Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (4) : 444-450    https://doi.org/10.1007/s11515-013-1266-y
RESEARCH ARTICLE
Comparative study of the cytotoxicity of the nanosized and microsized tellurium powders on HeLa cells
Huanan WEN1, Jiaxin ZHONG1, Bei SHEN1, Tao GAN1, Chao FU1, Zhihong ZHU2, Rui LI1(), Xu YANG1()
1. Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, China; 2. Institute of Nanotechnology, College of Physic and Technology, Central China Normal University, Wuhan 430079, China
 Download: PDF(359 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To compare the cytotoxicity on HeLa cells induced by nanosized and microsized tellurium powders, HeLa cells were exposed to different concentrations of tellurium powders (0, 50, 100, 150 and 200 μg/mL) for 12 h. In this study, detection of a series of biomarkers, including reactive oxygen species (ROS), glutathione (GSH), 8-hydroxy-2'-deoxyguanosine (8-OHdG), in addition to DNA and protein crosslink (DPC) and MTT assay, were conducted to evaluate the cytotoxicity. It is indicated that compared with the control group, there was no significant difference in the induced cytotoxicity at concentrations lower than 50 μg/mL for both nanosized and microsized tellurium powders. While there appears a significant difference in the induced cytotoxicity for nanosized tellurium powders when the concentration is higher than 100 μg/mL as well as for microsized tellurium powders when the concentration is higher than 200 μg/mL. Moreover, it is found that the cytotoxicity induced on HeLa cells exhibits a certain dose-effect relationship with the concentration of tellurium powders. A conclusion has been reached that the toxicity on HeLa cells can be induced by both nanosized and microsized tellurium powders, and the toxicity of the nanosized tellurium powders is significantly greater than the microsized one.

Keywords nanosized and microsized tellurium powder      HeLa cells      oxidative damage      reactive oxygen species (ROS)      glutathione (GSH)      DNA and protein crosslink (DPC)      8-hydroxy-2'-deoxyguanosine (8-OHdG)     
Corresponding Author(s): LI Rui,Email:ruili@mail.ccnu.edu.cn; YANG Xu,Email:yangxu@mail.ccnu.edu.cn   
Issue Date: 01 August 2013
 Cite this article:   
Huanan WEN,Jiaxin ZHONG,Bei SHEN, et al. Comparative study of the cytotoxicity of the nanosized and microsized tellurium powders on HeLa cells[J]. Front Biol, 2013, 8(4): 444-450.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-013-1266-y
https://academic.hep.com.cn/fib/EN/Y2013/V8/I4/444
Fig.1  Morphology of the tested materials (SEM). (A) Nanosized tellurium powders; (B) Microsized tellurium powders
Fig.2  DCF-fluorescence intensity induced by different concentrations of nanosized and microsized tellurium powders; Results are represent the mean±SD ( = 9). (*: <0.05 and **: <0.01, compared with the control group; #: <0.05 and ##: <0.01, compared with microsized tellurium treated groups)
Fig.3  GSH contents induced by different concentrations of nanosized and microsized Tellurium powders; Results are represent the mean±SD ( = 9). (*: <0.05 and **: <0.01, compared with the control group; #: <0.05 and ##: <0.01, compared with microsized tellurium treated groups)
Fig.4  8-OHdG contents induced by different concentrations of nanosized and microsized tellurium powders; Results are represent the mean±SD ( = 9). (*: <0.05 and **: <0.01, compared with the control group; #: <0.05 and ##: <0.01, compared with microsized tellurium treated groups)
Fig.5  DPC coefficients induced by different concentrations of nanosized and microsized tellurium powders; Results are represent the mean±SD ( = 9). (*: <0.05 and **: <0.01, compared with the control group; #: <0.05 and ##: <0.01, compared with microsized tellurium treated groups)
Fig.6  Effects of tellurium on the cell viability of HeLa cells. Cell viability was determined by the MTT assay; Results are represent the mean±SD ( = 9). (*: <0.05 and **: <0.01, compared with the control group; #: <0.05 and ##: <0.01, compared with microsized tellurium treated groups)
1 Ariki K, Tanaki T (1972). Piezoelectric and elastic properties of single crystalline Se-Te alloys. Jpn J Appl Phys , 11(4): 472–479
doi: 10.1143/JJAP.11.472
2 Au W W, Oberheitmann V, Harm C (2009). Assessing DNA damage and health risk using biomarkers. Mutat Res , 509(1): 153–163
3 Chen K, Thomas S R, Keaney J F Jr (2003). Beyond LDL oxidation: ROS in vascular signal transduction. Free Radic Biol Med , 35(2): 117–132
doi: 10.1016/S0891-5849(03)00239-9 pmid:12853068
4 Das D K, Maulik N, Sato M, Ray P S (1999). Reactive oxygen species function as second messenger during ischemic preconditioning of heart. Mol Cell Biochem , 196(1-2): 59–67
doi: 10.1023/A:1006966128795 pmid:10448903
5 Das M, Babu K, Reddy N P, Srivastava L M (2005). Oxidative damage of plasma proteins and lipids in epidemic dropsy patients: alterations in antioxidant status. Biochim Biophys Acta , 1722(2): 209–217
doi: 10.1016/j.bbagen.2004.12.014 pmid:15715957
6 Duckett S (1982). The distribution and localization of 127m tellurium in normal and pathological nervous tissues of young and adult rats. Neurotoxicology , 3(3): 63–73
pmid:6891760
7 Ga?azyn-Sidorczuk M, Brzóska M M, Jurczuk M, Moniuszko-Jakoniuk J (2009). Oxidative damage to proteins and DNA in rats exposed to cadmium and/or ethanol. Chem Biol Interact , 180(1): 31–38
doi: 10.1016/j.cbi.2009.01.014 pmid:19428343
8 Kagan V E, Tyurina Y Y, Tyurin V A, Konduru N V, Potapovich A I, Osipov A N, Kisin E R, Schwegler-Berry D, Mercer R, Castranova V, Shvedova A A (2006). Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett , 165(1): 88–100
doi: 10.1016/j.toxlet.2006.02.001 pmid:16527436
9 Kudryavstev A A (1974). The Chemistry and Technology of selenium and tellurium. London: Collet’s Ltd.
10 Kumar C S S R (2006). Nanomaterials-Toxicity, Health and Environment Issues. Nanotechnologies for the Life Science, 5
11 Li Y, Liu D, Ai H H, Chang Q, Liu D, Xia Y, Liu S, Peng N, Xi Z, Yang X (2010b). Biological evaluation of layered double hydroxides as efficient drug vehicles. Nanotechnology , 21(10): 105101
doi: 10.1088/0957-4484/21/10/105101 pmid:20154371
12 Li Y, Tian X K, Lu Z S, Yang C, Yang G, Zhou X, Yao H, Zhu Z, Xi Z, Yang X (2010a). Mechanism for α-MnO2 nanowire-induced cytotoxicity in Hela cells. J Nanosci Nanotechnol , 10(1): 397–404
doi: 10.1166/jnn.2010.1719 pmid:20352869
13 Liu H M, Liu S X, Huang K X (2008). Low-temperature chemical route to bismuth-doped tellurium sing-crystalline nanorods. Mater Lett , 62(12): 1983–1985
doi: 10.1016/j.matlet.2007.10.058
14 Liu X Y, Mo M S, Chen X Y, Qian Y (2004). A ratioal redox route for the synthesis of tellurium nanotubes. Inorg Chem Commun , 7(2): 257–259
doi: 10.1016/j.inoche.2003.11.014
15 Ma P, Luo Q, Chen J Y, Gan Y, Du J, Ding S, Xi Z, Yang X (2012). Intraperitoneal injection of magnetic Fe?O?-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice. Int J Nanomedicine , 7: 4809–4818
pmid:22973100
16 Nel A, Xia T, M?dler L, Li N (2006). Toxic potential of materials at the nanolevel. Science , 311(5761): 622–627
doi: 10.1126/science.1114397 pmid:16456071
17 Petragnani N, Mendes S R, Silvira C C (2008). Tellurium tetrachloride: an improved method of preperation. Tetrahedron Lett , 49(15): 2371–2372
doi: 10.1016/j.tetlet.2008.02.085
18 Petragnani N, Stefani H A (2005). Advances in organic tellurium chemistry. Tetradron , 61(7): 1613–1679
doi: 10.1016/j.tet.2004.11.076
19 Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss D G, Schiffmann D (2002). Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Perspect , 110(8): 797–800
doi: 10.1289/ehp.02110797 pmid:12153761
20 Rejman J, Oberle V, Zuhorn I S, Hoekstra D (2004). Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J , 377(Pt 1): 159–169
doi: 10.1042/BJ20031253 pmid:14505488
21 Rheem Y, Chang C H, Hangarter C M, Park D Y, Lee K H, Jeong Y S, Myung N V (2010). Synthesis of tellurium nanotubes by galvanic displacement. Electrochim Acta , 55(7): 2472–2476
doi: 10.1016/j.electacta.2009.12.002
22 Roy S, Hardej D (2011). Tellurium tetrachloride and diphenyl ditelluride cause cytotoxicity in rat hippocampal astrocytes. Food Chem Toxicol , 49(10): 2564–2574
doi: 10.1016/j.fct.2011.06.072 pmid:21742007
23 She G W, Shi W S, Zhang X, Wong T, Cai Y, Wang N (2009). Template-free electrodepasition of one-dimensional nanostructures of tellurium. Cryst Growth Des , 9(2): 663–666
doi: 10.1021/cg800948w
24 Sredni B (2012). Immunomodulating tellurium compounds as anti-cancer agents. Semin Cancer Biol , 22(1): 60–69
doi: 10.1016/j.semcancer.2011.12.003 pmid:22202556
25 Tsiulyanu D, Marian T, Tiuleanu A, Liess H D, Eisele I (2009). Effect of aging and temperature on alternating current conductivity of Tellurium thin films. Thin Solid Films , 517(8): 2820–2823
doi: 10.1016/j.tsf.2008.11.073
26 Tsiuyanu D, Tsiulyanu A, Liess H D, Eisele I (2005). Characterization of tellurium-based films for NO2 detection. Thin Solid Films , 485(1): 252–256
doi: 10.1016/j.tsf.2005.03.045
27 Valdivia-González M, Pérez-Donoso J M, Vásquez C C (2012). Effect of tellurite-mediated oxidative stress on the Escherichia coli glycolytic pathway. Biometals , 25(2): 451–458
doi: 10.1007/s10534-012-9518-x pmid:22234496
28 Vij P, Hardej D (2012). Evaluation of tellurium toxicity in transformed and non-transformed human colon cells. Environ Toxicol Pharmacol , 34(3): 768–782
doi: 10.1016/j.etap.2012.09.009 pmid:23068156
29 Wang X, Liu J Z, Hu J X, Wu H, Li Y L, Chen H L, Bai H, Hai C X (2011). ROS-activated p38 MAPK/ERK-Akt cascade plays a central role in palmitic acid-stimulated hepatocyte proliferation. Free Radic Biol Med , 51(2): 539–551
doi: 10.1016/j.freeradbiomed.2011.04.019 pmid:21620957
30 Widy-Tyszkiewicz E, Piechal A, Gajkowska B, Smia?ek M (2002). Tellurium-induced cognitive deficits in rats are related to neuropathological changes in the central nervous system. Toxicol Lett , 131(3): 203–214
doi: 10.1016/S0378-4274(02)00050-4 pmid:11992740
31 Wu L L, Chiou C C, Chang P Y, Wu J T (2004). Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta , 339(1-2): 1–9
doi: 10.1016/j.cccn.2003.09.010 pmid:14687888
32 Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh J I, Wiesner M R, Nel A E (2006). Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett , 6(8): 1794–1807
doi: 10.1021/nl061025k pmid:16895376
33 Yang L, Lin H Y, Zhang Z S, Cheng L, Ye S, Shao M (2013). Gas sensing of tellurium-modified silicon nanowires to ammonia and propylamine. Sens Actuators B Chem , 177(2): 260–264
doi: 10.1016/j.snb.2012.10.136
34 Zhang H, Wheeler K T (1993). Radiation-induced DNA damage in tumors and normal tissues. I. Feasibility of estimating the hypoxic fraction. Radiat Res , 136(1): 77–88
doi: 10.2307/3578643 pmid:8210342
[1] Shuai SHANG,Shang-Yue YANG,Zhi-Min LIU,Xu YANG. Oxidative damage in the kidney and brain of mice induced by different nano-materials[J]. Front. Biol., 2015, 10(1): 91-96.
[2] Yongli WANG, Nian QIN, Shan CHEN, Jingyun ZHAO, Xu YANG. Oxidative-damage effect of Fe3O4 nanoparticles on mouse hepatic and brain cells in vivo[J]. Front Biol, 2013, 8(5): 549-555.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed