Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (3) : 169-174    https://doi.org/10.1007/s11515-014-1309-z
REVIEW
Appetite control: why we fail to stop eating even when we are full?
Kristen DAVIS,Young-Jai YOU()
Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
 Download: PDF(289 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We often eat more than our body needs. We live in an environment where high calorie food is abundant and physical activities are limited. Living in this environment, maintaining healthy bodyweight becomes challenging and obesity becomes a social burden. Why do we continue to eat even after the metabolic needs are satisfied? Feeding is an ancient behavior essential to survive. Thus the mechanisms to regulate appetite, energy expenditure, and energy storage are well conserved throughout animals. Based on this conservation, we study why we fail to control appetite using a simple genetic model system C. elegans. We have discovered certain genetic components that when misregulated have animals eat more and store more fat. In this review we discuss how these genes work in the appetite control circuit to ultimately understand overall appetite control behavior. We will also briefly discuss how social influence affects feeding regardless of the metabolic status of an animal.

Keywords satiety      appetite      obesity      cGMP      TGFβ      C. elegans     
Corresponding Author(s): Young-Jai YOU   
Issue Date: 24 June 2014
 Cite this article:   
Kristen DAVIS,Young-Jai YOU. Appetite control: why we fail to stop eating even when we are full?[J]. Front. Biol., 2014, 9(3): 169-174.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1309-z
https://academic.hep.com.cn/fib/EN/Y2014/V9/I3/169
Fig.1  Locomotive activity reflects metabolic status: A schematic diagram to show how metabolic status can be reflected by locomotive activity.
Fig.2  Neuronal circuitry to regulate appetite in C. elegans. (A) Upon activation by nutritional well-being, ASI releases DAF-7 TGFβ. Binding of TGFβ to its receptor DAF-1 in RIM and RIC neurons inhibits RIM and RIC’s role in releasing hunger signals. In the absence of hunger signals worms become satiated and quiescent. (B) When food is not available, DAF-7 is not released therefore RIM and RIC are activated to release hunger signals.
1 AlkemaM J, Hunter-EnsorM, RingstadN, HorvitzH R (2005). Tyramine Functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron, 46(2): 247-260
doi: 10.1016/j.neuron.2005.02.024 pmid: 15848803
2 ArshadN, VisweswariahS S (2012). The multiple and enigmatic roles of guanylyl cyclase C in intestinal homeostasis. FEBS Lett, 586(18): 2835-2840
doi: 10.1016/j.febslet.2012.07.028 pmid: 22819815
3 AshrafiK, ChangF Y, WattsJ L, FraserA G, KamathR S, AhringerJ, RuvkunG (2003). Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature, 421(6920): 268-272
doi: 10.1038/nature01279 pmid: 12529643
4 AyalaJ E, BracyD P, JulienB M, RottmanJ N, FuegerP T, WassermanD H (2007). Chronic treatment with sildenafil improves energy balance and insulin action in high fat-fed conscious mice. Diabetes, 56(4): 1025-1033
doi: 10.2337/db06-0883 pmid: 17229936
5 BerthoudH R (2007). Interactions between the “cognitive” and “metabolic” brain in the control of food intake. Physiol Behav, 91(5): 486-498
doi: 10.1016/j.physbeh.2006.12.016 pmid: 17307205
6 BishopN A, GuarenteL (2007). Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature, 447(7144): 545-549
doi: 10.1038/nature05904 pmid: 17538612
7 BoothD A (1989). Mood- and nutrient-conditioned appetites. Cultural and physiological bases for eating disorders. Ann N Y Acad Sci, 575(1 The Psychobio): 122-135, discussion 157-162
doi: 10.1111/j.1749-6632.1989.tb53237.x pmid: 2699183
8 CrockerA, ShahidullahM, LevitanI B, SehgalA (2010). Identification of a neural circuit that underlies the effects of octopamine on sleep:wake behavior. Neuron, 65(5): 670-681
doi: 10.1016/j.neuron.2010.01.032 pmid: 20223202
9 de BonoM, BargmannC I (1998). Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell, 94(5): 679-689
doi: 10.1016/S0092-8674(00)81609-8 pmid: 9741632
10 de BonoM, TobinD M, DavisM W, AveryL, BargmannC I (2002). Social feeding in Caenorhabditis elegans is induced by neurons that detect aversive stimuli. Nature, 419(6910): 899-903
doi: 10.1038/nature01169 pmid: 12410303
11 de CastroJ M, de CastroE S (1989). Spontaneous meal patterns of humans: influence of the presence of other people. Am J Clin Nutr, 50(2): 237-247
pmid: 2756911
12 FarooqiI S, YeoG S, KeoghJ M, AminianS, JebbS A, ButlerG, CheethamT, O’RahillyS (2000). Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest, 106(2): 271-279
doi: 10.1172/JCI9397 pmid: 10903343
13 FehmH L, KernW, PetersA (2006). The selfish brain: competition for energy resources. Prog Brain Res, 153: 129-140
doi: 10.1016/S0079-6123(06)53007-9 pmid: 16876572
14 FélixM A, BraendleC (2010). The natural history of Caenorhabditis elegans. Curr Biol, 20(22): R965-R969
doi: 10.1016/j.cub.2010.09.050 pmid: 21093785
15 FengX H, DerynckR (2005). Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol, 21(1): 659-693
doi: 10.1146/annurev.cellbio.21.022404.142018 pmid: 16212511
16 FrancisS H, BuschJ L, CorbinJ D, SibleyD (2010). cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev, 62(3): 525-563
doi: 10.1124/pr.110.002907 pmid: 20716671
17 FujiwaraM, SenguptaP, McIntireS L (2002). Regulation of body size and behavioral state of C. elegans by sensory perception and the EGL-4 cGMP-dependent protein kinase. Neuron, 36(6): 1091-1102
doi: 10.1016/S0896-6273(02)01093-0 pmid: 12495624
18 GallagherT, BjornessT, GreeneR, YouY J, AveryL (2013a). The geometry of locomotive behavioral states in C. elegans. PLoS ONE, 8(3): e59865
doi: 10.1371/journal.pone.0059865 pmid: 23555813
19 GallagherT, KimJ, OldenbroekM, KerrR, YouY J (2013b). ASI regulates satiety quiescence in C. elegans. J Neurosci, 33(23): 9716-9724
doi: 10.1523/JNEUROSCI.4493-12.2013 pmid: 23739968
20 GongR, DingC, HuJ, LuY, LiuF, MannE, XuF, CohenM B, LuoM (2011). Role for the membrane receptor guanylyl cyclase-C in attention deficiency and hyperactive behavior. Science, 333(6049): 1642-1646
doi: 10.1126/science.1207675 pmid: 21835979
21 GreerE R, PérezC L, Van GilstM R, LeeB H, AshrafiK (2008). Neural and molecular dissection of a C. elegans sensory circuit that regulates fat and feeding. Cell Metab, 8(2): 118-131
doi: 10.1016/j.cmet.2008.06.005 pmid: 18680713
22 HanM, SternbergP W (1990). let-60, a gene that specifies cell fates during C. elegans vulval induction, encodes a ras protein. Cell, 63(5): 921-931
doi: 10.1016/0092-8674(90)90495-Z pmid: 2257629
23 HengartnerM O, EllisR E, HorvitzH R (1992). Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature, 356(6369): 494-499
doi: 10.1038/356494a0 pmid: 1560823
24 HermanC P, RothD A, PolivyJ (2003). Effects of the presence of others on food intake: a normative interpretation. Psychol Bull, 129(6): 873-886
doi: 10.1037/0033-2909.129.6.873 pmid: 14599286
25 HetheringtonM M, AndersonA S, NortonG N, NewsonL (2006). Situational effects on meal intake: A comparison of eating alone and eating with others. Physiol Behav, 88(4-5): 498-505
doi: 10.1016/j.physbeh.2006.04.025 pmid: 16757007
26 JanuszewiczA (1995). The natriuretic peptides in hypertension. Curr Opin Cardiol, 10(5): 495-500
doi: 10.1097/00001573-199509000-00009 pmid: 7496058
27 JohnenH, LinS, KuffnerT, BrownD A, TsaiV W, BauskinA R, WuL, PankhurstG, JiangL, JunankarS, HunterM, FairlieW D, LeeN J, EnriquezR F, BaldockP A, CoreyE, AppleF S, MurakamiM M, LinE J, WangC, DuringM J, SainsburyA, HerzogH, BreitS N (2007). Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1. Nat Med, 13(11): 1333-1340
doi: 10.1038/nm1677 pmid: 17982462
28 KimG W, LinJ E, WaldmanS A (2013). GUCY2C: at the intersection of obesity and cancer. Trends Endocrinol Metab, 24(4): 165-173
doi: 10.1016/j.tem.2013.01.001 pmid: 23375388
29 KomatsuH, MoriI, RheeJ S, AkaikeN, OhshimaY (1996). Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans. Neuron, 17(4): 707-718
doi: 10.1016/S0896-6273(00)80202-0 pmid: 8893027
30 MitschkeM M, HoffmannL S, GnadT, ScholzD, KruithoffK, MayerP, HaasB, SassmannA, PfeiferA, KilicA (2013). Increased cGMP promotes healthy expansion and browning of white adipose tissue. FASEB J, 27(4): 1621-1630
doi: 10.1096/fj.12-221580 pmid: 23303211
31 MontagueC T, FarooqiI S, WhiteheadJ P, SoosM A, RauH, WarehamN J, SewterC P, DigbyJ E, MohammedS N, HurstJ A, CheethamC H, EarleyA R, BarnettA H, PrinsJ B, O’RahillyS (1997). Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature, 387(6636): 903-908
doi: 10.1038/43185 pmid: 9202122
32 MutchD M, ClémentK (2006). Unraveling the genetics of human obesity. PLoS Genet, 2(12): e188
doi: 10.1371/journal.pgen.0020188 pmid: 17196040
33 OsterH, WernerC, MagnoneM C, MayserH, FeilR, SeeligerM W, HofmannF, AlbrechtU (2003). cGMP-dependent protein kinase II modulates mPer1 and mPer2 gene induction and influences phase shifts of the circadian clock. Curr Biol, 13(9): 725-733
doi: 10.1016/S0960-9822(03)00252-5 pmid: 12725729
34 PetrovichG D, GallagherM (2007). Control of food consumption by learned cues: a forebrain-hypothalamic network. Physiol Behav, 91(4): 397-403
doi: 10.1016/j.physbeh.2007.04.014 pmid: 17498758
35 PlinerP, BellR, HirschE S, KinchlaM (2006). Meal duration mediates the effect of “social facilitation” on eating in humans. Appetite, 46(2): 189-198
doi: 10.1016/j.appet.2005.12.003 pmid: 16500000
36 PopkinB M, DuffeyK, Gordon-LarsenP (2005). Environmental influences on food choice, physical activity and energy balance. Physiol Behav, 86(5): 603-613
doi: 10.1016/j.physbeh.2005.08.051 pmid: 16246381
37 RaizenD M, ZimmermanJ E, MaycockM H, TaU D, YouY J, SundaramM V, PackA I (2008). Lethargus is a Caenorhabditis elegans sleep-like state. Nature, 451(7178): 569-572
doi: 10.1038/nature06535 pmid: 18185515
38 SarzaniR, StrazzulloP, SalviF, IaconeR, PietrucciF, SianiA, BarbaG, GerardiM C, Dessì-FulgheriP, RappelliA (2004). Natriuretic peptide clearance receptor alleles and susceptibility to abdominal adiposity. Obes Res, 12(2): 351-356
doi: 10.1038/oby.2004.44 pmid: 14981229
39 SengenésC, BerlanM, De GlisezinskiI, LafontanM, GalitzkyJ (2000). Natriuretic peptides: a new lipolytic pathway in human adipocytes. FASEB J, 14(10): 1345-1351
doi: 10.1096/fj.14.10.1345 pmid: 10877827
40 ShibakusaT, IwakiY, MizunoyaW, MatsumuraS, NishizawaY, InoueK, FushikiT (2006). The physiological and behavioral effects of subchronic intracisternal administration of TGF-β in rats: comparison with the effects of CRF. Biomed Res, 27(6): 297-305
doi: 10.2220/biomedres.27.297 pmid: 17213686
41 SikderD, KodadekT (2007). The neurohormone orexin stimulates hypoxia-inducible factor-1 activity. Genes Dev, 21(22): 2995-3005
doi: 10.1101/gad.1584307 pmid: 18006690
42 StroebeleN, De CastroJ M (2004). Effect of ambience on food intake and food choice. Nutrition, 20(9): 821-838
doi: 10.1016/j.nut.2004.05.012 pmid: 15325695
43 SuoS, KimuraY, Van TolH H (2006). Starvation induces cAMP response element-binding protein-dependent gene expression through octopamine-Gq signaling in Caenorhabditis elegans. J Neurosci, 26(40): 10082-10090
doi: 10.1523/JNEUROSCI.0819-06.2006 pmid: 17021164
44 TakeiY (2001). Does the natriuretic peptide system exist throughout the animal and plant kingdom? Comp Biochem Physiol B Biochem Mol Biol, 129(2-3): 559-573
doi: 10.1016/S1096-4959(01)00366-9 pmid: 11399492
45 TsaiV W, MaciaL, JohnenH, KuffnerT, ManadharR, JørgensenS B, Lee-NgK K, ZhangH P, WuL, MarquisC P, JiangL, HusainiY, LinS, HerzogH, BrownD A, SainsburyA, BreitS N (2013). TGF-b superfamily cytokine MIC-1/GDF15 is a physiological appetite and body weight regulator. PLoS ONE, 8(2): e55174
doi: 10.1371/journal.pone.0055174 pmid: 23468844
46 ValentinoM A, LinJ E, SnookA E, LiP, KimG W, MarszalowiczG, MageeM S, HyslopT, SchulzS, WaldmanS A (2011). A uroguanylin-GUCY2C endocrine axis regulates feeding in mice. J Clin Invest, 121(9): 3578-3588
doi: 10.1172/JCI57925 pmid: 21865642
47 WardA, LiuJ, FengZ, XuX Z (2008). Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nat Neurosci, 11(8): 916-922
doi: 10.1038/nn.2155 pmid: 18604203
48 WeingartenH P (1983). Conditioned cues elicit feeding in sated rats: a role for learning in meal initiation. Science, 220(4595): 431-433
doi: 10.1126/science. pmid: 6836286
49 WoodsS C (2005). Signals that influence food intake and body weight. Physiol Behav, 86(5): 709-716
doi: 10.1016/j.physbeh.2005.08.060 pmid: 16260007
50 YauK W, HardieR C (2009). Phototransduction motifs and variations. Cell, 139(2): 246-264
doi: 10.1016/j.cell.2009.09.029 pmid: 19837030
51 YouY J, KimJ, RaizenD M, AveryL (2008). Insulin, cGMP, and TGF-β signals regulate food intake and quiescence in C. elegans: a model for satiety. Cell Metab, 7(3): 249-257
doi: 10.1016/j.cmet.2008.01.005 pmid: 18316030
52 ZhangM, SuY Q, SugiuraK, XiaG, EppigJ J (2010). Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science, 330(6002): 366-369
doi: 10.1126/science.1193573 pmid: 20947764
[1] Ankita Chattopadhyay, Mythili S.. The journey of gut microbiome – An introduction and its influence on metabolic disorders[J]. Front. Biol., 2018, 13(5): 327-341.
[2] Altea Rocchi,Congcong He. Emerging roles of autophagy in metabolism and metabolic disorders[J]. Front. Biol., 2015, 10(2): 154-164.
[3] Colette N. MILLER, Lynda M. BROWN, Srujana RAYALAM, Mary Anne DELLA-FERA, Clifton A. BAILE. Estrogens, inflammation and obesity: an overview[J]. Front Biol, 2012, 7(1): 40-47.
[4] Catherine C. Y. CHANG, Jie SUN, Ta-Yuan CHANG. Membrane-bound O-acyltransferases (MBOAT)[J]. Front Biol, 2011, 6(3): 177-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed