|
|
The anatomy, function, and development of mammalian Aβ low-threshold mechanoreceptors |
Michael S. FLEMING, Wenqin LUO( ) |
Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19014, USA |
|
|
Abstract Touch sensation is critical for our social and environmental interactions. In mammals, most discriminative light touch sensation is mediated by the Aβ low-threshold mechanoreceptors. Cell bodies of Aβ low-threshold mechanoreceptors are located in the dorsal root ganglia and trigeminal ganglia, which extend a central projection innervating the spinal cord and brain stem and a peripheral projection innervating the specialized mechanosensory end organs. These specialized mechanosensory end organs include Meissner’s corpuscles, Pacinian corpuscles, lanceolate endings, Merkel cells, and Ruffini corpuscles. The morphologies and physiological properties of these mechanosensory end organs and their innervating neurons have been investigated for over a century. In addition, recent advances in mouse genetics have enabled the identification of molecular mechanisms underlying the development of Aβ low-threshold mechanoreceptors, which highlight the crucial roles of neurotrophic factor signaling and transcription factor activity in this process. Here, we will review the anatomy, physiological properties, and development of mammalian low-threshold Aβ mechanoreceptors.
|
Keywords
mechanoreceptor
Meissner’s corpuscle
Pacinian corpuscle
lanceolate ending
Merkel cell
Ruffini corpuscle
dorsal root ganglion
|
Corresponding Author(s):
LUO Wenqin,Email:luow@mail.med.upenn.edu
|
Issue Date: 01 August 2013
|
|
1 |
Abdo H, Li L, Lallemend F, Bachy I, Xu X J, Rice F L, Ernfors P (2011). Dependence on the transcription factor Shox2 for specification of sensory neurons conveying discriminative touch. Eur J Neurosci , 34(10): 1529–1541 doi: 10.1111/j.1460-9568.2011.07883.x pmid:22103411
|
2 |
Airaksinen M S, Koltzenburg M, Lewin G R, Masu Y, Helbig C, Wolf E, Brem G, Toyka K V, Thoenen H, Meyer M (1996). Specific subtypes of cutaneous mechanoreceptors require neurotrophin-3 following peripheral target innervation. Neuron , 16(2): 287–295 doi: 10.1016/S0896-6273(00)80047-1 pmid:8789944
|
3 |
Albrecht F L R P J (2008). Cutaneous Mechanisms of Tactile Perception: Morphological and Chemical Organization of the Innervation to the Skin. The Senses: A Comprehensive Reference . San Diego, Academic Press. 6: 1-32.
|
4 |
Bell J, Bolanowski S, Holmes M H (1994). The structure and function of Pacinian corpuscles: a review. Prog Neurobiol , 42(1): 79–128 doi: 10.1016/0301-0082(94)90022-1 pmid:7480788
|
5 |
Bentivoglio M, Pacini P (1995). Filippo Pacini: a determined observer. Brain Res Bull , 38(2): 161–165 doi: 10.1016/0361-9230(95)00083-Q pmid:7583342
|
6 |
Biemesderfer D, Munger B L, Binck J, Dubner R (1978). The pilo-Ruffini complex: a non-sinus hair and associated slowly-adapting mechanoreceptor in primate facial skin. Brain Res , 142(2): 197–222 doi: 10.1016/0006-8993(78)90631-5 pmid:415796
|
7 |
Boulais N, Misery L (2007). Merkel cells. J Am Acad Dermatol , 57(1): 147–165 doi: 10.1016/j.jaad.2007.02.009 pmid:17412453
|
8 |
Bourane S, Garces A, Venteo S, Pattyn A, Hubert T, Fichard A, Puech S, Boukhaddaoui H, Baudet C, Takahashi S, Valmier J, Carroll P (2009). Low-threshold mechanoreceptor subtypes selectively express MafA and are specified by Ret signaling. Neuron , 64(6): 857–870 doi: 10.1016/j.neuron.2009.12.004 pmid:20064392
|
9 |
Brisben A J, Hsiao S S, Johnson K O (1999). Detection of vibration transmitted through an object grasped in the hand. J Neurophysiol , 81(4): 1548–1558 pmid:10200190
|
10 |
Brown A G (1981). Organization in the spinal cord: the anatomy and physiology of identified neurones. Berlin; New York, Springer-Verlag
|
11 |
Brown A G, Fyffe R E, Noble R (1980). Projections from Pacinian corpuscles and rapidly adapting mechanoreceptors of glabrous skin to the cat’s spinal cord. J Physiol , 307: 385–400 pmid:7205669
|
12 |
Burgess P R P E.R. (1973). Cutaneious mechanoreceptors and nociceptors. Handbook of Sensory Physiology . A. Iggo . Berlin, Springer. 11:29–78
|
13 |
Byers M R (1985). Sensory innervation of periodontal ligament of rat molars consists of unencapsulated Ruffini-like mechanoreceptors and free nerve endings. J Comp Neurol , 231(4): 500–518 doi: 10.1002/cne.902310408 pmid:3968252
|
14 |
Calavia M G, Feito J, López-Iglesias L, de Carlos F, García-Suarez O, Pérez-Pi?era P, Cobo J, Vega J A (2010). The lamellar cells in human Meissner corpuscles express TrkB. Neurosci Lett , 468(2): 106–109 doi: 10.1016/j.neulet.2009.10.076 pmid:19879330
|
15 |
Carroll P, Lewin G R, Koltzenburg M, Toyka K V, Thoenen H (1998). A role for BDNF in mechanosensation. Nat Neurosci , 1(1): 42–46 doi: 10.1038/242 pmid:10195107
|
16 |
Cauna N (1956). Nerve supply and nerve endings in Meissner’s corpuscles. Am J Anat , 99(2): 315–350 doi: 10.1002/aja.1000990206 pmid:13372495
|
17 |
Cauna N, Mannan G (1958). The structure of human digital pacinian corpuscles (corpus cula lamellosa) and its functional significance. J Anat , 92(1): 1–20 pmid:13513492
|
18 |
Cauna N, Ross L L (1960). The fine structure of Meissner’s touch corpuscles of human fingers. J Biophys Biochem Cytol , 8(2): 467–482 doi: 10.1083/jcb.8.2.467 pmid:13691669
|
19 |
Chambers M R, Andres K H, von Duering M, Iggo A (1972). The structure and function of the slowly adapting type II mechanoreceptor in hairy skin. Q J Exp Physiol Cogn Med Sci , 57(4): 417–445 pmid:4484588
|
20 |
Cronk K M, Wilkinson G A, Grimes R, Wheeler E F, Jhaveri S, Fundin B T, Silos-Santiago I, Tessarollo L, Reichardt L F, Rice F L (2002). Diverse dependencies of developing Merkel innervation on the trkA and both full-length and truncated isoforms of trkC. Development , 129(15): 3739–3750 pmid:12117822
|
21 |
Diamond J, Mills L R, Mearow K M (1988). Evidence that the Merkel cell is not the transducer in the mechanosensory Merkel cell-neurite complex. Prog Brain Res , 74: 51–56 doi: 10.1016/S0079-6123(08)62997-0 pmid:3055053
|
22 |
English K B, Burgess P R, Kavka-Van Norman D (1980). Development of rat Merkel cells. J Comp Neurol , 194(2): 475–496 doi: 10.1002/cne.901940212 pmid:7440811
|
23 |
Fagan B M, Cahusac P M (2001). Evidence for glutamate receptor mediated transmission at mechanoreceptors in the skin. Neuroreport , 12(2): 341–347 doi: 10.1097/00001756-200102120-00032 pmid:11209947
|
24 |
Fundin B T, Silos-Santiago I, Ernfors P, Fagan A M, Aldskogius H, DeChiara T M, Phillips H S, Barbacid M, Yancopoulos G D, Rice F L (1997). Differential dependency of cutaneous mechanoreceptors on neurotrophins, trk receptors, and P75 LNGFR. Dev Biol , 190(1): 94–116 doi: 10.1006/dbio.1997.8658 pmid:9331334
|
25 |
Gardner E P, Palmer C I (1990). Simulation of motion on the skin. III. Mechanisms used by rapidly adapting cutaneous mechanoreceptors in the primate hand for spatiotemporal resolution and two-point discrimination. J Neurophysiol , 63(4): 841–859 pmid:2341881
|
26 |
González-Martínez T, Fari?as I, Del Valle M E, Feito J, Germanà G, Cobo J, Vega J A (2005). BDNF, but not NT-4, is necessary for normal development of Meissner corpuscles. Neurosci Lett , 377(1): 12–15 doi: 10.1016/j.neulet.2004.11.078 pmid:15722178
|
27 |
González-Martínez T, Germanà G P, Monjil D F, Silos-Santiago I, de Carlos F, Germanà G, Cobo J, Vega J A (2004). Absence of Meissner corpuscles in the digital pads of mice lacking functional TrkB. Brain Res , 1002(1-2): 120–128 doi: 10.1016/j.brainres.2004.01.003 pmid:14988041
|
28 |
Gottschaldt K M, Iggo A, Young D W (1973). Functional characteristics of mechanoreceptors in sinus hair follicles of the cat. J Physiol , 235(2): 287–315 pmid:4763992
|
29 |
Gottschaldt K M, Vahle-Hinz C (1981). Merkel cell receptors: structure and transducer function. Science , 214(4517): 183–186 doi: 7280690" target="_blank">10.1126/science. pmid:7280690 pmid:7280690
|
30 |
Grim M, Halata Z (2000). Developmental origin of avian Merkel cells. Anat Embryol (Berl) , 202(5): 401–410 doi: 10.1007/s004290000121 pmid:11089931
|
31 |
Haeberle H, Fujiwara M, Chuang J, Medina M M, Panditrao M V, Bechstedt S, Howard J, Lumpkin E A (2004). Molecular profiling reveals synaptic release machinery in Merkel cells. Proc Natl Acad Sci USA , 101(40): 14503–14508 doi: 10.1073/pnas.0406308101 pmid:15448211
|
32 |
Halata Z (1977). The ultrastructure of the sensory nerve endings in the articular capsule of the knee joint of the domestic cat (Ruffini corpuscles and Pacinian corpuscles). J Anat , 124(Pt 3): 717–729 pmid:604339
|
33 |
Halata Z, Grim M, Bauman K I (2003). Friedrich Sigmund Merkel and his “Merkel cell”, morphology, development, and physiology: review and new results. Anat Rec A Discov Mol Cell Evol Biol , 271(1): 225–239 doi: 10.1002/ar.a.10029 pmid:12552639
|
34 |
Halata Z, Munger B L (1980). The sensory innervation of primate eyelid. Anat Rec , 198(4): 657–670 doi: 10.1002/ar.1091980410 pmid:7212315
|
35 |
Halata Z, Munger B L (1980). Sensory nerve endings in rhesus monkey sinus hairs. J Comp Neurol , 192(4): 645–663 doi: 10.1002/cne.901920403 pmid:7419748
|
36 |
Heidenreich M, Lechner S G, Vardanyan V, Wetzel C, Cremers C W, De Leenheer E M, Aránguez G, Moreno-Pelayo M á, Jentsch T J, Lewin G R (2012). KCNQ4 K(+) channels tune mechanoreceptors for normal touch sensation in mouse and man. Nat Neurosci , 15(1): 138–145 doi: 10.1038/nn.2985 pmid:22101641
|
37 |
Hoggan G, Hoggan F E (1893). Forked Nerve Endings on Hairs. J Anat Physiol , 27(Pt 2): 224–231
|
38 |
Honma Y, Kawano M, Kohsaka S, Ogawa M (2010). Axonal projections of mechanoreceptive dorsal root ganglion neurons depend on Ret. Development , 137(14): 2319–2328 doi: 10.1242/dev.046995 pmid:20534675
|
39 |
Hoshino N, Harada F, Alkhamrah B A, Aita M, Kawano Y, Hanada K, Maeda T (2003). Involvement of brain-derived neurotrophic factor (BDNF) in the development of periodontal Ruffini endings. Anat Rec A Discov Mol Cell Evol Biol , 274(1): 807–816 doi: 10.1002/ar.a.10094 pmid:12923891
|
40 |
Hu J, Huang T, Li T, Guo Z, Cheng L (2012). c-Maf is required for the development of dorsal horn laminae III/IV neurons and mechanoreceptive DRG axon projections. J Neurosci, 32(16): 5362–5373
|
41 |
Hubbard S J (1958). A study of rapid mechanical events in a mechanoreceptor. J Physiol , 141(2): 198–218 pmid:13539833
|
42 |
Hunt C C (1961). On the nature of vibration receptors in the hind limb of the cat. J Physiol , 155: 175–186 pmid:13716841
|
43 |
Iggo A (1985). Sensory receptors in the skin of mammals and their sensory functions. Rev Neurol (Paris) , 141(10): 599–613 pmid:4089395
|
44 |
Iggo A, Andres K H (1982). Morphology of cutaneous receptors. Annu Rev Neurosci , 5(1): 1–31 doi: 10.1146/annurev.ne.05.030182.000245 pmid:6280572
|
45 |
Iggo A, Muir A R (1969). The structure and function of a slowly adapting touch corpuscle in hairy skin. J Physiol , 200(3): 763–796 pmid:4974746
|
46 |
Iggo A, Ogawa H (1977). Correlative physiological and morphological studies of rapidly adapting mechanoreceptors in cat’s glabrous skin. J Physiol , 266(2): 275–296 pmid:853451
|
47 |
Ikeda I, Yamashita Y, Ono T, Ogawa H (1994). Selective phototoxic destruction of rat Merkel cells abolishes responses of slowly adapting type I mechanoreceptor units. J Physiol , 479(Pt 2): 247–256 pmid:7799224
|
48 |
Johansson R S, Vallbo A B (1979). Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol , 286: 283–300 pmid:439026
|
49 |
Johnson K O (2001). The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol , 11(4): 455–461 doi: 10.1016/S0959-4388(00)00234-8 pmid:11502392
|
50 |
Johnson K O, Yoshioka T, Vega-Bermudez F (2000). Tactile functions of mechanoreceptive afferents innervating the hand. J Clin Neurophysiol , 17(6): 539–558 doi: 10.1097/00004691-200011000-00002 pmid:11151974
|
51 |
Kinkelin I, Stucky C L, Koltzenburg M (1999). Postnatal loss of Merkel cells, but not of slowly adapting mechanoreceptors in mice lacking the neurotrophin receptor p75. Eur J Neurosci , 11(11): 3963–3969 doi: 10.1046/j.1460-9568.1999.00822.x pmid:10583485
|
52 |
Knibest?l M (1973). Stimulus-response functions of rapidly adapting mechanoreceptors in human glabrous skin area. J Physiol , 232(3): 427–452 pmid:4759677
|
53 |
Kramer I, Sigrist M, de Nooij J C, Taniuchi I, Jessell T M, Arber S (2006). A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification. Neuron , 49(3): 379–393 doi: 10.1016/j.neuron.2006.01.008 pmid:16446142
|
54 |
Krimm R F, Davis B M, Noel T, Albers K M (2006). Overexpression of neurotrophin 4 in skin enhances myelinated sensory endings but does not influence sensory neuron number. J Comp Neurol , 498(4): 455–465 doi: 10.1002/cne.21074 pmid:16937395
|
55 |
LeMaster A M, Krimm R F, Davis B M, Noel T, Forbes M E, Johnson J E, Albers K M (1999). Overexpression of brain-derived neurotrophic factor enhances sensory innervation and selectively increases neuron number. J Neurosci , 19(14): 5919–5931 pmid:10407031
|
56 |
Levanon D, Bettoun D, Harris-Cerruti C, Woolf E, Negreanu V, Eilam R, Bernstein Y, Goldenberg D, Xiao C, Fliegauf M, Kremer E, Otto F, Brenner O, Lev-Tov A, Groner Y (2002). The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J , 21(13): 3454–3463 doi: 10.1093/emboj/cdf370 pmid:12093746
|
57 |
Li L, Rutlin M, Abraira V E, Cassidy C, Kus L, Gong S, Jankowski M P, Luo W, Heintz N, Koerber H R, Woodbury C J, Ginty D D (2011). The functional organization of cutaneous low-threshold mechanosensory neurons. Cell , 147(7): 1615–1627 doi: 10.1016/j.cell.2011.11.027 pmid:22196735
|
58 |
Loewenstein W R, Mendelson M (1965). Components of Receptor Adaptation in a Pacinian Corpuscle. J Physiol , 177: 377–397 pmid:14321486
|
59 |
Lou S, Duan B, Vong L, Lovell B B, Ma Q (2013). Runx1 controls terminal morphology and mechanosensitivity of VGLUT3-expressing C-mechanoreceptors. J Neurosci, 33(3): 870–882
|
60 |
Lucarz A, Brand G (2007). Current considerations about Merkel cells. Eur J Cell Biol , 86(5): 243–251 doi: 10.1016/j.ejcb.2007.02.001 pmid:17337089
|
61 |
Luo W, Enomoto H, Rice F L, Milbrandt J, Ginty D D (2009). Molecular identification of rapidly adapting mechanoreceptors and their developmental dependence on ret signaling. Neuron , 64(6): 841–856 doi: 10.1016/j.neuron.2009.11.003 pmid:20064391
|
62 |
Maklad A, Conway M, Hodges C, Hansen L A (2010). Development of innervation to maxillary whiskers in mice. Anat Rec (Hoboken) , 293(9): 1553–1567 doi: 10.1002/ar.21194 pmid:20648571
|
63 |
Maksimovic S, Baba Y, Lumpkin E A (2013). Neurotransmitters and synaptic components in the Merkel cell-neurite complex, a gentle-touch receptor. Ann N Y Acad Sci , 1279(1): 13–21 doi: 10.1111/nyas.12057 pmid:23530998
|
64 |
Maricich S M, Morrison K M, Mathes E L, Brewer B M (2012). Rodents rely on Merkel cells for texture discrimination tasks. J Neurosci , 32(10): 3296–3300 doi: 10.1523/JNEUROSCI.5307-11.2012 pmid:22399751
|
65 |
Maricich S M, Wellnitz S A, Nelson A M, Lesniak D R, Gerling G J, Lumpkin E A, Zoghbi H Y (2009). Merkel cells are essential for light-touch responses. Science , 324(5934): 1580–1582 doi: 10.1126/science.1172890 pmid:19541997
|
66 |
Maruyama Y, Harada F, Jabbar S, Saito I, Aita M, Kawano Y, Suzuki A, Nozawa-Inoue K, Maeda T (2005). Neurotrophin-4/5-depletion induces a delay in maturation of the periodontal Ruffini endings in mice. Arch Histol Cytol , 68(4): 267–288 doi: 10.1679/aohc.68.267 pmid:16477147
|
67 |
Matsuo S, Ichikawa H, Silos-Santiago I, Kiyomiya K, Kurebe M, Arends J J, Jacquin M F (2002). Ruffini endings are absent from the periodontal ligament of trkB knockout mice. Somatosens Mot Res , 19(3): 213–217 doi: 10.1080/0899022021000009134 pmid:12396578
|
68 |
Mendelson M, Lowenstein W R (1964). Mechanisms of Receptor Adaptation. Science , 144(3618): 554–555 doi: 10.1126/science.144.3618.554 pmid:14194104
|
69 |
Merkel F (1875). Tastzellen and Tastkoerperchen bei den Hausthieren und beim Menschen. Arch Mikrosc Anat , 11(S1): 636–652 doi: 10.1007/BF02933819
|
70 |
Monta?o J A, Pérez-Pi?era P, García-Suárez O, Cobo J, Vega J A (2010). Development and neuronal dependence of cutaneous sensory nerve formations: Lessons from neurotrophins. Microsc Res Tech , 73(5): 513–529 pmid:19839059
|
71 |
Morrison K M, Miesegaes G R, Lumpkin E A, Maricich S M (2009). Mammalian Merkel cells are descended from the epidermal lineage. Dev Biol , 336(1): 76–83 doi: 10.1016/j.ydbio.2009.09.032 pmid:19782676
|
72 |
Mosconi T M, Rice F L, Song M J (1993). Sensory innervation in the inner conical body of the vibrissal follicle-sinus complex of the rat. J Comp Neurol , 328(2): 232–251 doi: 10.1002/cne.903280206 pmid:8423242
|
73 |
Mountcastle V B (1957). Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol , 20(4): 408–434 pmid:13439410
|
74 |
Munger B L, Ide C (1988). The structure and function of cutaneous sensory receptors. Arch Histol Cytol , 51(1): 1–34 doi: 10.1679/aohc.51.1 pmid:3137944
|
75 |
Nakamura S, Senzaki K, Yoshikawa M, Nishimura M, Inoue K, Ito Y, Ozaki S, Shiga T (2008). Dynamic regulation of the expression of neurotrophin receptors by Runx3. Development , 135(9): 1703–1711 doi: 10.1242/dev.015248 pmid:18385258
|
76 |
Ogawa H (1996). The Merkel cell as a possible mechanoreceptor cell. Prog Neurobiol , 49(4): 317–334 pmid:8888113
|
77 |
Palmer C I, Gardner E P (1990). Simulation of motion on the skin. IV. Responses of Pacinian corpuscle afferents innervating the primate hand to stripe patterns on the OPTACON. J Neurophysiol , 64(1): 236–247 pmid:2388068
|
78 |
Paré M, Behets C, Cornu O (2003). Paucity of presumptive ruffini corpuscles in the index finger pad of humans. J Comp Neurol , 456(3): 260–266 doi: 10.1002/cne.10519 pmid:12528190
|
79 |
Paré M, Elde R, Mazurkiewicz J E, Smith A M, Rice F L (2001). The Meissner corpuscle revised: a multiafferented mechanoreceptor with nociceptor immunochemical properties. J Neurosci , 21(18): 7236–7246 pmid:11549734
|
80 |
Paré M, Smith A M, Rice F L (2002). Distribution and terminal arborizations of cutaneous mechanoreceptors in the glabrous finger pads of the monkey. J Comp Neurol , 445(4): 347–359 doi: 10.1002/cne.10196 pmid:11920712
|
81 |
Pease D C, Pallie W (1959). Electron microscopy of digital tactile corpuscles and small cutaneous nerves. J Ultrastruct Res , 2(3): 352–365 doi: 10.1016/S0022-5320(59)80007-1 pmid:13655354
|
82 |
Pease D C, Quilliam T A (1957). Electron microscopy of the pacinian corpuscle. J Biophys Biochem Cytol , 3(3): 331–342 doi: 10.1083/jcb.3.3.331 pmid:13438918
|
83 |
Perez-Pinera P, García-Suarez O, Germanà A, Díaz-Esnal B, de Carlos F, Silos-Santiago I, del Valle M E, Cobo J, Vega J A (2008). Characterization of sensory deficits in TrkB knockout mice. Neurosci Lett , 433(1): 43–47 doi: 10.1016/j.neulet.2007.12.035 pmid:18248898
|
84 |
Peters E M, Botchkarev V A, Müller-R?ver S, Moll I, Rice F L, Paus R (2002). Developmental timing of hair follicle and dorsal skin innervation in mice. J Comp Neurol , 448(1): 28–52 doi: 10.1002/cne.10212 pmid:12012374
|
85 |
Quilliam T A, Sato M (1955). The distribution of myelin on nerve fibres from Pacinian corpuscles. J Physiol , 129(1): 167–176 pmid:13252591
|
86 |
Rasmusson D D, Turnbull B G (1986). Sensory innervation of the raccoon forepaw: 2. Response properties and classification of slowly adapting fibers. Somatosens Res , 4(1): 63–75 doi: 10.3109/07367228609144598 pmid:3797915
|
87 |
Rice F L, Rasmusson D D (2000). Innervation of the digit on the forepaw of the raccoon. J Comp Neurol , 417(4): 467–490 doi: 10.1002/(SICI)1096-9861(20000221)417:4<467::AID-CNE6>3.0.CO;2-Q pmid:10701867
|
88 |
Sato M (1961). Response of Pacinian corpuscles to sinusoidal vibration. J Physiol , 159: 391–409 pmid:14497425
|
89 |
Saxod R (1996). Ontogeny of the cutaneous sensory organs. Microsc Res Tech , 34(4): 313–333 doi: 10.1002/(SICI)1097-0029(19960701)34:4<313::AID-JEMT4>3.0.CO;2-P pmid:8807616
|
90 |
Scheibel M E, Scheibel A B (1968). Terminal axonal patterns in cat spinal cord. II. The dorsal horn. Brain Res , 9(1): 32–58 doi: 10.1016/0006-8993(68)90256-4 pmid:5699822
|
91 |
Scheibert J, Leurent S, Prevost A, Debrégeas G (2009). The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science , 323(5920): 1503–1506 doi: 10.1126/science.1166467 pmid:19179493
|
92 |
Scott A, Hasegawa H, Sakural K, Yaron A, Cobb J, Wang F (2011). Transcription factor short stature homeobox 2 is required for proper development of tropomyosin-related kinase B-expressing mechanosensory neurons. J Neurosci , 31(18): 6741–6749
|
93 |
Sedy J, Tseng S, Walro J M, Grim M, Kucera J (2006). ETS transcription factor ER81 is required for the Pacinian corpuscle development. Dev Dyn , 235(4): 1081–1089 doi: 10.1002/dvdy.20710 pmid:16493690
|
94 |
Semba K, Masarachia P, Malamed S, Jacquin M, Harris S, Egger M D (1984). Ultrastructure of pacinian corpuscle primary afferent terminals in the cat spinal cord. Brain Res , 302(1): 135–150 doi: 10.1016/0006-8993(84)91293-9 pmid:6203612
|
95 |
Semba K, Masarachia P, Malamed S, Jacquin M, Harris S, Yang G, Egger M D (1985). An electron microscopic study of terminals of rapidly adapting mechanoreceptive afferent fibers in the cat spinal cord. J Comp Neurol , 232(2): 229–240 doi: 10.1002/cne.902320208 pmid:3973092
|
96 |
Senok S S, Baumann K I (1997). Functional evidence for calcium-induced calcium release in isolated rat vibrissal Merkel cell mechanoreceptors. J Physiol , 500(Pt 1): 29–37 pmid:9097930
|
97 |
Senok S S, Baumann K I, Halata Z (1996). Selective phototoxic destruction of quinacrine-loaded Merkel cells is neither selective nor complete. Exp Brain Res , 110(3): 325–334 doi: 10.1007/BF00229133 pmid:8871092
|
98 |
Senzaki K, Ozaki S, Yoshikawa M, Ito Y, Shiga T (2010). Runx3 is required for the specification of TrkC-expressing mechanoreceptive trigeminal ganglion neurons. Mol Cell Neurosci , 43(3): 296–307 doi: 10.1016/j.mcn.2009.12.003 pmid:20034568
|
99 |
Shortland P, Woolf C J (1993). Morphology and somatotopy of the central arborizations of rapidly adapting glabrous skin afferents in the rat lumbar spinal cord. J Comp Neurol , 329(4): 491–511 doi: 10.1002/cne.903290406 pmid:8454737
|
100 |
Skaper S D (2012). The neurotrophin family of neurotrophic factors: an overview. Methods Mol Biol , 846: 1–12 doi: 10.1007/978-1-61779-536-7_1 pmid:22367796
|
101 |
Suzuki M, Ebara S, Koike T, Tonomura S, Kumamoto K (2012). How many hair follicles are innervated by one afferent axon? A confocal microscopic analysis of palisade endings in the auricular skin of thy1-YFP transgenic mouse. Proc Jpn Acad, Ser B, Phys Biol Sci , 88(10): 583–595 doi: 10.2183/pjab.88.583 pmid:23229751
|
102 |
Szeder V, Grim M, Halata Z, Sieber-Blum M (2003). Neural crest origin of mammalian Merkel cells. Dev Biol , 253(2): 258–263 doi: 10.1016/S0012-1606(02)00015-5 pmid:12645929
|
103 |
Tachibana T, Nawa T (2002). Recent progress in studies on Merkel cell biology. Anat Sci Int , 77(1): 26–33 doi: 10.1046/j.0022-7722.2002.00008.x pmid:12418081
|
104 |
Takahashi-Iwanaga H (2000). Three-dimensional microanatomy of longitudinal lanceolate endings in rat vibrissae. J Comp Neurol , 426(2): 259–269 doi: 10.1002/1096-9861(20001016)426:2<259::AID-CNE7>3.0.CO;2-N pmid:10982467
|
105 |
Talbot W H, Darian-Smith I, Kornhuber H H, Mountcastle V B (1968). The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J Neurophysiol , 31(2): 301–334 pmid:4972033
|
106 |
Tapper D N (1965). Stimulus-response relationships in the cutaneous slowly-adapting mechanoreceptor in hairy skin of the cat. Exp Neurol , 13(4): 364–385 doi: 10.1016/0014-4886(65)90125-1 pmid:5847283
|
107 |
Wellnitz S A, Lesniak D R, Gerling G J, Lumpkin E A (2010). The regularity of sustained firing reveals two populations of slowly adapting touch receptors in mouse hairy skin. J Neurophysiol , 103(6): 3378–3388 doi: 10.1152/jn.00810.2009 pmid:20393068
|
108 |
Wende H, Lechner S G, Cheret C, Bourane S, Kolanczyk M E, Pattyn A, Reuter K, Munier F L, Carroll P, Lewin G R, Birchmeier C (2012). The transcription factor c-Maf controls touch receptor development and function. Science , 335(6074): 1373–1376 doi: 10.1126/science.1214314 pmid:22345400
|
109 |
Willis W D, Coggeshall R E (2004). Sensory Mechanisms of the Spinal Cord . New York, Kluwer Academic/Plenum Publishers
|
110 |
Winkelmann R K, Breathnach A S (1973). The Merkel cell. J Invest Dermatol , 60(1): 2–15 doi: 10.1111/1523-1747.ep13069480 pmid:4346159
|
111 |
Woo S H, Baba Y, Franco A M, Lumpkin E A, Owens D M (2012). Excitatory glutamate is essential for development and maintenance of the piloneural mechanoreceptor. Development , 139(4): 740–748 doi: 10.1242/dev.070847 pmid:22241839
|
112 |
Woodbury C J, Ritter A M, Koerber H R (2001). Central anatomy of individual rapidly adapting low-threshold mechanoreceptors innervating the “hairy” skin of newborn mice: early maturation of hair follicle afferents. J Comp Neurol , 436(3): 304–323 doi: 10.1002/cne.1069 pmid:11438932
|
113 |
Yamashita Y, Akaike N, Wakamori M, Ikeda I, Ogawa H (1992). Voltage-dependent currents in isolated single Merkel cells of rats. J Physiol , 450: 143–162 pmid:1331421
|
114 |
Yoshikawa M, Murakami Y, Senzaki K, Masuda T, Ozaki S, Ito Y, Shiga T (2013). Coexpression of Runx1 and Runx3 in mechanoreceptive dorsal root ganglion neurons. Dev Neurobiol , 73(6): 469–479 doi: 10.1002/dneu.22073 pmid:23378040
|
115 |
Zelená J (1978). The development of Pacinian corpuscles. J Neurocytol , 7(1): 71–91 doi: 10.1007/BF01213461 pmid:632855
|
116 |
Zelena J (1994). Nerves and Mechanoreceptors. London, Chapman & Hall
|
117 |
Zelená J, Halata Z, Szeder V, Grim M (1997). Crural Herbst corpuscles in chicken and quail: numbers and structure. Anat Embryol (Berl) , 196(4): 323–333 doi: 10.1007/s004290050101 pmid:9363854
|
118 |
Zelená J, Jirmanová I, Nitatori T, Ide C (1990). Effacement and regeneration of tactile lamellar corpuscles of rat after postnatal nerve crush. Neuroscience , 39(2): 513–522 doi: 10.1016/0306-4522(90)90287-E pmid:2087271
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|