|
|
|
Surgical decompression in acute spinal cord injury: A review of clinical evidence, animal model studies, and potential future directions of investigation |
Yiping LI1,Chandler L. WALKER1,Yi Ping ZHANG2,Christopher B. SHIELDS2,*( ),Xiao-Ming XU1,*( ) |
1. Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA 2. Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, USA |
|
|
|
|
Abstract The goal for treatment in acute spinal cord injury (SCI) is to reduce the extent of secondary damage and facilitate neurologic regeneration and functional recovery. Although multiple studies have investigated potential new therapies for the treatment of acute SCI, outcomes and management protocols aimed at ameliorating neurologic injury in patients remain ineffective. More recent clinical and basic science research have shown surgical interventions to be a potentially valuable modality for treatment; however, the role and timing of surgical decompression, in addition to the optimal surgical intervention, remain one of the most controversial topics pertaining to surgical treatment of acute SCI. As an increasing number of potential treatment modalities emerge, animal models are pivotal for investigating its clinical application and translation into human trials. This review critically appraises the available literature for both clinical and basic science studies to highlight the extent of investigation that has occurred, specific therapies considered, and potential areas for future research.
|
| Keywords
acute spinal cord injury
surgical decompression
durotomy
animal models
|
|
Corresponding Author(s):
Christopher B. SHIELDS
|
|
Issue Date: 13 May 2014
|
|
| 1 |
AckeryA, TatorC, KrassioukovA (2004). A global perspective on spinal cord injury epidemiology. J Neurotrauma, 21(10): 1355-1370 doi: 10.1089/neu.2004.21.1355 pmid: 15672627
|
| 2 |
AhnJ, ManL X, WandererJ, BernsteinJ, IannottiJ P (2008). The future of the orthopaedic clinician-scientist. Part I: The potential role of MD-PhD students considering orthopaedic surgery. J Bone Joint Surg Am, 90(8): 1794-1799 doi: 10.2106/JBJS.G.00460 pmid: 18676927
|
| 3 |
AmarA P, LevyM L (1999). Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery, 44(5): 1027-1039, discussion 1039-1040 doi: 10.1097/00006123-199905000-00052 pmid: 10232536
|
| 4 |
BaptisteD C, FehlingsM G (2008). Emerging drugs for spinal cord injury. Expert Opin Emerg Drugs, 13(1): 63-80 doi: 10.1517/14728214.13.1.63 pmid: 18321149
|
| 5 |
BötelU, GläserE, NiedeggenA (1997). The surgical treatment of acute spinal paralysed patients. Spinal Cord, 35(7): 420-428 doi: 10.1038/sj.sc.3100407 pmid: 9232746
|
| 6 |
BrackenM B, ShepardM J, CollinsW F, HolfordT R, YoungW, BaskinD S, EisenbergH M, FlammE, Leo-SummersL, MaroonJ, MarshallL F, PerotP L Jr, PiepmeierJ, SonntagV K H, WagnerF C, WilbergerJ E, WinnH R (1990). A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury.Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med, 322(20): 1405-1411 doi: 10.1056/NEJM199005173222001 pmid: 2278545
|
| 7 |
BrackenM B, ShepardM J, HolfordT R, Leo-SummersL, AldrichE F, FazlM, FehlingsM, HerrD L, HitchonP W, MarshallL F, NockelsR P, PascaleV, PerotP L Jr, PiepmeierJ, SonntagV K, WagnerF, WilbergerJ E, WinnH R, YoungW (1997). Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA, 277(20): 1597-1604 doi: 10.1001/jama.1997.03540440031029 pmid: 9168289
|
| 8 |
CampagnoloD I, EsquieresR E, KopaczK J (1997). Effect of timing of stabilization on length of stay and medical complications following spinal cord injury. J Spinal Cord Med, 20(3): 331-334 pmid: 9261779
|
| 9 |
CarlsonG D, GordenC D, OliffH S, PillaiJ J, LaMannaJ C (2003). Sustained spinal cord compression: part I: time-dependent effect on long-term pathophysiology. J Bone Joint Surg Am, 85-A(1): 86-94 pmid: 12533577
|
| 10 |
CarlsonG D, MinatoY, OkadaA, GordenC D, WardenK E, BarbeauJ M, BiroC L, BahnuikE, BohlmanH H, LamannaJ C (1997). Early time-dependent decompression for spinal cord injury: vascular mechanisms of recovery. J Neurotrauma, 14(12): 951-962 doi: 10.1089/neu.1997.14.951 pmid: 9475376
|
| 11 |
CengizS L, KalkanE, BayirA, IlikK, BaseferA (2008). Timing of thoracolomber spine stabilization in trauma patients; impact on neurological outcome and clinical course. A real prospective (rct) randomized controlled study. Arch Orthop Trauma Surg, 128(9): 959-966 doi: 10.1007/s00402-007-0518-1 pmid: 18040702
|
| 12 |
DelamarterR B, ShermanJ, CarrJ B (1995). Pathophysiology of spinal cord injury. Recovery after immediate and delayed decompression. J Bone Joint Surg Am, 77(7): 1042-1049 pmid: 7608226
|
| 13 |
DesaiA, BallP A, BekelisK, LurieJ, MirzaS K, TostesonT D, WeinsteinJ N (2011). SPORT: does incidental durotomy affect long-term outcomes in cases of spinal stenosis? Neurosurgery, 69(1): 38-44, discussion 44 pmid: 21358354
|
| 14 |
DimarJ R 2nd, GlassmanS D, RaqueG H, ZhangY P, ShieldsC B (1999). The influence of spinal canal narrowing and timing of decompression on neurologic recovery after spinal cord contusion in a rat model. Spine (Phila Pa 1976), 24(16): 1623-1633 pmid: 10472095
|
| 15 |
DuhM S, ShepardM J, WilbergerJ E, BrackenM B (1994). The effectiveness of surgery on the treatment of acute spinal cord injury and its relation to pharmacological treatment. Neurosurgery, 35(2): 240-248, discussion 248-249 doi: 10.1227/00006123-199408000-00009 pmid: 7969831
|
| 16 |
FehlingsM G, ArvinB (2009). The timing of surgery in patients with central spinal cord injury. J Neurosurg Spine, 10(1): 1-2 doi: 10.3171/2008.10.SPI0822 pmid: 19119924
|
| 17 |
FehlingsM G, VaccaroA, WilsonJ R, SinghA, W CadotteD, HarropJ S, AarabiB, ShaffreyC, DvorakM, FisherC, ArnoldP, MassicotteE M, LewisS, RampersaudR (2012). Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS ONE, 7(2): e32037 doi: 10.1371/journal.pone.0032037 pmid: 22384132
|
| 18 |
GuestJ, ElerakyM A, ApostolidesP J, DickmanC A, SonntagV K (2002). Traumatic central cord syndrome: results of surgical management. J Neurosurg, 97(1 Suppl): 25-32 pmid: 12120648
|
| 19 |
HallE D, BraughlerJ M (1982). Glucocorticoid mechanisms in acute spinal cord injury: a review and therapeutic rationale. Surg Neurol, 18(5): 320-327 doi: 10.1016/0090-3019(82)90140-9 pmid: 7179094
|
| 20 |
HawrylukG W, RowlandJ, KwonB K, FehlingsM G (2008). Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg Focus, 25(5): E14 doi: 10.3171/FOC.2008.25.11.E14 pmid: 18980474
|
| 21 |
HurlbertR J (2000). Methylprednisolone for acute spinal cord injury: an inappropriate standard of care. J Neurosurg, 93(1 Suppl): 1-7 pmid: 10879751
|
| 22 |
IannottiC, ZhangY P, ShieldsL B, HanY, BurkeD A, XuX M, ShieldsC B (2006). Dural repair reduces connective tissue scar invasion and cystic cavity formation after acute spinal cord laceration injury in adult rats. J Neurotrauma, 23(6): 853-865 doi: 10.1089/neu.2006.23.853 pmid: 16774471
|
| 23 |
JonesC F, CriptonP A, KwonB K (2012a). Gross morphological changes of the spinal cord immediately after surgical decompression in a large animal model of traumatic spinal cord injury. Spine, 37(15): E890-E899 doi: 10.1097/BRS.0b013e3182553d1d pmid: 22433504
|
| 24 |
JonesC F, NewellR S, LeeJ H, CriptonP A, KwonB K (2012b). The pressure distribution of cerebrospinal fluid responds to residual compression and decompression in an animal model of acute spinal cord injury. Spine, 37(23): E1422-E1431 doi: 10.1097/BRS.0b013e31826ba7cd pmid: 22869059
|
| 25 |
JuurlinkB H, PatersonP G (1998). Review of oxidative stress in brain and spinal cord injury: suggestions for pharmacological and nutritional management strategies. J Spinal Cord Med, 21(4): 309-334 pmid: 10096045
|
| 26 |
KirshblumS, CampagnoloD I, DeLisaJ A (2002). Spinal cord medicine. Philadelphia: Lippincott Williams & Wilkins. x, 655 p. p.
|
| 27 |
KrengelW F 3rd, AndersonP A, HenleyM B (1993). Early stabilization and decompression for incomplete paraplegia due to a thoracic-level spinal cord injury. Spine, 18(14 Supplement): 2080-2087 doi: 10.1097/00007632-199310001-00027 pmid: 8272964
|
| 28 |
LeviL, WolfA, RigamontiD, RaghebJ, MirvisS, RobinsonW L (1991). Anterior decompression in cervical spine trauma: does the timing of surgery affect the outcome? Neurosurgery, 29(2): 216-222 doi: 10.1227/00006123-199108000-00008 pmid: 1886659
|
| 29 |
LuJ, AshwellK W, WaiteP (2000). Advances in secondary spinal cord injury: role of apoptosis. Spine, 25(14): 1859-1866 doi: 10.1097/00007632-200007150-00022 pmid: 10888960
|
| 30 |
NagataS, GolsteinP (1995). The Fas death factor. Science, 267(5203): 1449-1456 doi: 10.1126/science. pmid: 7533326
|
| 31 |
NgW P, FehlingsM G, CuddyB, DickmanC, FazlM, GreenB, HitchonP, NorthrupB, SonntagV, WagnerF, TatorC H (1999). Surgical treatment for acute spinal cord injury study pilot study #2: evaluation of protocol for decompressive surgery within 8 hours of injury. Neurosurg Focus, 6(1): e3 doi: 10.3171/foc.1999.6.1.6 pmid: 17031916
|
| 32 |
PaceM C, PalagianoA, PaceL, PassavantiM B, IannottiM, SorrentinoR, AurilioC (2004). Sedation in gynaecologic oncology day surgery. Anticancer Res, 24(6): 4109-4112 pmid: 15736460
|
| 33 |
ParkE, VelumianA A, FehlingsM G (2004). The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma, 21(6): 754-774 doi: 10.1089/0897715041269641 pmid: 15253803
|
| 34 |
PerkinsP G, DeaneR H (1988). Long-term follow-up of six patients with acute spinal injury following dural decompression. Injury, 19(6): 397-401 doi: 10.1016/0020-1383(88)90132-5 pmid: 3267644
|
| 35 |
PollardM E, AppleD F (2003). Factors associated with improved neurologic outcomes in patients with incomplete tetraplegia. Spine, 28(1): 33-39 doi: 10.1097/00007632-200301010-00009 pmid: 12544952
|
| 36 |
ProfyrisC, CheemaS S, ZangD, AzariM F, BoyleK, PetratosS (2004). Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis, 15(3): 415-436 doi: 10.1016/j.nbd.2003.11.015 pmid: 15056450
|
| 37 |
RabinowitzR S, EckJ C, HarperC M Jr, LarsonD R, JimenezM A, ParisiJ E, FriedmanJ A, YaszemskiM J, CurrierB L (2008). Urgent surgical decompression compared to methylprednisolone for the treatment of acute spinal cord injury: a randomized prospective study in beagle dogs. Spine, 33(21): 2260-2268 doi: 10.1097/BRS.0b013e31818786db pmid: 18827690
|
| 38 |
RowlandJ W, HawrylukG W, KwonB, FehlingsM G (2008). Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus, 25(5): E2 doi: 10.3171/FOC.2008.25.11.E2 pmid: 18980476
|
| 39 |
SchumacherH W, WassmannH, PodlinskiC (1988). Pseudomeningocele of the lumbar spine. Surg Neurol, 29(1): 77-78 doi: 10.1016/0090-3019(88)90127-9 pmid: 3336842
|
| 40 |
SmithJ S, AndersonR, PhamT, BhatiaN, StewardO, GuptaR (2010). Role of early surgical decompression of the intradural space after cervical spinal cord injury in an animal model. J Bone Joint Surg Am, 92(5): 1206-1214 doi: 10.2106/JBJS.I.00740 pmid: 20439667
|
| 41 |
TatorC H (1991). Review of experimental spinal cord injury with emphasis on the local and systemic circulatory effects. Neurochirurgie, 37(5): 291-302 pmid: 1758561
|
| 42 |
TatorC H, FehlingsM G (1991). Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg, 75(1): 15-26 doi: 10.3171/jns.1991.75.1.0015 pmid: 2045903
|
| 43 |
TatorC H, FehlingsM G, ThorpeK, TaylorW (1999). Current use and timing of spinal surgery for management of acute spinal surgery for management of acute spinal cord injury in North America: results of a retrospective multicenter study. J Neurosurg, 91(1 Suppl): 12-18 pmid: 10419357
|
| 44 |
TatorC H, KoyanagiI (1997). Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg, 86(3): 483-492 doi: 10.3171/jns.1997.86.3.0483 pmid: 9046306
|
| 45 |
VaccaroA R, DaughertyR J, SheehanT P, DanteS J, CotlerJ M, BalderstonR A, HerbisonG J, NorthrupB E (1997). Neurologic outcome of early versus late surgery for cervical spinal cord injury. Spine, 22(22): 2609-2613 doi: 10.1097/00007632-199711150-00006 pmid: 9399445
|
| 46 |
WilsonJ R, SinghA, CravenC, VerrierM C, DrewB, AhnH, FordM, FehlingsM G (2012). Early versus late surgery for traumatic spinal cord injury: the results of a prospective Canadian cohort study. Spinal Cord, 50(11): 840-843 doi: 10.1038/sc.2012.59 pmid: 22565550
|
| 47 |
ZhuH, FengY P, YoungW, YouS W, ShenX F, LiuY S, JuG (2008). Early neurosurgical intervention of spinal cord contusion: an analysis of 30 cases. Chin Med J (Engl), 121(24): 2473-2478 pmid: 19187581
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|