|
|
|
Comparative study of the cytotoxicity of the nanosized and microsized tellurium powders on HeLa cells |
Huanan WEN1, Jiaxin ZHONG1, Bei SHEN1, Tao GAN1, Chao FU1, Zhihong ZHU2, Rui LI1( ), Xu YANG1( ) |
| 1. Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, China; 2. Institute of Nanotechnology, College of Physic and Technology, Central China Normal University, Wuhan 430079, China |
|
|
|
|
Abstract To compare the cytotoxicity on HeLa cells induced by nanosized and microsized tellurium powders, HeLa cells were exposed to different concentrations of tellurium powders (0, 50, 100, 150 and 200 μg/mL) for 12 h. In this study, detection of a series of biomarkers, including reactive oxygen species (ROS), glutathione (GSH), 8-hydroxy-2'-deoxyguanosine (8-OHdG), in addition to DNA and protein crosslink (DPC) and MTT assay, were conducted to evaluate the cytotoxicity. It is indicated that compared with the control group, there was no significant difference in the induced cytotoxicity at concentrations lower than 50 μg/mL for both nanosized and microsized tellurium powders. While there appears a significant difference in the induced cytotoxicity for nanosized tellurium powders when the concentration is higher than 100 μg/mL as well as for microsized tellurium powders when the concentration is higher than 200 μg/mL. Moreover, it is found that the cytotoxicity induced on HeLa cells exhibits a certain dose-effect relationship with the concentration of tellurium powders. A conclusion has been reached that the toxicity on HeLa cells can be induced by both nanosized and microsized tellurium powders, and the toxicity of the nanosized tellurium powders is significantly greater than the microsized one.
|
| Keywords
nanosized and microsized tellurium powder
HeLa cells
oxidative damage
reactive oxygen species (ROS)
glutathione (GSH)
DNA and protein crosslink (DPC)
8-hydroxy-2'-deoxyguanosine (8-OHdG)
|
|
Corresponding Author(s):
LI Rui,Email:ruili@mail.ccnu.edu.cn; YANG Xu,Email:yangxu@mail.ccnu.edu.cn
|
|
Issue Date: 01 August 2013
|
|
| 1 |
Ariki K, Tanaki T (1972). Piezoelectric and elastic properties of single crystalline Se-Te alloys. Jpn J Appl Phys , 11(4): 472–479 doi: 10.1143/JJAP.11.472
|
| 2 |
Au W W, Oberheitmann V, Harm C (2009). Assessing DNA damage and health risk using biomarkers. Mutat Res , 509(1): 153–163
|
| 3 |
Chen K, Thomas S R, Keaney J F Jr (2003). Beyond LDL oxidation: ROS in vascular signal transduction. Free Radic Biol Med , 35(2): 117–132 doi: 10.1016/S0891-5849(03)00239-9 pmid:12853068
|
| 4 |
Das D K, Maulik N, Sato M, Ray P S (1999). Reactive oxygen species function as second messenger during ischemic preconditioning of heart. Mol Cell Biochem , 196(1-2): 59–67 doi: 10.1023/A:1006966128795 pmid:10448903
|
| 5 |
Das M, Babu K, Reddy N P, Srivastava L M (2005). Oxidative damage of plasma proteins and lipids in epidemic dropsy patients: alterations in antioxidant status. Biochim Biophys Acta , 1722(2): 209–217 doi: 10.1016/j.bbagen.2004.12.014 pmid:15715957
|
| 6 |
Duckett S (1982). The distribution and localization of 127m tellurium in normal and pathological nervous tissues of young and adult rats. Neurotoxicology , 3(3): 63–73 pmid:6891760
|
| 7 |
Ga?azyn-Sidorczuk M, Brzóska M M, Jurczuk M, Moniuszko-Jakoniuk J (2009). Oxidative damage to proteins and DNA in rats exposed to cadmium and/or ethanol. Chem Biol Interact , 180(1): 31–38 doi: 10.1016/j.cbi.2009.01.014 pmid:19428343
|
| 8 |
Kagan V E, Tyurina Y Y, Tyurin V A, Konduru N V, Potapovich A I, Osipov A N, Kisin E R, Schwegler-Berry D, Mercer R, Castranova V, Shvedova A A (2006). Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett , 165(1): 88–100 doi: 10.1016/j.toxlet.2006.02.001 pmid:16527436
|
| 9 |
Kudryavstev A A (1974). The Chemistry and Technology of selenium and tellurium. London: Collet’s Ltd.
|
| 10 |
Kumar C S S R (2006). Nanomaterials-Toxicity, Health and Environment Issues. Nanotechnologies for the Life Science, 5
|
| 11 |
Li Y, Liu D, Ai H H, Chang Q, Liu D, Xia Y, Liu S, Peng N, Xi Z, Yang X (2010b). Biological evaluation of layered double hydroxides as efficient drug vehicles. Nanotechnology , 21(10): 105101 doi: 10.1088/0957-4484/21/10/105101 pmid:20154371
|
| 12 |
Li Y, Tian X K, Lu Z S, Yang C, Yang G, Zhou X, Yao H, Zhu Z, Xi Z, Yang X (2010a). Mechanism for α-MnO2 nanowire-induced cytotoxicity in Hela cells. J Nanosci Nanotechnol , 10(1): 397–404 doi: 10.1166/jnn.2010.1719 pmid:20352869
|
| 13 |
Liu H M, Liu S X, Huang K X (2008). Low-temperature chemical route to bismuth-doped tellurium sing-crystalline nanorods. Mater Lett , 62(12): 1983–1985 doi: 10.1016/j.matlet.2007.10.058
|
| 14 |
Liu X Y, Mo M S, Chen X Y, Qian Y (2004). A ratioal redox route for the synthesis of tellurium nanotubes. Inorg Chem Commun , 7(2): 257–259 doi: 10.1016/j.inoche.2003.11.014
|
| 15 |
Ma P, Luo Q, Chen J Y, Gan Y, Du J, Ding S, Xi Z, Yang X (2012). Intraperitoneal injection of magnetic Fe?O?-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice. Int J Nanomedicine , 7: 4809–4818 pmid:22973100
|
| 16 |
Nel A, Xia T, M?dler L, Li N (2006). Toxic potential of materials at the nanolevel. Science , 311(5761): 622–627 doi: 10.1126/science.1114397 pmid:16456071
|
| 17 |
Petragnani N, Mendes S R, Silvira C C (2008). Tellurium tetrachloride: an improved method of preperation. Tetrahedron Lett , 49(15): 2371–2372 doi: 10.1016/j.tetlet.2008.02.085
|
| 18 |
Petragnani N, Stefani H A (2005). Advances in organic tellurium chemistry. Tetradron , 61(7): 1613–1679 doi: 10.1016/j.tet.2004.11.076
|
| 19 |
Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss D G, Schiffmann D (2002). Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Perspect , 110(8): 797–800 doi: 10.1289/ehp.02110797 pmid:12153761
|
| 20 |
Rejman J, Oberle V, Zuhorn I S, Hoekstra D (2004). Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J , 377(Pt 1): 159–169 doi: 10.1042/BJ20031253 pmid:14505488
|
| 21 |
Rheem Y, Chang C H, Hangarter C M, Park D Y, Lee K H, Jeong Y S, Myung N V (2010). Synthesis of tellurium nanotubes by galvanic displacement. Electrochim Acta , 55(7): 2472–2476 doi: 10.1016/j.electacta.2009.12.002
|
| 22 |
Roy S, Hardej D (2011). Tellurium tetrachloride and diphenyl ditelluride cause cytotoxicity in rat hippocampal astrocytes. Food Chem Toxicol , 49(10): 2564–2574 doi: 10.1016/j.fct.2011.06.072 pmid:21742007
|
| 23 |
She G W, Shi W S, Zhang X, Wong T, Cai Y, Wang N (2009). Template-free electrodepasition of one-dimensional nanostructures of tellurium. Cryst Growth Des , 9(2): 663–666 doi: 10.1021/cg800948w
|
| 24 |
Sredni B (2012). Immunomodulating tellurium compounds as anti-cancer agents. Semin Cancer Biol , 22(1): 60–69 doi: 10.1016/j.semcancer.2011.12.003 pmid:22202556
|
| 25 |
Tsiulyanu D, Marian T, Tiuleanu A, Liess H D, Eisele I (2009). Effect of aging and temperature on alternating current conductivity of Tellurium thin films. Thin Solid Films , 517(8): 2820–2823 doi: 10.1016/j.tsf.2008.11.073
|
| 26 |
Tsiuyanu D, Tsiulyanu A, Liess H D, Eisele I (2005). Characterization of tellurium-based films for NO2 detection. Thin Solid Films , 485(1): 252–256 doi: 10.1016/j.tsf.2005.03.045
|
| 27 |
Valdivia-González M, Pérez-Donoso J M, Vásquez C C (2012). Effect of tellurite-mediated oxidative stress on the Escherichia coli glycolytic pathway. Biometals , 25(2): 451–458 doi: 10.1007/s10534-012-9518-x pmid:22234496
|
| 28 |
Vij P, Hardej D (2012). Evaluation of tellurium toxicity in transformed and non-transformed human colon cells. Environ Toxicol Pharmacol , 34(3): 768–782 doi: 10.1016/j.etap.2012.09.009 pmid:23068156
|
| 29 |
Wang X, Liu J Z, Hu J X, Wu H, Li Y L, Chen H L, Bai H, Hai C X (2011). ROS-activated p38 MAPK/ERK-Akt cascade plays a central role in palmitic acid-stimulated hepatocyte proliferation. Free Radic Biol Med , 51(2): 539–551 doi: 10.1016/j.freeradbiomed.2011.04.019 pmid:21620957
|
| 30 |
Widy-Tyszkiewicz E, Piechal A, Gajkowska B, Smia?ek M (2002). Tellurium-induced cognitive deficits in rats are related to neuropathological changes in the central nervous system. Toxicol Lett , 131(3): 203–214 doi: 10.1016/S0378-4274(02)00050-4 pmid:11992740
|
| 31 |
Wu L L, Chiou C C, Chang P Y, Wu J T (2004). Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta , 339(1-2): 1–9 doi: 10.1016/j.cccn.2003.09.010 pmid:14687888
|
| 32 |
Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh J I, Wiesner M R, Nel A E (2006). Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett , 6(8): 1794–1807 doi: 10.1021/nl061025k pmid:16895376
|
| 33 |
Yang L, Lin H Y, Zhang Z S, Cheng L, Ye S, Shao M (2013). Gas sensing of tellurium-modified silicon nanowires to ammonia and propylamine. Sens Actuators B Chem , 177(2): 260–264 doi: 10.1016/j.snb.2012.10.136
|
| 34 |
Zhang H, Wheeler K T (1993). Radiation-induced DNA damage in tumors and normal tissues. I. Feasibility of estimating the hypoxic fraction. Radiat Res , 136(1): 77–88 doi: 10.2307/3578643 pmid:8210342
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|