Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (4) : 283-286    https://doi.org/10.1007/s11515-014-1315-1
RESEARCH ARTICLE
Age-related peculiarities of change in content of free radical oxidation products in muscle during stress
Vadim V. DAVYDOV1,*(),Amjad HAMDALLAH2,Evgenya R. GRABOVETSKAYA3
1. Laboratory of Age Biochemistry State Institution Institute of Children and Adolescent Health NAMS of Ukraine, Kharkov, 61154, Ukraine
2. Chair of biochemistry V.N. Karazin Kharkov National University, Kharkov, 61077, Ukraine
3. Chair of medical chemistry Kharkov National Medical University, Kharkov, 61022, Ukraine
 Download: PDF(115 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The age-dependent peculiarities of stimulation of free radical processes in subcellular fractions of skeletal muscle of rats subjected to long-term immobilization stress were studied in order to improve knowledge about changes of muscular tissue during ontogenesis. It is found that adult animals do not show accumulation of proteins carbonyls, TBA-reactive substances, and Schiff bases in subcellular fractions of the thigh muscle when immobilized. Long-term immobilization causes apparent manifestation of oxidative stress only in mitochondrial fraction in pubertal rats. Mitochondrial oxidative stress defense systems are sufficiently effective, however, direction of pathways of free radical oxidation carbonyl products catabolism alters in the cytoplasm of myocytes in old rats under long-term immobilization conditions.

Keywords ontogenesis      stress      skeletal muscle      free radical oxidation     
Corresponding Author(s): Vadim V. DAVYDOV   
Issue Date: 11 August 2014
 Cite this article:   
Vadim V. DAVYDOV,Amjad HAMDALLAH,Evgenya R. GRABOVETSKAYA. Age-related peculiarities of change in content of free radical oxidation products in muscle during stress[J]. Front. Biol., 2014, 9(4): 283-286.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1315-1
https://academic.hep.com.cn/fib/EN/Y2014/V9/I4/283
Fig.1  Ratio Shiff bases / TBA reactive substances (ShB/TBA + ) in mitochondrial and postmitochondrial fraction of femoral muscle during stress (mean ± SEM). The figure represents the average data from 6 investigations.

* The data are positively distinguished from intact rats (p < 0.05).

Age (months)Experimental group of ratsProtein carbonyls (μmol/mg protein)TBA + substances (μmol/mg protein)Shiff Bases (nmol/mg protein)
1.5intact0.77 ± 0.120.16 ± 0.030.49 ± 0.06
immobilized1.34 ± 0.02**0.15 ± 0.030.95 ± 0.04**
12intact1.90 ± 0.27*0.23 ± 0.02*0.94 ± 0.03*
immobilized1.39 ± 0.290.24 ± 0.030.59 ± 0.06**
24intact1.20 ± 0.390.09 ± 0.011.08 ± 0.05*
immobilized0.56 ± 0.080.07 ± 0.011.08 ± 0.14
Tab.1  Level products of free radical oxidation in mitochondrial fraction of femoral muscle during stress (mean ± SEM)
Age (months)Experimental group of ratsProtein Carbonyls (μmol/mg protein)TBA + substances (μmol/mg protein)Shiff Bases (nmol/mg protein)
1.5intact0.61 ± 0.140.045 ± 0.0060.48 ± 0.04
immobilized0.62 ± 0.080.045 ± 0.0080.70 ± 0.09
12intact0.60 ± 0.010.068 ± 0.0200.38 ± 0.02
immobilized0.64 ± 0.010.028 ± 0.004**0.29 ± 0.03**
24intact0.57 ± 0.130.050 ± 0.0160.23 ± 0.02*
immobilized0.73 ± 0.130.025 ± 0.0050.20 ± 0.03
Tab.2  Level products of free radical oxidation in postmitochondrial fraction of femoral muscle during stress (mean ± SEM)
1 Boirie Y (2009). Physiopathological mechanism of sarcopenia. J Nutr Health Aging, 13(8): 717-723
doi: 10.1007/s12603-009-0203-x pmid: 19657556
2 Calvani R, Joseph A M, Adhihetty P J, Miccheli A, Bossola M, Leeuwenburgh C, Bernabei R, Marzetti E (2013). Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy. Biol Chem, 394(3): 393-414
doi: 10.1515/hsz-2012-0247 pmid: 23154422
3 Chen C N, Brown-Borg H M, Rakoczy S G, Thompson L V (2008). Muscle disuse: adaptation of antioxidant systems is age dependent. J Gerontol A Biol Sci Med Sci, 63(5): 461-466
doi: 10.1093/gerona/63.5.461 pmid: 18511748
4 Czarkowska-Paczek B, Milczarczyk S (2006). [Age-related muscle mass loss]. Przegl Lek, 63(8): 658-661
pmid: 17441378
5 Davydov V V, Bozhkov A I, Kulchitski O K (2012). Physiological and pathophysiological role of endogenous aldehydes. Saarbrucken: Palmarium Academic Publishing, 240 (in Russian)
6 Davydov V V, Dobaeva N M, Bozhkov A I (2004). Possible role of alteration of aldehyde’s scavenger enzymes during aging. Exp Gerontol, 39(1): 11-16
doi: 10.1016/j.exger.2003.08.009 pmid: 14724059
7 Davydov V V, Shvets V N (2003). Age-dependent differences in the stimulation of lipid peroxidation in the heart of rats during immobilization stress. Exp Gerontol, 38(6): 693-698
doi: 10.1016/S0531-5565(03)00063-9 pmid: 12814805
8 Esterbauer H, Zollner H (1989). Methods for determination of aldehydic lipid peroxidation products. Free Radic Biol Med, 7(2): 197-203
doi: 10.1016/0891-5849(89)90015-4 pmid: 2680787
9 Fagan J M, Sleczka B G, Sohar I (1999). Quantitation of oxidative damage to tissue proteins. Int J Biochem Cell Biol, 31(7): 751-757
doi: 10.1016/S1357-2725(99)00034-5 pmid: 10467731
10 Frontera W R, Zayas A R, Rodriguez N (2012). Aging of human muscle: understanding sarcopenia at the single muscle cell level. Phys Med Rehabil Clin N Am, 23(1): 201-207, xiii
doi: 10.1016/j.pmr.2011.11.012 pmid: 22239884
11 Gianni P, Jan K J, Douglas M J, Stuart P M, Tarnopolsky M A (2004). Oxidative stress and the mitochondrial theory of aging in human skeletal muscle. Exp Gerontol, 39(9): 1391-1400
doi: 10.1016/j.exger.2004.06.002 pmid: 15489062
12 Hindle A G, Lawler J M, Campbell K L, Horning M (2010). Muscle aging and oxidative stress in wild-caught shrews. Comp Biochem Physiol B Biochem Mol Biol, 155(4): 427-434
doi: 10.1016/j.cbpb.2010.01.007 pmid: 20109576
13 Jackson M J (2009). Skeletal muscle aging: role of reactive oxygen species. Crit Care Med, 37(10 Suppl): S368-S371
doi: 10.1097/CCM.0b013e3181b6f97f pmid: 20046122
14 Madsen K, Ertbjerg P, Djurhuus M S, Pedersen P K (1996). Calcium content and respiratory control index of skeletal muscle mitochondria during exercise and recovery. Am J Physiol, 271(6 Pt 1): E1044-E1050
pmid: 8997224
15 Meerson F Z (1984). Pathogenesis and prevention of stress and ischemic injures of heart. Moscow. Medicina (B Aires), ???: 270 (in Russian)
16 Narici M V, Maffulli N (2010). Sarcopenia: characteristics, mechanisms and functional significance. Br Med Bull, 95(1): 139-159
doi: 10.1093/bmb/ldq008 pmid: 20200012
17 Rossi P, Marzani B, Giardina S, Negro M, Marzatico F (2008). Human skeletal muscle aging and the oxidative system: cellular events. Curr Aging Sci, 1(3): 182-191
doi: 10.2174/1874609810801030182 pmid: 20021391
[1] Hanane Gourine, Hadria Grar, Wafaa Dib, Nabila Mehedi, Ahmed Boualga, Djamel Saidi, Omar Kheroua. Effect of a normal protein diet on oxidative stress and organ damage in malnourished rats[J]. Front. Biol., 2018, 13(5): 366-375.
[2] Mahin Najafian, Yalda Jafrideh, Behnaz Ghazisaeidi. Effectiveness of fractional CO2 laser in women with stress urinary incontinence[J]. Front. Biol., 2018, 13(2): 145-148.
[3] Volodymyr Padalko, Viktoriya Dzyuba, Olena Kozlova, Hanna Sheremet, Olena Protsenko. Zingiber officinale extends Drosophila melanogaster life span in xenobiotic-induced oxidative stress conditions[J]. Front. Biol., 2018, 13(2): 130-136.
[4] Vadim V. Davydov, Alexander V. Shestopalov, Evgenya R. Grabovetskaya. Physiological significance of oxidative stress and its role in adaptation of the human body to deleterious factors[J]. Front. Biol., 2018, 13(1): 19-27.
[5] Bharti Chaudhary, Sonam Agarwal, Renu Bist. Invulnerability of bromelain against oxidative degeneration and cholinergic deficits imposed by dichlorvos in mice brains[J]. Front. Biol., 2018, 13(1): 56-62.
[6] Fakhredin Saba, Najmaldin Saki, Elahe Khodadi, Masoud Soleimani. Crosstalk between catecholamines and erythropoiesis[J]. Front. Biol., 2017, 12(2): 103-115.
[7] Paul J. Lucassen,Charlotte A. Oomen. Stress, hippocampal neurogenesis and cognition: functional correlations[J]. Front. Biol., 2016, 11(3): 182-192.
[8] Jian Zou,Jinbo Yu,Yuqing Zhu,Jiali Zhu,Jing Du,Xu Yang. Application of glutathione to antagonize H2O2-induced oxidative stress in rat tracheal epithelial cells[J]. Front. Biol., 2016, 11(1): 59-63.
[9] Vadim V. Davydov,Evgenya R. Grabovetskaya,Amjad Hamdallah. Age-dependent peculiarities modulation of activity of aldehyde scavenger enzymes in mitochondria of rat thigh muscle during stress[J]. Front. Biol., 2016, 11(1): 28-31.
[10] Zhuo Wu,Jingquan Li,Ping Ma,Baizhan Li,Yang Xu. Long-term dermal exposure to diisononyl phthalate exacerbates atopic dermatitis through oxidative stress in an FITC-induced mouse model[J]. Front. Biol., 2015, 10(6): 537-545.
[11] Yu Lu,Biao Yan,Xudong Liu,Yuchao Zhang,Shibi Zeng,Hao Hu,Rong Xiang,Yu Xu,Ying Yu,Xu Yang. Comparative study of oxidative stress induced by sand flower and schistose nanosized layered double hydroxides in N2a cells[J]. Front. Biol., 2015, 10(3): 279-286.
[12] Jacqueline A. GLEAVE,Peter D. PERRI,Joanne E. NASH. Mitochondrial dysfunction in Parkinson’s disease: a possible target for neuroprotection[J]. Front. Biol., 2014, 9(6): 489-503.
[13] Xuejing HOU, Harvey J. M. HOU. Roles of manganese in photosystem II dynamics to irradiations and temperatures[J]. Front Biol, 2013, 8(3): 312-322.
[14] Abiodun AJAYI, Xin YU, Anna-Lena STR?M. The role of NADPH oxidase (NOX) enzymes in neurodegenerative disease[J]. Front Biol, 2013, 8(2): 175-188.
[15] Blanca E. BARRERA-FIGUEROA, Zhigang WU, Renyi LIU. Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution[J]. Front Biol, 2013, 8(2): 189-197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed