Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (5) : 475-485    https://doi.org/10.1007/s11515-013-1272-0
REVIEW
The actin cytoskeleton coordinates the signal transduction and antigen processing functions of the B cell antigen receptor
Chaohong LIU1, Margaret K. FALLEN1, Heather MILLER1, Arpita UPADHYAYA2, Wenxia SONG1,3()
1. Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA; 2. Department of Physics, University of Maryland, College Park, MD 20742, USA; 3. Division of Immunology, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
 Download: PDF(242 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The B cell antigen receptor (BCR) is the sensor on the B cell surface that surveys foreign molecules (antigen) in our bodies and activates B cells to generate antibody responses upon encountering cognate antigen. The binding of antigen to the BCR induces signaling cascades in the cytoplasm, which provides the first signal for B cell activation. Subsequently, BCRs internalize and target bound antigen to endosomes, where antigen is processed into T cell recognizable forms. T helper cells generate the second activation signal upon binding to antigen presented by B cells. The optimal activation of B cells requires both signals, thereby depending on the coordination of BCR signaling and antigen transport functions. Antigen binding to the BCR also induces rapid remodeling of the cortical actin network of B cells. While being initiated and controlled by BCR signaling, recent studies reveal that this actin remodeling is critical for both the signaling and antigen processing functions of the BCR, indicating a role for actin in coordinating these two pathways. Here we will review previous and recent studies on actin reorganization during BCR activation and BCR-mediated antigen processing, and discuss how actin remodeling translates BCR signaling into rapid antigen uptake and processing while providing positive and negative feedback to BCR signaling.

Keywords actin cytoskeleton      endocytosis      signal transduction      receptor     
Corresponding Author(s): SONG Wenxia,Email:wenxsong@umd.edu   
Issue Date: 01 October 2013
 Cite this article:   
Chaohong LIU,Margaret K. FALLEN,Heather MILLER, et al. The actin cytoskeleton coordinates the signal transduction and antigen processing functions of the B cell antigen receptor[J]. Front Biol, 2013, 8(5): 475-485.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-013-1272-0
https://academic.hep.com.cn/fib/EN/Y2013/V8/I5/475
Fig.1  Role of the actin cytoskeleton in coordination of BCR signaling and antigen processing functions. BCR signaling triggers actin reorganization as a series of sequential events. An initial transient detachment and disassembly of the cortical actin network is induced by dephosphorylation ezrin and cofilin (A), and a subsequent polarized actin reassembly is mediated in part by Btk activated WASP (B). The actin remodeling facilitates BCR self-clustering and signaling induction in BCR microclusters. Actin-driven B cell spreading enhances BCR microclustering and signaling (A-B). The transition of actin-mediated cell spreading to contraction promotes the coalescence of BCR microclusters and the formation of the central cluster, which leads to signaling attenuation (C). B cell contraction also likely helps to gather BCR-antigen complexes into endocytosing vesicles. The continuous actin remodeling, the actin adaptor protein Apb1 that couples F-actin with dynamin, and the actin motor non-muscle myosin II (MyoII) are required for the formation and fission of BCR containing budding vesicles from the plasma membrane (D).
Full nameAbbreviationFunction in B cellsActivation mechanismsRef
CofilinCofilinSever and depolymerize F-actinDephosphorylation by slingshot phosphatasesFreeman et al., 2011; Liu et al., 2012a
EzrinEzrinDetach the cortical actin from the plasma membraneDephosphorylation by unknown serine phosphataseGupta et al., 2006; Treanor et al., 2011
Wiscott-Aldrich syndrome proteinWASPActin polymerization and B cell spreadingBtk-induced activation of Cdc42, PtdIn(4,5) production and phosphorylationSharma et al., 2009; Liu et al., 2011
Actin binding protein 1Abp1/HIP-55/SH3P7BCR endocytosisPhosphorylation and actin remodelingLarbolette et al., 1999; Onabajo et al., 2008
Tab.1  Actin regulators that are involved in BCR signaling and endocytosis
1 Ahmed S (2011). Nanoscopy of cell architecture: The actin-membrane interface. BioArchitecture , 1(1): 32–38
doi: 10.4161/bioa.1.1.14799 pmid:21866260
2 Amann K J, Pollard T D (2001). The Arp2/3 complex nucleates actin filament branches from the sides of pre-existing filaments. Nat Cell Biol , 3(3): 306–310
doi: 10.1038/35060104 pmid:11231582
3 Baba Y, Hashimoto S, Matsushita M, Watanabe D, Kishimoto T, Kurosaki T, Tsukada S (2001). BLNK mediates Syk-dependent Btk activation. Proc Natl Acad Sci USA , 98(5): 2582–2586
doi: 10.1073/pnas.051626198 pmid:11226282
4 Bachvaroff R J, Miller F, Rapaport F T (1980). Appearance of cytoskeletal components on the surface of leukemia cells and of lymphocytes transformed by mitogens and Epstein-Barr virus. Proc Natl Acad Sci USA , 77(8): 4979–4983
doi: 10.1073/pnas.77.8.4979 pmid:6254049
5 Bassing C H, Swat W, Alt F W (2002). The mechanism and regulation of chromosomal V(D)J recombination. Cell , 109(2 Suppl): S45–S55
doi: 10.1016/S0092-8674(02)00675-X pmid:11983152
6 Bernstein B W, Bamburg J R (2010). ADF/cofilin: a functional node in cell biology. Trends Cell Biol , 20(4): 187–195
doi: 10.1016/j.tcb.2010.01.001 pmid:20133134
7 Blundell M P, Bouma G, Metelo J, Worth A, Calle Y, Cowell L A, Westerberg L S, Moulding D A, Mirando S, Kinnon C, Cory G O, Jones G E, Snapper S B, Burns S O, Thrasher A J (2009). Phosphorylation of WASp is a key regulator of activity and stability in vivo. Proc Natl Acad Sci USA , 106(37): 15738–15743
doi: 10.1073/pnas.0904346106 pmid:19805221
8 Boes M, Cuvillier A, Ploegh H (2004). Membrane specializations and endosome maturation in dendritic cells and B cells. Trends Cell Biol , 14(4): 175–183
doi: 10.1016/j.tcb.2004.02.004 pmid:15066635
9 Bolland S, Pearse R N, Kurosaki T, Ravetch J V (1998). SHIP modulates immune receptor responses by regulating membrane association of Btk. Immunity , 8(4): 509–516
doi: 10.1016/S1074-7613(00)80555-5 pmid:9586640
10 Braun J, Fujiwara K, Pollard T D, Unanue E R (1978). Two distinct mechanisms for redistribution of lymphocyte surface macromolecules. I. Relationship to cytoplasmic myosin. J Cell Biol , 79(2 Pt 1): 409–418
doi: 10.1083/jcb.79.2.409 pmid:309887
11 Braun J, Hochman P S, Unanue E R (1982). Ligand-induced association of surface immunoglobulin with the detergent-insoluble cytoskeletal matrix of the B lymphocyte. J Immunol , 128(3): 1198–1204
pmid:6976988
12 Brauweiler A M, Cambier J C (2003). Fc gamma RIIB activation leads to inhibition of signalling by independently ligated receptors. Biochem Soc Trans , 31(Pt 1): 281–285
doi: 10.1042/BST0310281 pmid:12546702
13 Brezski R J, Monroe J G (2008). B-cell receptor. Adv Exp Med Biol , 640: 12–21
doi: 10.1007/978-0-387-09789-3_2 pmid:19065780
