Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (1) : 1-4    https://doi.org/10.1007/s11515-013-1287-6
MINI-REVIEW
Liposome mediated drug delivery for leukocyte adhesion deficieny I (LAD I): Targeting the mutated gene ITGB2 and expression of CD18 protein
C. Subathra DEVI(), Kritika KEDARINATH, Payal CHOUDHARY, Vishakha TYAGI, Mohanasrinivasan. V
School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
 Download: PDF(104 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Leukocyte adhesion deficiency (LAD) I is a disorder caused due to mutations in a gene (ITGB2) located on chromosome 21 and encodes the β2 subunit of the leukocyte integrin molecules. This leads to defects in the adhesion of leukocytes on endothelial cells which further leads to recurrent microbial infections due to a decrease in the immune response. Base Excision Repair Mechanism (BER) is instrumental in repairing damaged DNA by removing mutated/damaged bases. We have proposed a hypothesis for the treatment of LAD I by making use of the proteins/enzyme complexes responsible for base excision repair mechanism be introduced into the leukocytes via liposomes. This will target the mutated gene in the leukocytes (mostly neutrophils) and DNA repair will occur. The liposomes can be introduced into the patients via intravenous methods.

Keywords CD18      β-integrin      LAD I      liposome      BER      ITGB2     
Corresponding Author(s): C. Subathra DEVI   
Issue Date: 09 October 2014
 Cite this article:   
C. Subathra DEVI,Kritika KEDARINATH,Payal CHOUDHARY, et al. Liposome mediated drug delivery for leukocyte adhesion deficieny I (LAD I): Targeting the mutated gene ITGB2 and expression of CD18 protein[J]. Front. Biol., 2014, 9(1): 1-4.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-013-1287-6
https://academic.hep.com.cn/fib/EN/Y2014/V9/I1/1
Fig.1  BER Targeting the Mutated Gene ITGB2.
1 M Akbari, M Otterlei, J Peña-Diaz, P A Aas, B Kavli, N B Liabakk, L Hagen, K Imai, A Durandy, G Slupphaug, H E Krokan (2004). Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells. Nucleic Acids Res, 32(18): 5486−5498
https://doi.org/10.1093/nar/gkh872 pmid: 15479784
2 T M Allen, C B Hansen, L S Guo (1993). Subcutaneous administration of liposomes: a comparison with the intravenous and intraperitoneal routes of injection. Biochim Biophys Acta, 1150(1): 9−16
https://doi.org/10.1016/0005-2736(93)90115-G pmid: 8334142
3 A M Amin, N Dana, S K Gupta, D G Tenen, D M Fathallah (1990). Point Mutations Impairing Cell Surface Expression of the Common β Subunit (CD18) in a Patient with Leukocyte Adhesion Molecule (Leu-CAM) Deficiency. American Soc Clin Invest. Inc., 85: 977−981
4 D C Anderson, T A Springer (1987). Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Annu Rev Med, 38(1): 175−194
https://doi.org/10.1146/annurev.me.38.020187.001135 pmid: 3555290
5 J Chaudhuri, F W Alt (2004). Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol, 4(7): 541−552
https://doi.org/10.1038/nri1395 pmid: 15229473
6 M Finkelstein, G Weissmann (1978). The introduction of enzymes into cells by means of liposomes. J Lipid Res, 19(3): 289−303
pmid: 349106
7 P Fortini, E Dogliotti (2007). Base damage and single-strand break repair: mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair (Amst), 6(4): 398−409
https://doi.org/10.1016/j.dnarep.2006.10.008 pmid: 17129767
8 J C Fromme, A Banerjee, G L Verdine (2004). DNA glycosylase recognition and catalysis. Curr Opin Struct Biol, 14(1): 43−49
https://doi.org/10.1016/j.sbi.2004.01.003 pmid: 15102448
9 T K Kishimoto, K O’Conner, T A Springer (1989). Leukocyte adhesion deficiency. Aberrant splicing of a conserved integrin sequence causes a moderate deficiency phenotype. J Biol Chem, 264(6): 3588−3595
pmid: 2464599
10 S H Kuhn, B Gemperli, E G Shephard, J R Joubert, P A Weidemann, G Weissmann, M C Finkelstein (1983). Interaction of liposomes with human leukocytes in whole blood. Biochim Biophys Acta, 762(1): 119−127
https://doi.org/10.1016/0167-4889(83)90124-6 pmid: 6830865
11 I R Lehman (1974). DNA ligase: structure, mechanism, and function. Science, 186(4166): 790−797
https://doi.org/10.1126/science.186.4166.790 pmid: 4377758
12 Y Liu, R Prasad, W A Beard, P S Kedar, E W Hou, D D Shock, S H Wilson (2007). Coordination of steps in single-nucleotide base excision repair mediated by apurinic/apyrimidinic endonuclease 1 and DNA polymerase β. J Biol Chem, 282(18): 13532−13541
https://doi.org/10.1074/jbc.M611295200 pmid: 17355977
13 D R Marenstein, D M Wilson 3rd, G W Teebor (2004). Human AP endonuclease (APE1) demonstrates endonucleolytic activity against AP sites in single-stranded DNA. DNA Repair (Amst), 3(5): 527−533
https://doi.org/10.1016/j.dnarep.2004.01.010 pmid: 15084314
14 L D Mayer, L C Tai, D S Ko, D Masin, R S Ginsberg, P R Cullis, M B Bally (1989). Influence of vesicle size, lipid composition, and drug-to-lipid ratio on the biological activity of liposomal doxorubicin in mice. Cancer Res, 49(21): 5922−5930
pmid: 2790807
15 S Ristori, J Oberdisse, I Grillo, A Donati, O Spalla (2005). Structural characterization of cationic liposomes loaded with sugar-based carboranes. Biophys J, 88(1): 535−547
https://doi.org/10.1529/biophysj.104.049080 pmid: 15489297
16 V Schreiber, J C Amé, P Dollé, I Schultz, B Rinaldi, V Fraulob, J Ménissier-de Murcia, G de Murcia (2002). Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem, 277(25): 23028−23036
https://doi.org/10.1074/jbc.M202390200 pmid: 11948190
17 V S Sidorenko, D O Zharkov (2008). Role of base excision repair DNA glycosylases in hereditary and infectious human diseases. Молекул биол, 42(5): 891−903
pmid: 18988537
18 T A Steitz (1999). DNA polymerases: structural diversity and common mechanisms. J Biol Chem, 274(25): 17395−17398
https://doi.org/10.1074/jbc.274.25.17395 pmid: 10364165
19 J N Stephen, A S Robert, I S Monika (2012).
20 J Szebeni (1998). The Interaction of Liposomes with the Complement. Crit Rev Ther Drug, 15(1): 32
https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v15.i1.20
21 A, Wagner K Vorauer-Uhl (2011). Liposome technology for industrial purposes. J Drug Delivery, Article ID 591325
22 P K Working, M S Newman, S K Huang, E Mayhew, J Vaage, D D Lasic (1994). Pharmacokinetics, biodistribution, and therapeutic efficacy of doxorubicin encapsulated in Stealth® liposomes (Doxil®). J Liposome Res, 4(1): 667−687
https://doi.org/10.3109/08982109409037065
23 X W Zhang, R Schramm, Q Liu, H Ekberg, B Jeppsson, H Thorlacius (2000). Important role of CD18 in TNF-alpha-induced leukocyte adhesion in muscle and skin venules in vivo. Inflamm Res, 49(10): 529−534
https://doi.org/10.1007/s000110050627 pmid: 11089905
24 D O Zharkov (2007). Structure and conformational dynamics of base excision repair DNA glycosylases. Mol Biol, 41(5): 702−716
https://doi.org/10.1134/S0026893307050044
[1] Arshid Yousefi-Avarvand, Mohsen Tafaghodi, Saman Soleimanpour, Farzad Khademi. HspX protein as a candidate vaccine against Mycobacterium tuberculosis: an overview[J]. Front. Biol., 2018, 13(4): 293-296.
[2] Syed Baker, Svetlana V. Prudnikova, Tatiana Volova. Siberian plants: untapped repertoire of bioactive endosymbionts[J]. Front. Biol., 2018, 13(3): 157-167.
[3] Teetam Ghosal, Nikita Augustine, Ashwini Siddapur, Vaishnavi Babu, Merlyn Keziah Samuel, Subathra Devi Chandrasekaran. Strain improvement, optimization and purification studies for enhanced production of streptokinase from Streptococcus uberis TNA-M1[J]. Front. Biol., 2017, 12(5): 376-384.
[4] Hatam Boustani, Sirus Pakseresht, Mohammad-Reza Haghdoust, Saeid Qanbari, Hadis Mehregan-Nasab. Effect of psychological preparation on anxiety level before colonoscopy in outpatients referred to Golestan Hospital in Ahvaz[J]. Front. Biol., 2017, 12(3): 235-239.
[5] Madhuchhanda Das, Harischandra Sripathy Prakash, Monnanda Somaiah Nalini. Antioxidative properties of phenolic compounds isolated from the fungal endophytes of Zingiber nimmonii (J. Graham) Dalzell.[J]. Front. Biol., 2017, 12(2): 151-162.
[6] Dong Yang,Ying Kong. The bacterial and host factors associated with extrapulmonary dissemination of Mycobacterium tuberculosis[J]. Front. Biol., 2015, 10(3): 252-261.
[7] Qichao WANG, Xianmin ZHU, Yun FENG, Zhigang XUE, Guoping FAN. Single-cell genomics: An overview[J]. Front Biol, 2013, 8(6): 569-576.
[8] John J. CHEN, . The Hardy-Weinberg principle and its applications in modern population genetics[J]. Front. Biol., 2010, 5(4): 348-353.
[9] LIU Yunhuan, LI Yong, SHAO Tiequan, ZHANG Wanqian, WANG Zhuo, YANG Weixian, LI Rongxi, ZHU Zhixin. Phosphatized rare star-like mouth disc of and its functional morphology from the earliest Cambrian of the South Shaanxi China[J]. Front. Biol., 2008, 3(1): 106-112.
[10] XIE Yongli, WANG Zizhang, LIU Qiang, ZHANG Shuping. Cloning and functional identification of stress-resistant BeDREB genes from Bermuda grass[J]. Front. Biol., 2006, 1(4): 367-374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed