|
|
|
Oxidative-damage effect of Fe3O4 nanoparticles on mouse hepatic and brain cells in vivo |
Yongli WANG, Nian QIN, Shan CHEN, Jingyun ZHAO, Xu YANG( ) |
| Hubei Key Laboratory of Genetic Regulation and Integrative Biology College of Life Science, Central China Normal University, Wuhan 430079, China |
|
|
|
|
Abstract To assess the biological safety of Fe3O4 nanoparticles (NPs), the oxidative-damage effect of these NPs was studied. Twenty-five Kunming mice were exposed to Fe3O4 NPs by intraperitoneal injection daily for 1 week at doses of 0, 10, 20, and 40 mg·kg-1. Five Kunming mice were also injected with 40 mg·kg-1 ordinary Fe3O4 particles under the same physiological conditions. Biomarkers of reactive oxygen species (ROS), glutathione (GSH), and malondialdehyde (MDA) in the hepatic and brain tissues were detected. Results showed that no significant difference in oxidative damage existed at concentrations lower than 10 mg·kg-1 for NPs compared with the control group. Fe3O4 NP concentration had obvious dose–effect relationships (P<0.05 or P<0.01) with ROS level, GSH content, and MDA content in mouse hepatic and brain tissues at>20 mg·kg-1 concentrations. To some extent, ordinary Fe3O4 particles with 40 mg·kg-1 concentration also affected hepatic and brain tissues in mice. The biological effect was similar to Fe3O4 NPs at 10?mg·kg-1 concentration. Thus, Fe3O4 NPs had significant damage effects on the antioxidant defense system in the hepatic and brain tissues of mice, whereas ordinary Fe3O4 had less influence than Fe3O4 NPs at the same concentration.
|
| Keywords
Fe3O4 nanoparticle (NP)
ordinary Fe3O4 particle
oxidative damage
reactive oxygen species (ROS)
glutathione (GSH)
malondialdehyde (MDA)
|
|
Corresponding Author(s):
YANG Xu,Email:yangxu@mail.ccnu.edu.cn
|
|
Issue Date: 01 October 2013
|
|
| 1 |
Anderson M E (1985). Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol , 113: 548–555 doi: 10.1016/S0076-6879(85)13073-9 pmid:4088074
|
| 2 |
Borm P J, Kreyling W (2004). Toxicological hazards of inhaled nanoparticles—potential implications for drug delivery. J Nanosci Nanotechnol , 4(5): 521–531 doi: 10.1166/jnn.2004.081 pmid:15503438
|
| 3 |
Bystrzejewski M, Cudzi?o S, Huczko A, Lange H, Soucy G, Cota-Sanchez G, Kaszuwara W (2007). Carbon encapsulated magnetic nanoparticles for biomedical applications: thermal stability studies. Biomol Eng , 24(5): 555–558 doi: 10.1016/j.bioeng.2007.08.006 pmid:17855165
|
| 4 |
Elbekai R H, El-Kadi A O (2005). The role of oxidative stress in the modulation of aryl hydrocarbon receptor-regulated genes by As3+, Cd2+, and Cr6+. Free Radic Biol Med , 39(11): 1499–1511 doi: 10.1016/j.freeradbiomed.2005.07.012 pmid:16274885
|
| 5 |
Fadeel B, Garcia-Bennett A E (2010). Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev , 62(3): 362–374 doi: 10.1016/j.addr.2009.11.008 pmid:19900497
|
| 6 |
Fleige G, Seeberger F, Laux D, Kresse M, Taupitz M, Pilgrimm H, Zimmer C (2002). In vitro characterization of two different ultrasmall iron oxide particles for magnetic resonance cell tracking. Invest Radiol , 37(9): 482–488 doi: 10.1097/00004424-200209000-00002 pmid:12218443
|
| 7 |
Hsiao I L, Huang Y J (2011). Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells. Sci Total Environ , 409(7): 1219–1228 doi: 10.1016/j.scitotenv.2010.12.033 pmid:21255821
|
| 8 |
Jia G, Wang H F, Yan L, Wang X, Pei R J, Yan T, Zhao Y L, Guo X B (2005). Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol , 39(5): 1378–1383 doi: 10.1021/es048729l pmid:15787380
|
| 9 |
Kim S, Choi J E, Choi J, Chung K H, Park K, Yi J, Ryu D Y (2009). Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro , 23(6): 1076–1084 doi: 10.1016/j.tiv.2009.06.001 pmid:19508889
|
| 10 |
Lewinski N, Colvin V, Drezek R (2008). Cytotoxicity of nanoparticles. Small , 4(1): 26–49 doi: 10.1002/smll.200700595 pmid:18165959
|
| 11 |
Lippacher A, Müller R H, M?der K (2001). Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles. Int J Pharm , 214(1-2): 9–12 doi: 10.1016/S0378-5173(00)00623-2 pmid:11282228
|
| 12 |
Ma P, Luo Q, Chen J, Gan Y, Du J, Ding S, Xi Z, Yang X (2012). Intraperitoneal injection of magnetic Fe?O?-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice. Int J Nanomedicine , 7: 4809–4818 pmid:22973100
|
| 13 |
Nakamura M, Ozaki S, Abe M, Doi H, Matsumoto T, Ishimura K (2010). Size-controlled synthesis, surface functionalization, and biological applications of thiol-organosilica particles. Colloids Surf B Biointerfaces , 79(1): 19–26 doi: 10.1016/j.colsurfb.2010.03.008 pmid:20417071
|
| 14 |
Nishimori H, Kondoh M, Isoda K, Tsunoda S, Tsutsumi Y, Yagi K (2009). Silica nanoparticles as hepatotoxicants. Eur J Pharm Biopharm , 72(3): 496–501 doi: 10.1016/j.ejpb.2009.02.005 pmid:19232391
|
| 15 |
Novotna B, Jendelova P, Kapcalova M, Rossner P Jr, Turnovcova K, Bagryantseva Y, Babic M, Horak D, Sykova E (2012). Oxidative damage to biological macromolecules in human bone marrow mesenchymal stromal cells labeled with various types of iron oxide nanoparticles. Toxicol Lett , 210(1): 53–63 doi: 10.1016/j.toxlet.2012.01.008 pmid:22269213
|
| 16 |
Piao M J, Kang K A, Lee I K, Kim H S, Kim S, Choi J Y, Choi J, Hyun J W (2011). Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett , 201(1): 92–100 doi: 10.1016/j.toxlet.2010.12.010 pmid:21182908
|
| 17 |
Pissuwan D, Niidome T, Cortie M B (2011). The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release , 149(1): 65–71 doi: 10.1016/j.jconrel.2009.12.006 pmid:20004222
|
| 18 |
Strigul N, Vaccari L, Galdun C, Wazne M, Liu X, Christodoulatos C, Jasinkiewicz K (2009). Acute toxicity of boron, titanium dioxide, and aluminum nanoparticles to Daphnia magna and Vibrio fischeri. Desalination , 248(1-3): 771–782 doi: 10.1016/j.desal.2009.01.013
|
| 19 |
Tedesco S, Doyle H, Blasco J, Redmond G, Sheehan D (2010). Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat Toxicol , 100(2): 178–186 doi: 10.1016/j.aquatox.2010.03.001 pmid:20382436
|
| 20 |
Valodkar M, Jadeja R N, Thounaojam M C, Devkar R V, Thakore S (2011). In vitro toxicity study of plant latex capped silver nanoparticles in human lung carcinoma cells. Mater Sci Eng C , 31(8): 1723–1728 doi: 10.1016/j.msec.2011.08.001
|
| 21 |
Xia T, Kovochich M, Liong M, M?dler L, Gilbert B, Shi H, Yeh J I, Zink J I, Nel A E (2008). Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano , 2(10): 2121–2134 doi: 10.1021/nn800511k pmid:19206459
|
| 22 |
Xie J, Huang J, Li X, Sun S, Chen X (2009). Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem , 16(10): 1278–1294 doi: 10.2174/092986709787846604 pmid:19355885
|
| 23 |
Yu M K, Jeong Y Y, Park J, Park S, Kim J W, Min J J, Kim K, Jon S (2008). Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl , 47(29): 5362–5365 doi: 10.1002/anie.200800857 pmid:18551493
|
| 24 |
Zhu M T, Feng W Y, Wang B, Wang T C, Gu Y Q, Wang M, Wang Y, Ouyang H, Zhao Y L, Chai Z F (2008). Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology , 247(2-3): 102–111 doi: 10.1016/j.tox.2008.02.011 pmid:18394769
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|