14 Brown B K, Song W (2001). The actin cytoskeleton is required for the trafficking of the B cell antigen receptor to the late endosomes. Traffic , 2(6): 414–427
doi: 10.1034/j.1600-0854.2001.002006414.x pmid:11389769
15 Carpenter C L (2004). Btk-dependent regulation of phosphoinositide synthesis. Biochem Soc Trans , 32(Pt 2): 326–329
doi: 10.1042/BST0320326 pmid:15046600
16 Carrasco Y R, Fleire S J, Cameron T, Dustin M L, Batista F D (2004). LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation. Immunity , 20(5): 589–599
doi: 10.1016/S1074-7613(04)00105-0 pmid:15142527
17 Casten L A, Kaumaya P, Pierce S K (1988). Enhanced T cell responses to antigenic peptides targeted to B cell surface Ig, Ia, or class I molecules. J Exp Med , 168(1): 171–180
doi: 10.1084/jem.168.1.171 pmid:2840479
18 Collins A, Warrington A, Taylor K A, Svitkina T (2011). Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Curr Biol , 21(14): 1167–1175
doi: 10.1016/j.cub.2011.05.048 pmid:21723126
19 Cory G O, Cramer R, Blanchoin L, Ridley A J (2003). Phosphorylation of the WASP-VCA domain increases its affinity for the Arp2/3 complex and enhances actin polymerization by WASP. Mol Cell , 11(5): 1229–1239
doi: 10.1016/S1097-2765(03)00172-2 pmid:12769847
20 Cory G O, Garg R, Cramer R, Ridley A J (2002). Phosphorylation of tyrosine 291 enhances the ability of WASp to stimulate actin polymerization and filopodium formation. Wiskott-Aldrich Syndrome protein. J Biol Chem , 277(47): 45115–45121
doi: 10.1074/jbc.M203346200 pmid:12235133
21 Dal Porto J M, Gauld S B, Merrell K T, Mills D, Pugh-Bernard A E, Cambier J (2004). B cell antigen receptor signaling 101. Mol Immunol , 41(6-7): 599–613
doi: 10.1016/j.molimm.2004.04.008 pmid:15219998
22 Depoil D, Fleire S, Treanor B L, Weber M, Harwood N E, Marchbank K L, Tybulewicz V L, Batista F D (2008). CD19 is essential for B cell activation by promoting B cell receptor-antigen microcluster formation in response to membrane-bound ligand. Nat Immunol , 9(1): 63–72
doi: 10.1038/ni1547 pmid:18059271
23 Dustin M L (2008). T-cell activation through immunological synapses and kinapses. Immunol Rev , 221(1): 77–89
doi: 10.1111/j.1600-065X.2008.00589.x pmid:18275476
24 Engels N, K?nig L M, Heemann C, Lutz J, Tsubata T, Griep S, Schrader V, Wienands J (2009). Recruitment of the cytoplasmic adaptor Grb2 to surface IgG and IgE provides antigen receptor-intrinsic costimulation to class-switched B cells. Nat Immunol , 10(9): 1018–1025
doi: 10.1038/ni.1764 pmid:19668218
25 Etienne-Manneville S (2004). Cdc42—the centre of polarity. J Cell Sci , 117(Pt 8): 1291–1300
doi: 10.1242/jcs.01115 pmid:15020669
26 Fehon R G, McClatchey A I, Bretscher A (2010). Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol , 11(4): 276–287
doi: 10.1038/nrm2866 pmid:20308985
27 Fievet B T, Gautreau A, Roy C, Del Maestro L, Mangeat P, Louvard D, Arpin M (2004). Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. J Cell Biol , 164(5): 653–659
doi: 10.1083/jcb.200307032 pmid:14993232
28 Finkelstein L D, Schwartzberg P L (2004). Tec kinases: shaping T-cell activation through actin. Trends Cell Biol , 14(8): 443–451
doi: 10.1016/j.tcb.2003.07.001 pmid:15308211
29 Firat-Karalar E N, Welch M D (2011). New mechanisms and functions of actin nucleation. Curr Opin Cell Biol , 23(1): 4–13
doi: 10.1016/j.ceb.2010.10.007 pmid:21093244
30 Fleire S J, Goldman J P, Carrasco Y R, Weber M, Bray D, Batista F D (2006). B cell ligand discrimination through a spreading and contraction response. Science , 312(5774): 738–741
doi: 10.1126/science.1123940 pmid:16675699
31 Freeman S A, Lei V, Dang-Lawson M, Mizuno K, Roskelley C D, Gold M R (2011). Cofilin-mediated F-actin severing is regulated by the Rap GTPase and controls the cytoskeletal dynamics that drive lymphocyte spreading and BCR microcluster formation. J Immunol , 187(11): 5887–5900
doi: 10.4049/jimmunol.1102233 pmid:22068232
32 Fujimoto M, Poe J C, Satterthwaite A B, Wahl M I, Witte O N, Tedder T F (2002). Complementary roles for CD19 and Bruton’s tyrosine kinase in B lymphocyte signal transduction. J Immunol , 168(11): 5465–5476
pmid:12023340
33 Galletta B J, Mooren O L, Cooper J A (2010). Actin dynamics and endocytosis in yeast and mammals. Curr Opin Biotechnol , 21(5): 604–610
doi: 10.1016/j.copbio.2010.06.006 pmid:20637595
34 Gonzalez S F, Degn S E, Pitcher L A, Woodruff M, Heesters B A, Carroll M C (2011). Trafficking of B cell antigen in lymph nodes. Annu Rev Immunol , 29(1): 215–233
doi: 10.1146/annurev-immunol-031210-101255 pmid:21219172
35 Gonzalez S F, Pitcher L A, Mempel T, Schuerpf F, Carroll M C (2009). B cell acquisition of antigen in vivo. Curr Opin Immunol , 21(3): 251–257
doi: 10.1016/j.coi.2009.05.013 pmid:19515546
36 Guagliardi L E, Koppelman B, Blum J S, Marks M S, Cresswell P, Brodsky F M (1990). Co-localization of molecules involved in antigen processing and presentation in an early endocytic compartment. Nature , 343(6254): 133–139
doi: 10.1038/343133a0 pmid:2404209
37 Gupta N, Wollscheid B, Watts J D, Scheer B, Aebersold R, DeFranco A L (2006). Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics. Nat Immunol , 7(6): 625–633
doi: 10.1038/ni1337 pmid:16648854
38 Harder T, Scheiffele P, Verkade P, Simons K (1998). Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol , 141(4): 929–942
doi: 10.1083/jcb.141.4.929 pmid:9585412
39 Hartwig J H, Jugloff L S, De Groot N J, Grupp S A, Jongstra-Bilen J (1995). The ligand-induced membrane IgM association with the cytoskeletal matrix of B cells is not mediated through the Ig alpha beta heterodimer. J Immunol , 155(8): 3769–3779
pmid:7561081
40 Harwood N E, Batista F D (2009). Visualizing the molecular and cellular events underlying the initiation of B-cell activation. Curr Top Microbiol Immunol , 334: 153–177
doi: 10.1007/978-3-540-93864-4_7 pmid:19521685
41 Harwood N E, Batista F D (2010). Early events in B cell activation. Annu Rev Immunol , 28(1): 185–210
doi: 10.1146/annurev-immunol-030409-101216 pmid:20192804
42 Ilani T, Vasiliver-Shamis G, Vardhana S, Bretscher A, Dustin M L (2009). T cell antigen receptor signaling and immunological synapse stability require myosin IIA. Nat Immunol , 10(5): 531–539
doi: 10.1038/ni.1723 pmid:19349987
43 Jugloff L S, Jongstra-Bilen J (1997). Cross-linking of the IgM receptor induces rapid translocation of IgM-associated Ig alpha, Lyn, and Syk tyrosine kinases to the membrane skeleton. J Immunol , 159(3): 1096–1106
pmid:9233602
44 Kumari S, Vardhana S, Cammer M, Curado S, Santos L, Sheetz M P, Dustin M L (2012). T Lymphocyte Myosin IIA is Required for Maturation of the Immunological Synapse. Front Immunol , 3: 230
doi: 10.3389/fimmu.2012.00230 pmid:22912631
45 Kurosaki T (2011). Regulation of BCR signaling. Mol Immunol , 48(11): 1287–1291
doi: 10.1016/j.molimm.2010.12.007 pmid:21195477
46 Kusumi A, Fujiwara T K, Chadda R, Xie M, Tsunoyama T A, Kalay Z, Kasai R S, Suzuki K G (2012a). Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson’s fluid-mosaic model. Annu Rev Cell Dev Biol , 28(1): 215–250
doi: 10.1146/annurev-cellbio-100809-151736 pmid:22905956
47 Kusumi A, Fujiwara T K, Morone N, Yoshida K J, Chadda R, Xie M, Kasai R S, Suzuki K G (2012b). Membrane mechanisms for signal transduction: the coupling of the meso-scale raft domains to membrane-skeleton-induced compartments and dynamic protein complexes. Semin Cell Dev Biol , 23(2): 126–144
doi: 10.1016/j.semcdb.2012.01.018 pmid:22309841
48 Labno C M, Lewis C M, You D, Leung D W, Takesono A, Kamberos N, Seth A, Finkelstein L D, Rosen M K, Schwartzberg P L, Burkhardt J K (2003). Itk functions to control actin polymerization at the immune synapse through localized activation of Cdc42 and WASP. Curr Biol , 13(18): 1619–1624
doi: 10.1016/j.cub.2003.08.005 pmid:13678593
49 Larbolette O, Wollscheid B, Schweikert J, Nielsen P J, Wienands J (1999). SH3P7 is a cytoskeleton adapter protein and is coupled to signal transduction from lymphocyte antigen receptors. Mol Cell Biol , 19(2): 1539–1546
pmid:9891087
50 Liu C, Miller H, Hui K L, Grooman B, Bolland S, Upadhyaya A, Song W (2011). A balance of Bruton’s tyrosine kinase and SHIP activation regulates B cell receptor cluster formation by controlling actin remodeling. J Immunol , 187(1): 230–239
doi: 10.4049/jimmunol.1100157 pmid:21622861
51 Liu C, Miller H, Orlowski G, Hang H, Upadhyaya A, Song W (2012a). Actin reorganization is required for the formation of polarized B cell receptor signalosomes in response to both soluble and membrane-associated antigens. J Immunol , 188(7): 3237–3246
doi: 10.4049/jimmunol.1103065 pmid:22387556
52 Liu C, Miller H, Sharma S, Beaven A, Upadhyaya A, Song W (2012b). Analyzing actin dynamics during the activation of the B cell receptor in live B cells. Biochem Biophys Res Commun , 427(1): 202–206
doi: 10.1016/j.bbrc.2012.09.046 pmid:22995298
53 Liu W, Meckel T, Tolar P, Sohn H W, Pierce S K (2010a). Antigen affinity discrimination is an intrinsic function of the B cell receptor. J Exp Med , 207(5): 1095–1111
doi: 10.1084/jem.20092123 pmid:20404102
54 Liu W, Meckel T, Tolar P, Sohn H W, Pierce S K (2010b). Intrinsic properties of immunoglobulin IgG1 isotype-switched B cell receptors promote microclustering and the initiation of signaling. Immunity , 32(6): 778–789
doi: 10.1016/j.immuni.2010.06.006 pmid:20620943
55 Liu W, Won Sohn H, Tolar P, Meckel T, Pierce S K (2010c). Antigen-induced oligomerization of the B cell receptor is an early target of Fc gamma RIIB inhibition. J Immunol , 184(4): 1977–1989
doi: 10.4049/jimmunol.0902334 pmid:20083655
56 Malhotra S, Kovats S, Zhang W, Coggeshall K M (2009a). B cell antigen receptor endocytosis and antigen presentation to T cells require Vav and dynamin. J Biol Chem , 284(36): 24088–24097
doi: 10.1074/jbc.M109.014209 pmid:19586920
57 Malhotra S, Kovats S, Zhang W, Coggeshall K M (2009b). Vav and Rac activation in B cell antigen receptor endocytosis involves Vav recruitment to the adapter protein LAB. J Biol Chem , 284(52): 36202–36212
doi: 10.1074/jbc.M109.040089 pmid:19858206
58 Mongini P K, Blessinger C A, Highet P F, Inman J K (1992). Membrane IgM-mediated signaling of human B cells. Effect of increased ligand binding site valency on the affinity and concentration requirements for inducing diverse stages of activation. J Immunol , 148(12): 3892–3901
pmid:1376344
59 Mooren O L, Galletta B J, Cooper J A (2012). Roles for actin assembly in endocytosis. Annu Rev Biochem , 81(1): 661–686
doi: 10.1146/annurev-biochem-060910-094416 pmid:22663081
60 Natkanski E, Lee W Y, Mistry B, Casal A, Molloy J E, Tolar P (2013). B Cells Use Mechanical Energy to Discriminate Antigen Affinities. Science , 340(6140): 1587–1590
doi: 10.1126/science.1237572 pmid:23686338
61 Neisch A L, Fehon R G (2011). Ezrin, Radixin and Moesin: key regulators of membrane-cortex interactions and signaling. Curr Opin Cell Biol , 23(4): 377–382
doi: 10.1016/j.ceb.2011.04.011 pmid:21592758
62 Niiro H, Clark E A (2002). Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol , 2(12): 945–956
doi: 10.1038/nri955 pmid:12461567
63 O’Neill S K, Getahun A, Gauld S B, Merrell K T, Tamir I, Smith M J, Dal Porto J M, Li Q Z, Cambier J C (2011). Monophosphorylation of CD79a and CD79b ITAM motifs initiates a SHIP-1 phosphatase-mediated inhibitory signaling cascade required for B cell anergy. Immunity , 35(5): 746–756
doi: 10.1016/j.immuni.2011.10.011 pmid:22078222
64 Oltz E M (2001). Regulation of antigen receptor gene assembly in lymphocytes. Immunol Res , 23(2-3): 121–133
doi: 10.1385/IR:23:2-3:121 pmid:11444378
65 Onabajo O O, Seeley M K, Kale A, Qualmann B, Kessels M, Han J, Tan T H, Song W (2008). Actin-binding protein 1 regulates B cell receptor-mediated antigen processing and presentation in response to B cell receptor activation. J Immunol , 180(10): 6685–6695
pmid:18453588
66 Padrick S B, Rosen M K (2010). Physical mechanisms of signal integration by WASP family proteins. Annu Rev Biochem , 79(1): 707–735
doi: 10.1146/annurev.biochem.77.060407.135452 pmid:20533885
67 Park J Y, Jongstra-Bilen J (1997). Interactions between membrane IgM and the cytoskeleton involve the cytoplasmic domain of the immunoglobulin receptor. Eur J Immunol , 27(11): 3001–3009
doi: 10.1002/eji.1830271137 pmid:9394830
68 Pollard T D, Cooper J A (2009). Actin, a central player in cell shape and movement. Science , 326(5957): 1208–1212
doi: 10.1126/science.1175862 pmid:19965462
69 Puré E, Tardelli L (1992). Tyrosine phosphorylation is required for ligand-induced internalization of the antigen receptor on B lymphocytes. Proc Natl Acad Sci USA , 89(1): 114–117
doi: 10.1073/pnas.89.1.114 pmid:1370346
70 Reth M (1992). Antigen receptors on B lymphocytes. Annu Rev Immunol , 10(1): 97–121
doi: 10.1146/annurev.iy.10.040192.000525 pmid:1591006
71 Ridley A J (2011). Life at the leading edge. Cell , 145(7): 1012–1022
doi: 10.1016/j.cell.2011.06.010 pmid:21703446
72 Saito K, Tolias K F, Saci A, Koon H B, Humphries L A, Scharenberg A, Rawlings D J, Kinet J P, Carpenter C L (2003). BTK regulates PtdIns-4,5-P2 synthesis: importance for calcium signaling and PI3K activity. Immunity , 19(5): 669–678
doi: 10.1016/S1074-7613(03)00297-8 pmid:14614854
73 Schreiner G F, Fujiwara K, Pollard T D, Unanue E R (1977). Redistribution of myosin accompanying capping of surface Ig. J Exp Med , 145(5): 1393–1398
doi: 10.1084/jem.145.5.1393 pmid:323408
74 Schreiner G F, Unanue E R (1977). Capping and the lymphocyte: models for membrane reorganization. J Immunol , 119(5): 1549–1551
pmid:334966
75 Sharma S, Orlowski G, Song W (2009). Btk regulates B cell receptor-mediated antigen processing and presentation by controlling actin cytoskeleton dynamics in B cells. J Immunol , 182(1): 329–339
pmid:19109164
76 Siemasko K, Clark M R (2001). The control and facilitation of MHC class II antigen processing by the BCR. Curr Opin Immunol , 13(1): 32–36
doi: 10.1016/S0952-7915(00)00178-3 pmid:11154914
77 Simons P C, Pietromonaco S F, Reczek D, Bretscher A, Elias L (1998). C-terminal threonine phosphorylation activates ERM proteins to link the cell’s cortical lipid bilayer to the cytoskeleton. Biochem Biophys Res Commun , 253(3): 561–565
doi: 10.1006/bbrc.1998.9823 pmid:9918767
78 Sohn H W, Tolar P, Jin T, Pierce S K (2006). Fluorescence resonance energy transfer in living cells reveals dynamic membrane changes in the initiation of B cell signaling. Proc Natl Acad Sci USA , 103(21): 8143–8148
doi: 10.1073/pnas.0509858103 pmid:16690746
79 Sohn H W, Tolar P, Pierce S K (2008). Membrane heterogeneities in the formation of B cell receptor-Lyn kinase microclusters and the immune synapse. J Cell Biol , 182(2): 367–379
doi: 10.1083/jcb.200802007 pmid:18644892
80 Song W, Cho H, Cheng P, Pierce S K (1995). Entry of B cell antigen receptor and antigen into class II peptide-loading compartment is independent of receptor cross-linking. J Immunol , 155(9): 4255–4263
pmid:7594583
81 Stoddart A, Dykstra M L, Brown B K, Song W, Pierce S K, Brodsky F M (2002). Lipid rafts unite signaling cascades with clathrin to regulate BCR internalization. Immunity , 17(4): 451–462
doi: 10.1016/S1074-7613(02)00416-8 pmid:12387739
82 Stoddart A, Jackson A P, Brodsky F M (2005). Plasticity of B cell receptor internalization upon conditional depletion of clathrin. Mol Biol Cell , 16(5): 2339–2348
doi: 10.1091/mbc.E05-01-0025 pmid:15716350
83 Stradal T E, Scita G (2006). Protein complexes regulating Arp2/3-mediated actin assembly. Curr Opin Cell Biol , 18(1): 4–10
doi: 10.1016/j.ceb.2005.12.003 pmid:16343889
84 Thrasher A J, Burns S O (2010). WASP: a key immunological multitasker. Nat Rev Immunol , 10(3): 182–192
doi: 10.1038/nri2724 pmid:20182458
85 Tolar P, Hanna J, Krueger P D, Pierce S K (2009a). The constant region of the membrane immunoglobulin mediates B cell-receptor clustering and signaling in response to membrane antigens. Immunity , 30(1): 44–55
doi: 10.1016/j.immuni.2008.11.007 pmid:19135393
86 Tolar P, Sohn H W, Liu W, Pierce S K (2009b). The molecular assembly and organization of signaling active B-cell receptor oligomers. Immunol Rev , 232(1): 34–41
doi: 10.1111/j.1600-065X.2009.00833.x pmid:19909354
87 Tolar P, Sohn H W, Pierce S K (2005). The initiation of antigen-induced B cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nat Immunol , 6(11): 1168–1176
doi: 10.1038/ni1262 pmid:16200067
88 Tolar P, Sohn H W, Pierce S K (2008). Viewing the antigen-induced initiation of B-cell activation in living cells. Immunol Rev , 221(1): 64–76
doi: 10.1111/j.1600-065X.2008.00583.x pmid:18275475
89 Treanor B, Depoil D, Bruckbauer A, Batista F D (2011). Dynamic cortical actin remodeling by ERM proteins controls BCR microcluster organization and integrity. J Exp Med , 208(5): 1055–1068
doi: 10.1084/jem.20101125 pmid:21482698
90 Treanor B, Depoil D, Gonzalez-Granja A, Barral P, Weber M, Dushek O, Bruckbauer A, Batista F D (2010). The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity , 32(2): 187–199
doi: 10.1016/j.immuni.2009.12.005 pmid:20171124
91 Unanue E R, Perkins W D, Karnovsky M J (1972). Ligand-induced movement of lymphocyte membrane macromolecules. I. Analysis by immunofluorescence and ultrastructural radioautography. J Exp Med , 136(4): 885–906
doi: 10.1084/jem.136.4.885 pmid:4626851
92 Van Troys M, Huyck L, Leyman S, Dhaese S, Vandekerkhove J, Ampe C (2008). Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol , 87(8-9): 649–667
doi: 10.1016/j.ejcb.2008.04.001 pmid:18499298
93 Vascotto F, Le Roux D, Lankar D, Faure-André G, Vargas P, Guermonprez P, Lennon-Duménil A M (2007). Antigen presentation by B lymphocytes: how receptor signaling directs membrane trafficking. Curr Opin Immunol , 19(1): 93–98
doi: 10.1016/j.coi.2006.11.011 pmid:17140785
94 Vicente-Manzanares M, Ma X, Adelstein R S, Horwitz A R (2009). Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol , 10(11): 778–790
doi: 10.1038/nrm2786 pmid:19851336
95 Weber M, Treanor B, Depoil D, Shinohara H, Harwood N E, Hikida M, Kurosaki T, Batista F D (2008). Phospholipase C-gamma2 and Vav cooperate within signaling microclusters to propagate B cell spreading in response to membrane-bound antigen. J Exp Med , 205(4): 853–868
doi: 10.1084/jem.20072619 pmid:18362175
96 Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K (1998). Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature , 393(6687): 809–812
doi: 10.1038/31735 pmid:9655398
97 Yokoyama N, Lougheed J, Miller W T (2005). Phosphorylation of WASP by the Cdc42-associated kinase ACK1: dual hydroxyamino acid specificity in a tyrosine kinase. J Biol Chem , 280(51): 42219–42226
doi: 10.1074/jbc.M506996200 pmid:16257963
98 Yuseff M I, Reversat A, Lankar D, Diaz J, Fanget I, Pierobon P, Randrian V, Larochette N, Vascotto F, Desdouets C, Jauffred B, Bellaiche Y, Gasman S, Darchen F, Desnos C, Lennon-Duménil A M (2011). Polarized secretion of lysosomes at the B cell synapse couples antigen extraction to processing and presentation. Immunity , 35(3): 361–374
doi: 10.1016/j.immuni.2011.07.008 pmid:21820334
[1] Kimberly D. Girling,Yu Tian Wang. Neuroprotective strategies for NMDAR-mediated excitotoxicity in Huntington’s Disease[J]. Front. Biol., 2016, 11(6): 439-458.
[2] Fu-Ming Zhou,Li Li,Juming Yue,John A. Dani. Transcription factor Pitx3 mutant mice as a model for Parkinson’s disease[J]. Front. Biol., 2016, 11(6): 427-438.
[3] Rachel Babij,Natalia De Marco Garcia. Neuronal activity controls the development of interneurons in the somatosensory cortex[J]. Front. Biol., 2016, 11(6): 459-470.
[4] Kai Jiang,Jianhang Jia. Smoothened regulation in response to Hedgehog stimulation[J]. Front. Biol., 2015, 10(6): 475-486.
[5] Anita E. Autry,Megumi Adachi,Lisa M. Monteggia. Dynamic methylation driven by neuronal activity in hippocampal neurons impacts complex behavior[J]. Front. Biol., 2015, 10(5): 439-447.
[6] Young-Cho Kim,Stephanie L. Alberico,Eric Emmons,Nandakumar S. Narayanan. New therapeutic strategies targeting D1-type dopamine receptors for neuropsychiatric disease[J]. Front. Biol., 2015, 10(3): 230-238.
[7] Olga KSIONDA, Andre LIMNANDER, Jeroen P. ROOSE. RasGRP Ras guanine nucleotide exchange factors in cancer[J]. Front Biol, 2013, 8(5): 508-532.
[8] Michael S. FLEMING, Wenqin LUO. The anatomy, function, and development of mammalian Aβ low-threshold mechanoreceptors[J]. Front Biol, 2013, 8(4): 408-420.
[9] Yonggang ZHANG, Wenhui HU. NFκB signaling regulates embryonic and adult neurogenesis[J]. Front Biol, 2012, 7(4): 277-291.
[10] Hao LI, Xiao-Chun XU. Lost expression of thyroid hormone receptor-β1 mRNA in esophageal cancer[J]. Front Biol, 2012, 7(4): 368-373.
[11] Xin YANG, Fengyang DENG, Katrina M. RAMONELL. Receptor-like kinases and receptor-like proteins: keys to pathogen recognition and defense signaling in plant innate immunity[J]. Front Biol, 2012, 7(2): 155-166.
[12] Peter E. ZAGE, Andrew J. BEAN. Growth factor receptor trafficking as a potential therapeutic target in pediatric cancer[J]. Front Biol, 2012, 7(1): 1-13.
[13] Tong LUO, Wei-Hua WU, Bo-Shiun CHEN. NMDA receptor signaling: death or survival?[J]. Front Biol, 2011, 6(6): 468-476.
[14] Saijun MO, Shengli YANG, Zongbin CUI. New glimpses of caveolin-1 functions in embryonic development and human diseases[J]. Front Biol, 2011, 6(5): 367-376.
[15] Xiaosong LIU, Jian ZHAO. GPCR, a rider of Alzheimer’s disease[J]. Front Biol, 2011, 6(4): 282-288.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed