HI loop is not sufficient for receptor binding. J Virol , 79(12): 7389–7395 doi: 10.1128/JVI.79.12.7389-7395.2005 pmid:15919894
|
| 89 |
Wang Q, Nagarkar D R, Bowman E R, Schneider D, Gosangi B, Lei J, Zhao Y, McHenry C L, Burgens R V, Miller D J, Sajjan U, Hershenson M B (2009). Role of double-stranded RNA pattern recognition receptors in rhinovirus-induced airway epithelial cell responses. J Immunol , 183(11): 6989–6997 doi: 10.4049/jimmunol.0901386 pmid:19890046
|
| 90 |
Wat D, Gelder C, Hibbitts S, Cafferty F, Bowler I, Pierrepoint M, Evans R, Doull I (2008). The role of respiratory viruses in cystic fibrosis. J Cyst Fibros , 7(4): 320–328 doi: 10.1016/j.jcf.2007.12.002 pmid:18255355
|
| 91 |
Wilkinson T M, Hurst J R, Perera W R, Wilks M, Donaldson G C, Wedzicha J A (2006). Effect of interactions between lower airway bacterial and rhinoviral infection in exacerbations of COPD. Chest , 129(2): 317–324 doi: 10.1378/chest.129.2.317 pmid:16478847
|
| 92 |
Winther B, Arruda E, Witek T J, Marlin S D, Tsianco M M, Innes D J, Hayden F G (2002). Expression of ICAM-1 in nasal epithelium and levels of soluble ICAM-1 in nasal lavage fluid during human experimental rhinovirus infection. Arch Otolaryngol Head Neck Surg , 128(2): 131–136 pmid:11843719
|
| 93 |
Winther B, Greve J M, Gwaltney J M Jr, Innes D J, Eastham J R, McClelland A, Hendley J O (1997). Surface expression of intercellular adhesion molecule 1 on epithelial cells in the human adenoid. J Infect Dis , 176(2): 523–525 doi: 10.1086/517280 pmid:9237723
|
| 94 |
Winther B, McCue K, Ashe K, Rubino J R, Hendley J O (2007). Environmental contamination with rhinovirus and transfer to fingers of healthy individuals by daily life activity. J Med Virol , 79(10): 1606–1610 doi: 10.1002/jmv.20956 pmid:17705174
|
| 95 |
Xing L, Casasnovas J M, Cheng R H (2003). Structural analysis of human rhinovirus complexed with ICAM-1 reveals the dynamics of receptor-mediated virus uncoating. J Virol , 77(11): 6101–6107 doi: 10.1128/JVI.77.11.6101-6107.2003 pmid:12743267
|
| 96 |
Xing L, Tjarnlund K, Lindqvist B, Kaplan G G, Feigelstock D, Cheng R H, Casasnovas J M (2000). Distinct cellular receptor interactions in poliovirus and rhinoviruses. EMBO J , 19(6): 1207–1216 doi: 10.1093/emboj/19.6.1207 pmid:10716921
|
| 97 |
Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, Foy E, Loo Y M, Gale M Jr, Akira S, Yonehara S, Kato A, Fujita T (2005). Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol , 175(5): 2851–2858 pmid:16116171
|
| 98 |
Zalman L S, Brothers M A, Dragovich P S, Zhou R, Prins T J, Worland S T, Patick A K (2000). Inhibition of human rhinovirus-induced cytokine production by AG7088, a human rhinovirus 3C protease inhibitor. Antimicrob Agents Chemother , 44(5): 1236–1241 doi: 10.1128/AAC.44.5.1236-1241.2000 pmid:10770757
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|