Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (3) : 175-185    https://doi.org/10.1007/s11515-014-1308-0
REVIEW
The dynamics of murine mammary stem/progenitor cells
Qiaoxiang DONG1,2,*(),Lu-Zhe SUN1,3,*()
1. Department of Cellular & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78299, USA
2. Institute of Environmental Safety and Human Health, Wenzhou Medical University, University Town, Wenzhou 325035, China
3. Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, TX 78299, USA
 Download: PDF(710 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The stem/progenitor cells in the murine mammary gland are a highly dynamic population of cells that are responsible for ductal elongation in puberty, homeostasis maintenance in adult, and lobulo-alveolar genesis during pregnancy. In recent years understanding the epithelial cell hierarchy within the mammary gland is becoming particularly important as these different stem/progenitor cells were perceived to be the cells of origin for various subtypes of breast cancer. Although significant advances have been made in enrichment and isolation of stem/progenitor cells by combinations of antibodies against cell surface proteins together with flow cytometry, and in identification of stem/progenitor cells with multi-lineage differentiation and self-renewal using mammary fat pad reconstitution assay and in vivo genetic labeling technique, a clear understanding of how these different stem/progenitors are orchestrated in the mammary gland is still lacking. Here we discuss the different in vivo and in vitro methods currently available for stem/progenitor identification, their associated caveats, and a possible new hierarchy model to reconcile various putative stem/progenitor cell populations identified by different research groups.

Keywords mammary stem cell      cell hierarchy     
Corresponding Author(s): Qiaoxiang DONG   
Issue Date: 24 June 2014
 Cite this article:   
Qiaoxiang DONG,Lu-Zhe SUN. The dynamics of murine mammary stem/progenitor cells[J]. Front. Biol., 2014, 9(3): 175-185.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1308-0
https://academic.hep.com.cn/fib/EN/Y2014/V9/I3/175
Model systemStem or progenitorsNicheLineage specification?MRU ?frequencyReference
in vivo labelingTransplant
WC/R26-lacZPI-MECCD24+CD49fhiAlveolar terminal ductsBasal*Bipotent?–Wagner et al., 2002Matulka et al., 2007
Tg11.5kb-GFPs-SHIP+Cap cellsAlveolar budsBasalBasalBipotentBipotent?1/48?1/79Bai and Rohrschneider, 2010
Axin2CreERT2Axin2+Fetal budPre-pubertal basalPubertal TEBsAdult basalAdult basalLuminalBasalBasal or luminalBasal (virgin)Bipotent (preg)BipotentBipotent?–van Amerongen et al., 2012
Lgr5–EGFP–Ires–CreERT2Lgr5+PND1PND12LuminalBasalBipotent?–?1/1781de Visser et al., 2012
Lgr5-EGFPLgr5+Nipple areaBasalBipotent?1/3.7Plaks et a. 2013
K5tTA/H2B-GFPCD24+CD49fhiGFP+CD61-Tips of TEBBasalBipotent?1/33dos Santos et al., 2013
MMTVrtTA/H2B-GFPCD24+CD29loGFP+Luminal layerLuminal*Bipotent?1/350Kaanta et al., 2013
Tab.1  Stem/progenitors within the murine mammary gland identified by different model systems
Fig.1  (A) Regenerated glands in virgin mice by GFP positive MaSCs showing non-epithelial cells (black) in the luminal (CD24hiCD49f+) or basal (CD24+CD49fhi) gates together with epithelial cells (green). Right panels show the histograms of %GFP negative (stromal) and positive (epithelial) cells in each gate. (B) Morphological distinct 3D-ECM organoids derived from single spheres formed by FACS sorted luminal (CD24hiCD49flo) cells from C57BL6 mice aged 3 to 4 months. Scale bars, 100 µm. (Reprinted from Dong et al., Mammospheres from murine mammary stem cell-enriched basal cells: clonal characteristics and repopulating potential. Stem Cell Research, 2013 (10): 396-404 with permission from Elsevier.)
Fig.2  Schematic model of the murine mammary epithelial hierarchy: bipotent stem cells in fetus give rise to luminal (filled in red color) and basal (filled in gray color) progenitors in prepubertal and pubertal glands. The luminal and basal lineage can be further divided into ductal (shaped with black outline) and alveolar-restricted (shaped with purple outline) progenitors. The luminal and basal alveolar progenitors are to be activated during pregnancy. The triangle bar indicates progenitor cells with decreasing multi- or uni-potency during the development from prepubertal to adult glands. Curves represent different stem/progenitors that are predominant in the epithelial cell population at different developmental stages. The dashed lines indicate potential possibilities. Cell markers labeled under each stem/progenitor cells correspond to published studies (see Text for details).
1 AlviA J, ClaytonH, JoshiC, EnverT, AshworthA, VivancoM, DaleT C, SmalleyM J (2003). Functional and molecular characterisation of mammary side population cells. Breast Cancer Res, 5(1): R1–R8
doi: 10.1186/bcr563 pmid: 12559051
2 Asselin-LabatM L, ShackletonM, StinglJ, VaillantF, ForrestN C, EavesC J, VisvaderJ E, LindemanG J (2006). Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst, 98: 1011–1014
3 Asselin-LabatM L, VaillantF, SheridanJ M, PalB, WuD, SimpsonE R, YasudaH, SmythG K, MartinT J, LindemanG J, VisvaderJ E (2010). Control of mammary stem cell function by steroid hormone signalling. Nature, 465(7299): 798–802
doi: 10.1038/nature09027 pmid: 20383121
4 BaiL, RohrschneiderL R (2010). s-SHIP promoter expression marks activated stem cells in developing mouse mammary tissue. Genes Dev, 24(17): 1882–1892
doi: 10.1101/gad.1932810 pmid: 20810647
5 BarkerN, HuchM, KujalaP, van de WeteringM, SnippertH J, van EsJ H, SatoT, StangeD E, BegthelH, van den BornM, DanenbergE, van den BrinkS, KorvingJ, AboA, PetersP J, WrightN, PoulsomR, CleversH (2010). Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell, 6(1): 25–36
doi: 10.1016/j.stem.2009.11.013 pmid: 20085740
6 BarkerN, van EsJ H, JaksV, KasperM, SnippertH, ToftgårdR, CleversH (2008). Very long-term self-renewal of small intestine, colon, and hair follicles from cycling Lgr5+ve stem cells. Cold Spring Harb Symp Quant Biol, 73(0): 351–356
doi: 10.1101/sqb.2008.72.003 pmid: 19478326
7 BarkerN, van EsJ H, KuipersJ, KujalaP, van den BornM, CozijnsenM, HaegebarthA, KorvingJ, BegthelH, PetersP J, CleversH (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165): 1003–1007
doi: 10.1038/nature06196 pmid: 17934449
8 BernardoG M, LozadaK L, MiedlerJ D, HarburgG, HewittS C, MosleyJ D, GodwinA K, KorachK S, VisvaderJ E, KaestnerK H, Abdul-KarimF W, MontanoM M, KeriR A (2010). FOXA1 is an essential determinant of ERα expression and mammary ductal morphogenesis. Development, 137(12): 2045–2054
doi: 10.1242/dev.043299 pmid: 20501593
9 BoothB W, MackD L, Androutsellis-TheotokisA, McKayR D, BoulangerC A, SmithG H (2008). The mammary microenvironment alters the differentiation repertoire of neural stem cells. Proc Natl Acad Sci USA, 105(39): 14891–14896
doi: 10.1073/pnas.0803214105 pmid: 18809919
10 BoulangerC A, MackD L, BoothB W, SmithG H (2007). Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo. Proc Natl Acad Sci USA, 104(10): 3871–3876
doi: 10.1073/pnas.0611637104 pmid: 17360445
11 BoulangerC A, WagnerK U, SmithG H (2005). Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta1 expression. Oncogene, 24(4): 552–560
doi: 10.1038/sj.onc.1208185 pmid: 15580303
12 BrunoR D, SmithG H (2011). Functional characterization of stem cell activity in the mouse mammary gland. Stem Cell Rev, 7(2): 238–247
doi: 10.1007/s12015-010-9191-9 pmid: 20853073
13 de VisserK E, CiampricottiM, MichalakE M, TanD W, SpeksnijderE N, HauC S, CleversH, BarkerN, JonkersJ (2012). Developmental stage-specific contribution of LGR5(+) cells to basal and luminal epithelial lineages in the postnatal mammary gland. J Pathol, 228(3): 300–309
doi: 10.1002/path.4096 pmid: 22926799
14 DeomeK B, FaulkinL J Jr, BernH A, BlairP B (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res, 19(5): 515–520
pmid: 13663040
15 DongQ, WangD, BandyopadhyayA, GaoH, GorenaK M, HildrethK, RebelV I, WalterC A, HuangC, SunL Z (2013). Mammospheres from murine mammary stem cell-enriched basal cells: clonal characteristics and repopulating potential. Stem Cell Res (Amst), 10(3): 396–404
doi: 10.1016/j.scr.2013.01.007 pmid: 23466563
16 dos SantosC O, RebbeckC, RozhkovaE, ValentineA, SamuelsA, KadiriL R, OstenP, HarrisE Y, UrenP J, SmithA D, HannonG J (2013). Molecular hierarchy of mammary differentiation yields refined markers of mammary stem cells. Proc Natl Acad Sci USA, 110(18): 7123–7130
doi: 10.1073/pnas.1303919110 pmid: 23580620
17 FridriksdottirA J, PetersenO W, Rønnov-JessenL (2011). Mammary gland stem cells: current status and future challenges. Int J Dev Biol, 55(7–9): 719–729
doi: 10.1387/ijdb.113373af pmid: 22161829
18 FuN, LindemanG J, VisvaderJ E (2014). The mammary stem cell hierarchy. Curr Top Dev Biol, 107: 133–160
doi: 10.1016/B978-0-12-416022-4.00005-6 pmid: 24439805
19 JeselsohnR, BrownN E, ArendtL, KlebbaI, HuM G, KuperwasserC, HindsP W (2010). Cyclin D1 kinase activity is required for the self-renewal of mammary stem and progenitor cells that are targets of MMTV-ErbB2 tumorigenesis. Cancer Cell, 17(1): 65–76
doi: 10.1016/j.ccr.2009.11.024 pmid: 20129248
20 JhoE H, ZhangT, DomonC, JooC K, FreundJ N, CostantiniF (2002). Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol, 22(4): 1172–1183
doi: 10.1128/MCB.22.4.1172-1183.2002 pmid: 11809808
21 JoshiP A, JacksonH W, BeristainA G, Di GrappaM A, MoteP A, ClarkeC L, StinglJ, WaterhouseP D, KhokhaR (2010). Progesterone induces adult mammary stem cell expansion. Nature, 465(7299): 803–807
doi: 10.1038/nature09091 pmid: 20445538
22 KaantaA S, VirtanenC, SelforsL M, BruggeJ S, NeelB G (2013). Evidence for a multipotent mammary progenitor with pregnancy-specific activity. Breast Cancer Res, 15(4): R65
doi: 10.1186/bcr3459 pmid: 23947835
23 KenneyN J, SmithG H, LawrenceE, BarrettJ C, SalomonD S (2001). Identification of stem cell units in the terminal end bud and duct of the mouse mammary gland. J Biomed Biotechnol, 1(3): 133–143
doi: 10.1155/S1110724301000304 pmid: 12488607
24 KretzschmarK, WattF M (2012). Lineage tracing. Cell, 148(1–2): 33–45
doi: 10.1016/j.cell.2012.01.002 pmid: 22265400
25 LimE, VaillantF, WuD, ForrestN C, PalB, HartA H, Asselin-LabatM L, GyorkiD E, WardT, PartanenA, FeleppaF, HuschtschaL I, ThorneH J, FoxS B, YanM, FrenchJ D, BrownM A, SmythG K, VisvaderJ E, LindemanG J, and the kConFab (2009). Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med, 15(8): 907–913
doi: 10.1038/nm.2000 pmid: 19648928
26 LustigB, JerchowB, SachsM, WeilerS, PietschT, KarstenU, van de WeteringM, CleversH, SchlagP M, BirchmeierW, BehrensJ (2002). Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol, 22(4): 1184–1193
doi: 10.1128/MCB.22.4.1184-1193.2002 pmid: 11809809
27 ManingatP D, SenP, RijnkelsM, SunehagA L, HadsellD L, BrayM, HaymondM W (2009). Gene expression in the human mammary epithelium during lactation: the milk fat globule transcriptome. Physiol Genomics, 37(1): 12–22
doi: 10.1152/physiolgenomics.90341.2008 pmid: 19018045
28 MatulkaL A, TriplettA A, WagnerK U (2007). Parity-induced mammary epithelial cells are multipotent and express cell surface markers associated with stem cells. Dev Biol, 303(1): 29–44
doi: 10.1016/j.ydbio.2006.12.017 pmid: 17222404
29 MolyneuxG, GeyerF C, MagnayF A, McCarthyA, KendrickH, NatrajanR, MackayA, GrigoriadisA, TuttA, AshworthA, Reis-FilhoJ S, SmalleyM J (2010). BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell, 7(3): 403–417
doi: 10.1016/j.stem.2010.07.010 pmid: 20804975
30 OakesS R, NaylorM J, Asselin-LabatM L, BlazekK D, Gardiner-GardenM, HiltonH N, KazlauskasM, PritchardM A, ChodoshL A, PfefferP L, LindemanG J, VisvaderJ E, OrmandyC J (2008). The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev, 22(5): 581–586
doi: 10.1101/gad.1614608 pmid: 18316476
31 PlaksV, BrenotA, LawsonD A, LinnemannJ R, Van KappelE C, WongK C, de SauvageF, KleinO D, WerbZ (2013). Lgr5-expressing cells are sufficient and necessary for postnatal mammary gland organogenesis. Cell Reports, 3(1): 70–78
doi: 10.1016/j.celrep.2012.12.017 pmid: 23352663
32 RiosA C, FuN Y, LindemanG J, VisvaderJ E (2014). In situ identification of bipotent stem cells in the mammary gland. Nature, 506(7488): 322–327
doi: 10.1038/nature12948 pmid: 24463516
33 RohrschneiderL R, CustodioJ M, AndersonT A, MillerC P, GuH (2005). The intron 5/6 promoter region of the ship1 gene regulates expression in stem/progenitor cells of the mouse embryo. Dev Biol, 283(2): 503–521
doi: 10.1016/j.ydbio.2005.04.032 pmid: 15978570
34 ShackletonM, VaillantF, SimpsonK J, StinglJ, SmythG K, Asselin-LabatM L, WuL, LindemanG J, VisvaderJ E (2006). Generation of a functional mammary gland from a single stem cell. Nature, 439(7072): 84–88
doi: 10.1038/nature04372 pmid: 16397499
35 ShehataM, TeschendorffA, SharpG, NovcicN, RussellA, AvrilS, PraterM, EirewP, CaldasC, WatsonC J, StinglJ (2012). Phenotypic and functional characterization of the luminal cell hierarchy of the mammary gland. Breast Cancer Res, 14(5): R134
doi: 10.1186/bcr3334 pmid: 23088371
36 SleemanK E, KendrickH, AshworthA, IsackeC M, SmalleyM J (2006). CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res, 8(1): R7
doi: 10.1186/bcr1371 pmid: 16417656
37 SmithG H, ChepkoG (2001). Mammary epithelial stem cells. Microsc Res Tech, 52(2): 190–203
doi: 10.1002/1097-0029(20010115)52:2<190::AID-JEMT1005>3.0.CO;2-O pmid: 11169867
38 SmithG H, MedinaD (2008). Re-evaluation of mammary stem cell biology based on in vivo transplantation. Breast Cancer Res, 10(1): 203
doi: 10.1186/bcr1856 pmid: 18304381
39 SmithG H, StricklandP, DanielC W (2002). Putative epithelial stem cell loss corresponds with mammary growth senescence. Cell Tissue Res, 310(3): 313–320
doi: 10.1007/s00441-002-0641-9 pmid: 12457230
40 StinglJ (2009). Detection and analysis of mammary gland stem cells. J Pathol, 217(2): 229–241
doi: 10.1002/path.2457 pmid: 19009588
41 StinglJ, EavesC J, KuuskU, EmermanJ T (1998). Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation, 63(4): 201–213
doi: 10.1111/j.1432-0436.1998.00201.x pmid: 9745711
42 StinglJ, EavesC J, WatsonC J (2006a). Phenotypic characterization of mouse mammary epithelial stem and progenitor cells. Breast Cancer Res, 8(Suppl 2): S5–S5
doi: 10.1186/bcr1557
43 StinglJ, EirewP, RicketsonI, ShackletonM, VaillantF, ChoiD, LiH I, EavesC J (2006b). Purification and unique properties of mammary epithelial stem cells. Nature, 439(7079): 993–997
pmid: 16395311
44 SumE Y, ShackletonM, HahmK, ThomasR M, O’ReillyL A, WagnerK U, LindemanG J, VisvaderJ E (2005). Loss of the LIM domain protein Lmo4 in the mammary gland during pregnancy impedes lobuloalveolar development. Oncogene, 24(30): 4820–4828
doi: 10.1038/sj.onc.1208638 pmid: 15856027
45 TiedeB, KangY (2011). From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer. Cell Res, 21(2): 245–257
doi: 10.1038/cr.2011.11 pmid: 21243011
46 TuZ, NinosJ M, MaZ, WangJ W, LemosM P, DespontsC, GhansahT, HowsonJ M, KerrW G (2001). Embryonic and hematopoietic stem cells express a novel SH2-containing inositol 5′-phosphatase isoform that partners with the Grb2 adapter protein. Blood, 98(7): 2028–2038
doi: 10.1182/blood.V98.7.2028 pmid: 11567986
47 VaillantF, Asselin-LabatM L, ShackletonM, ForrestN C, LindemanG J, VisvaderJ E (2008). The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res, 68(19): 7711–7717
doi: 10.1158/0008-5472.CAN-08-1949 pmid: 18829523
48 VaillantF, LindemanG J, VisvaderJ E (2011). Jekyll or Hyde: does Matrigel provide a more or less physiological environment in mammary repopulating assays? Breast Cancer Res, 13(3): 108
doi: 10.1186/bcr2851 pmid: 21635708
49 van AmerongenR, BowmanA N, NusseR (2012). Developmental stage and time dictate the fate of Wnt/β-catenin-responsive stem cells in the mammary gland. Cell Stem Cell, 11(3): 387–400
doi: 10.1016/j.stem.2012.05.023 pmid: 22863533
50 Van KeymeulenA, RochaA S, OussetM, BeckB, BouvencourtG, RockJ, SharmaN, DekoninckS, BlanpainC (2011). Distinct stem cells contribute to mammary gland development and maintenance. Nature, 479(7372): 189–193
doi: 10.1038/nature10573 pmid: 21983963
51 VisvaderJ E (2011). Cells of origin in cancer. Nature, 469(7330): 314–322
doi: 10.1038/nature09781 pmid: 21248838
52 VisvaderJ E, SmithG H (2011). Murine mammary epithelial stem cells: discovery, function, and current status. Cold Spring Harb Perspect Biol, 3(2): 3
doi: 10.1101/cshperspect.a004879 pmid: 20926515
53 WagnerK U, BoulangerC A, HenryM D, SgagiasM, HennighausenL, SmithG H (2002). An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development, 129(6): 1377–1386
pmid: 11880347
54 WangD, GaoH, BandyopadhyayA, WuA, YehI T, ChenY, ZouY, HuangC, WalterC A, DongQ, SunL Z(2014). Pubertal bisphenol a exposure alters murine mammary stem cell (MaSC) function leading to early neoplasia in regenerated glands. Cancer Prev Res (Phila), 7(4): 445–455
55 WelmB E, TeperaS B, VeneziaT, GraubertT A, RosenJ M, GoodellM A (2002). Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol, 245(1): 42–56
doi: 10.1006/dbio.2002.0625 pmid: 11969254
56 ZengY A, NusseR (2010). Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell, 6(6): 568–57720569
doi: 10.1016/j.stem.2010.03.020
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed