Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (5) : 549-555    https://doi.org/10.1007/s11515-013-1277-8
RESEARCH ARTICLE
Oxidative-damage effect of Fe3O4 nanoparticles on mouse hepatic and brain cells in vivo
Yongli WANG, Nian QIN, Shan CHEN, Jingyun ZHAO, Xu YANG()
Hubei Key Laboratory of Genetic Regulation and Integrative Biology College of Life Science, Central China Normal University, Wuhan 430079, China
 Download: PDF(252 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To assess the biological safety of Fe3O4 nanoparticles (NPs), the oxidative-damage effect of these NPs was studied. Twenty-five Kunming mice were exposed to Fe3O4 NPs by intraperitoneal injection daily for 1 week at doses of 0, 10, 20, and 40 mg·kg-1. Five Kunming mice were also injected with 40 mg·kg-1 ordinary Fe3O4 particles under the same physiological conditions. Biomarkers of reactive oxygen species (ROS), glutathione (GSH), and malondialdehyde (MDA) in the hepatic and brain tissues were detected. Results showed that no significant difference in oxidative damage existed at concentrations lower than 10 mg·kg-1 for NPs compared with the control group. Fe3O4 NP concentration had obvious dose–effect relationships (P<0.05 or P<0.01) with ROS level, GSH content, and MDA content in mouse hepatic and brain tissues at>20 mg·kg-1 concentrations. To some extent, ordinary Fe3O4 particles with 40 mg·kg-1 concentration also affected hepatic and brain tissues in mice. The biological effect was similar to Fe3O4 NPs at 10?mg·kg-1 concentration. Thus, Fe3O4 NPs had significant damage effects on the antioxidant defense system in the hepatic and brain tissues of mice, whereas ordinary Fe3O4 had less influence than Fe3O4 NPs at the same concentration.

Keywords Fe3O4 nanoparticle (NP)      ordinary Fe3O4 particle      oxidative damage      reactive oxygen species (ROS)      glutathione (GSH)      malondialdehyde (MDA)     
Corresponding Author(s): YANG Xu,Email:yangxu@mail.ccnu.edu.cn   
Issue Date: 01 October 2013
 Cite this article:   
Xu YANG,Yongli WANG,Nian QIN, et al. Oxidative-damage effect of Fe3O4 nanoparticles on mouse hepatic and brain cells in vivo[J]. Front Biol, 2013, 8(5): 549-555.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-013-1277-8
https://academic.hep.com.cn/fib/EN/Y2013/V8/I5/549
Fig.1  SEM image showing the crystal appearance of FeO NPs.
Fig.2  Size distribution of FeO NPs dispersed in phosphate-buffered saline.
Fig.3  Effects of different concentration of NPs and normal FeO particles with a concentration of 40 mg·kg·d (right-hand most) on the levels of ROS in mouse livers (A) and brains (B). *0.05 and **0.01, compared with the blank control group. Notes: indicates NPs, and indicates normal particles.
Fig.4  Effects of different concentration of NPs and normal FeO particles at a concentration of 40 mg·kg·d (right-hand most) on the GSH content in mouse livers (A) and brains (B). *<0.05 and **<0.01, compared with the blank control group
Fig.5  Effects of different concentration of NPs and normal FeO particles at a concentration of 40 mg·kg·d (right-hand most) on the MDA concentration in mouse livers (A) and brains (B). *<0.05 and **<0.01, compared with the blank control group
1 Anderson M E (1985). Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol , 113: 548–555
doi: 10.1016/S0076-6879(85)13073-9 pmid:4088074
2 Borm P J, Kreyling W (2004). Toxicological hazards of inhaled nanoparticles—potential implications for drug delivery. J Nanosci Nanotechnol , 4(5): 521–531
doi: 10.1166/jnn.2004.081 pmid:15503438
3 Bystrzejewski M, Cudzi?o S, Huczko A, Lange H, Soucy G, Cota-Sanchez G, Kaszuwara W (2007). Carbon encapsulated magnetic nanoparticles for biomedical applications: thermal stability studies. Biomol Eng , 24(5): 555–558
doi: 10.1016/j.bioeng.2007.08.006 pmid:17855165
4 Elbekai R H, El-Kadi A O (2005). The role of oxidative stress in the modulation of aryl hydrocarbon receptor-regulated genes by As3+, Cd2+, and Cr6+. Free Radic Biol Med , 39(11): 1499–1511
doi: 10.1016/j.freeradbiomed.2005.07.012 pmid:16274885
5 Fadeel B, Garcia-Bennett A E (2010). Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev , 62(3): 362–374
doi: 10.1016/j.addr.2009.11.008 pmid:19900497
6 Fleige G, Seeberger F, Laux D, Kresse M, Taupitz M, Pilgrimm H, Zimmer C (2002). In vitro characterization of two different ultrasmall iron oxide particles for magnetic resonance cell tracking. Invest Radiol , 37(9): 482–488
doi: 10.1097/00004424-200209000-00002 pmid:12218443
7 Hsiao I L, Huang Y J (2011). Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells. Sci Total Environ , 409(7): 1219–1228
doi: 10.1016/j.scitotenv.2010.12.033 pmid:21255821
8 Jia G, Wang H F, Yan L, Wang X, Pei R J, Yan T, Zhao Y L, Guo X B (2005). Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol , 39(5): 1378–1383
doi: 10.1021/es048729l pmid:15787380
9 Kim S, Choi J E, Choi J, Chung K H, Park K, Yi J, Ryu D Y (2009). Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro , 23(6): 1076–1084
doi: 10.1016/j.tiv.2009.06.001 pmid:19508889
10 Lewinski N, Colvin V, Drezek R (2008). Cytotoxicity of nanoparticles. Small , 4(1): 26–49
doi: 10.1002/smll.200700595 pmid:18165959
11 Lippacher A, Müller R H, M?der K (2001). Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles. Int J Pharm , 214(1-2): 9–12
doi: 10.1016/S0378-5173(00)00623-2 pmid:11282228
12 Ma P, Luo Q, Chen J, Gan Y, Du J, Ding S, Xi Z, Yang X (2012). Intraperitoneal injection of magnetic Fe?O?-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice. Int J Nanomedicine , 7: 4809–4818
pmid:22973100
13 Nakamura M, Ozaki S, Abe M, Doi H, Matsumoto T, Ishimura K (2010). Size-controlled synthesis, surface functionalization, and biological applications of thiol-organosilica particles. Colloids Surf B Biointerfaces , 79(1): 19–26
doi: 10.1016/j.colsurfb.2010.03.008 pmid:20417071
14 Nishimori H, Kondoh M, Isoda K, Tsunoda S, Tsutsumi Y, Yagi K (2009). Silica nanoparticles as hepatotoxicants. Eur J Pharm Biopharm , 72(3): 496–501
doi: 10.1016/j.ejpb.2009.02.005 pmid:19232391
15 Novotna B, Jendelova P, Kapcalova M, Rossner P Jr, Turnovcova K, Bagryantseva Y, Babic M, Horak D, Sykova E (2012). Oxidative damage to biological macromolecules in human bone marrow mesenchymal stromal cells labeled with various types of iron oxide nanoparticles. Toxicol Lett , 210(1): 53–63
doi: 10.1016/j.toxlet.2012.01.008 pmid:22269213
16 Piao M J, Kang K A, Lee I K, Kim H S, Kim S, Choi J Y, Choi J, Hyun J W (2011). Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett , 201(1): 92–100
doi: 10.1016/j.toxlet.2010.12.010 pmid:21182908
17 Pissuwan D, Niidome T, Cortie M B (2011). The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release , 149(1): 65–71
doi: 10.1016/j.jconrel.2009.12.006 pmid:20004222
18 Strigul N, Vaccari L, Galdun C, Wazne M, Liu X, Christodoulatos C, Jasinkiewicz K (2009). Acute toxicity of boron, titanium dioxide, and aluminum nanoparticles to Daphnia magna and Vibrio fischeri. Desalination , 248(1-3): 771–782
doi: 10.1016/j.desal.2009.01.013
19 Tedesco S, Doyle H, Blasco J, Redmond G, Sheehan D (2010). Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat Toxicol , 100(2): 178–186
doi: 10.1016/j.aquatox.2010.03.001 pmid:20382436
20 Valodkar M, Jadeja R N, Thounaojam M C, Devkar R V, Thakore S (2011). In vitro toxicity study of plant latex capped silver nanoparticles in human lung carcinoma cells. Mater Sci Eng C , 31(8): 1723–1728
doi: 10.1016/j.msec.2011.08.001
21 Xia T, Kovochich M, Liong M, M?dler L, Gilbert B, Shi H, Yeh J I, Zink J I, Nel A E (2008). Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano , 2(10): 2121–2134
doi: 10.1021/nn800511k pmid:19206459
22 Xie J, Huang J, Li X, Sun S, Chen X (2009). Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem , 16(10): 1278–1294
doi: 10.2174/092986709787846604 pmid:19355885
23 Yu M K, Jeong Y Y, Park J, Park S, Kim J W, Min J J, Kim K, Jon S (2008). Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl , 47(29): 5362–5365
doi: 10.1002/anie.200800857 pmid:18551493
24 Zhu M T, Feng W Y, Wang B, Wang T C, Gu Y Q, Wang M, Wang Y, Ouyang H, Zhao Y L, Chai Z F (2008). Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology , 247(2-3): 102–111
doi: 10.1016/j.tox.2008.02.011 pmid:18394769
[1] Shuai SHANG,Shang-Yue YANG,Zhi-Min LIU,Xu YANG. Oxidative damage in the kidney and brain of mice induced by different nano-materials[J]. Front. Biol., 2015, 10(1): 91-96.
[2] Huanan WEN, Jiaxin ZHONG, Bei SHEN, Tao GAN, Chao FU, Zhihong ZHU, Rui LI, Xu YANG. Comparative study of the cytotoxicity of the nanosized and microsized tellurium powders on HeLa cells[J]. Front Biol, 2013, 8(4): 444-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed