|
|
|
Influence of the SNPs on the structural stability of CBS protein: Insight from molecular dynamics simulations |
C. GEORGE PRIYA DOSS1,*( ),B. RAJITH1,R. MAGESH2,A. ASHISH KUMAR3 |
1. Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore-14, TamilNadu, India 2. Department of Biotechnology, Faculty of Biomedical Sciences, Technology & Research, Sri Ramachandra University, Chennai-600116, TamilNadu, India 3. Bioinformatics Division, School of Biosciences and Technology, VIT University, Vellore-14, TamilNadu, India |
|
|
|
|
Abstract Cystathionine β-synthase is an essential enzyme of the trans-sulfuration pathway that condenses serine with homocysteine to form cystathionine. Missense mutations in CBS are the major cause of inherited homocystinuria, and the detailed effect of disease associated amino acid substitutions on the structure and stability of human CBS is yet unknown. Here, we apply a unique approach in combining in silico tools and molecular dynamics simulation to provide structural and functional insight into the effect of SNP on the stability and activity of mutant CBS. In addition, principal component analysis and free energy landscape were used to predict the collective motions, thermodynamic stabilities and essential subspace relevant to CBS function. The obtained results indicate that C109R, E176K and D376N mutations have the diverse effect on dynamic behavior of CBS protein. We found that highly conserved D376N mutation, which is present in the active pocket, affects the protein folding mechanism. Our strategy may provide a way in near future to understand and study effects of functional nsSNPs and their role in causing homocystinuria.
|
| Keywords
CBS
in silico
molecular dynamics simulation
SNPs
|
|
Corresponding Author(s):
C. GEORGE PRIYA DOSS
|
|
Issue Date: 13 January 2015
|
|
| 1 |
Adzhubei I A, Schmidt S, Peshkin L, Ramensky V E, Gerasimova A, Bork P, Kondrashov A S, Sunyaev S R (2010). A method and server for predicting damaging missense mutations. Nat Methods, 7(4): 248–249
https://doi.org/10.1038/nmeth0410-248
|
| 2 |
Afman L A, Lievers K J A, Kluijtmans L A J (2003). Gene-gene interaction between the cystathionine b-synthase 31 base pair variable number of tandem repeats and the methylenetetrahydrofolate reductase 677C>T polymorphism on homocysteine levels and risk for neural tube defects. Mol Genet Metab, 78(3): 211–215
https://doi.org/10.1016/S1096-7192(03)00021-0
|
| 3 |
Aly T A, Eller E, Ide A, Gowan K, Babu S R, Erlich H A, Rewers M J, Eisenbarth G S, Fain P R (2006). Multi-SNP analysis of MHC region: remarkable conservation of HLA-A1–B8-DR3 haplotype. Diabetes, 55(5): 1265–1269
https://doi.org/10.2337/db05-1276
|
| 4 |
Amadei A, Linssen A B M, Berendsen H J C (1993). Essential dynamics of proteins. Proteins, 17(4): 412–425
https://doi.org/10.1002/prot.340170408
|
| 5 |
Amberger J, Bocchini C A, Scott A F, Hamosh A (2009). Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Res, 37(Database): D793–D796
https://doi.org/10.1093/nar/gkn665
|
| 6 |
Amos B, Rolf A (1996). The SWISS-PROT protein sequence data bank and its new supplement TREMBL. Nucleic Acids Res, 24(1): 21–25
https://doi.org/10.1093/nar/24.1.21
|
| 7 |
Beer H D, Wohlfahrt G, McCarthy J E, Schomburg D, Schmid R D (1996). Analysis of the catalytic mechanism of a fungal lipase using computer-aided design and structural mutants. Protein Eng, 9(6): 507–517
https://doi.org/10.1093/protein/9.6.507
|
| 8 |
Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser A Stat Soc, 57: 289–300
|
| 9 |
Berman H M, Westbrook J, Feng Z, Gilliland G, Bhat T N, Weissig H, Shindyalov I N, Bourne P E (2000). The protein data bank. Nucleic Acids Res, 28(1): 235–242
https://doi.org/10.1093/nar/28.1.235
|
| 10 |
Boyles A L, Billups A V, Deak K L, Siegel D G, Mehltretter L, Slifer S H, Bassuk A G, Kessler J A, Reed M C, Nijhout H F, George T M, Enterline D S, Gilbert J R, Speer M C (2006). NTD Collaborative Group. Neural tube defects and folate pathway genes: family-based association tests of gene-gene and gene-environment interactions. Environ Health Perspect, 114(10): 1547–1552
https://doi.org/10.1289/ehp.9166
|
| 11 |
Boyles A L, Wilcox A J, Taylor J A, Meyer K, Fredriksen A, Ueland P M, Drevon C A, Vollset S E, Lie R T (2008). Folate and one-carbon metabolism gene polymorphisms and their associations with oral facial clefts. Am J Med Genet A, 146A(4): 440–449
https://doi.org/10.1002/ajmg.a.32162
|
| 12 |
Capriotti E, Fariselli P, Rossi I, Casadio R (2008). A three-state prediction of single point mutations on protein stability changes. BMC Bioinformatics, 2(Suppl 2): S6
https://doi.org/10.1186/1471-2105-9-S2-S6
|
| 13 |
Chan P A, Duraisamy S, Miller P J, Newell J A, McBride C, Bond J P, Raevaara T, Ollila S, Nystr?m M, Grimm A J, Christodoulou J, Oetting W S, Greenblatt M S (2007). Interpreting missense variants: comparing computational methods in human disease genes CDKN2A, MLH1, MSH2, MECP2, and tyrosinase (TYR). Hum Mutat, 28(7): 683–693
https://doi.org/10.1002/humu.20492
|
| 14 |
Cheung V G, Nayak R R, Wang I X, Elwyn S, Cousins S M, Morley M, Spielman R S (2010). Polymorphic Cis- and Trans-Regulation of Human Gene Expression. PLoS Biol, 8(9): e1000480
https://doi.org/10.1371/journal.pbio.1000480
|
| 15 |
Chun S, Fay J C (2009). Identification of deleterious mutations within three human genomes. Genome Res, 19(9): 1553–1561
https://doi.org/10.1101/gr.092619.109
|
| 16 |
Doniger S W, Kim H S, Swain D, Corcuera D, Williams M, Yang S P, Fay J C (2008). Catalog of neutral and deleterious polymorphism in yeast. PLoS Genet, 4(8): e1000183
https://doi.org/10.1371/journal.pgen.1000183
|
| 17 |
Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G (1995). A smooth particle meshes Ewald method. J Chem Phys, 103(19): 8577–8593
https://doi.org/10.1063/1.470117
|
| 18 |
Fan B J, Chen T, Grosskreutz C, Pasquale L, Rhee D, DelBono E, Haines J L, Wiggs J L (2008). Lack of association of polymorphisms in homocysteine metabolism genes with pseudoexfoliation syndrome and glaucoma. Mol Vis, 14: 2484–2491
|
| 19 |
Gaustadnes M, Wilcken B, Oliveriusova J, McGill J, Fletcher J, Kraus J P, Wilcken D E (2002). The molecular basis of cystathionine beta-synthase deficiency in Australian patients: genotype-phenotype correlations and response to treatment. Hum Mutat, 20(2): 117–126
https://doi.org/10.1002/humu.10104
|
| 20 |
George Priya Doss C (2012). In Silico Profiling of deleterious Amino Acid Substitutions of Potential Pathological Importance in Hemophilia A and Hemophilia B. BMC J Biomed Sci, 19: 30
|
| 21 |
George Priya Doss C, Chakraborty C, Syed Haneef S A, NagaSundaram N, Chen, Zhu H (2014). Evolution and structure-based computational design to reveal the impact of deleterious missense mutations in type 2 maturity-onset diabetes of the young. Theranostics, 4: 366–385
https://doi.org/10.7150/thno.7473
|
| 22 |
Hao D C, Feng Y, Xiao R, Xiao P G (2011). Non-neutral nonsynonymous single nucleotide polymorphisms in human ABC transporters: the first comparison of six prediction methods. Pharmacol Rep, 63(4): 924–934
https://doi.org/10.1016/S1734-1140(11)70608-9
|
| 23 |
Hegger R, Altis A, Nguyen P H, Stock G (2007). How complex is the dynamics of peptide folding? Phys Rev Lett, 98(2): 028102
https://doi.org/10.1103/PhysRevLett.98.028102
|
| 24 |
Hess B, Kutzner D, Spoel D (2008). GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J Chem Theory Comput, 4(3): 435–447
https://doi.org/10.1021/ct700301q
|
| 25 |
Hicks S, Wheeler D A, Plon S E, Kimmel M (2011). Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed. Hum Mutat, 32(6): 661–668
https://doi.org/10.1002/humu.21490
|
| 26 |
Hnízda A, Majtan T, Liu L, Pey A L, Carpenter J F, Kodí?ek M, Ko?ich V, Kraus J P (2012). Conformational properties of nine purified cystathionine β-synthase mutants. Biochemistry, 51(23): 4755–4763
https://doi.org/10.1021/bi300435e
|
| 27 |
Janosík M, Oliveriusová J, Janosíková B, Sokolová J, Kraus E, Kraus J P, Kozich V (2001). Impaired heme binding and aggregation of mutant cystathionine betasynthase subunits in homocystinuria. Am J Hum Genet, 51(6): 1506–1513
https://doi.org/10.1086/320597
|
| 28 |
Jolliffe I T (2002). Principal Component Analysis. New York: Springer
|
| 29 |
Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L (1983). Comparison of simple potential functions for simulating liquid water. J Chem Phys, 79(2): 926
https://doi.org/10.1063/1.445869
|
| 30 |
Katsushima F, Oliveriusova J, Sakamoto O, Ohura T, Kondo Y, Iinuma K, Kraus E, Stouracova R, Kraus J P (2006). Expression study of mutant cystathionine beta-synthase found in Japanese patients with homocystinuria. Mol Genet Metab, 87(4): 323–328
https://doi.org/10.1016/j.ymgme.2005.09.013
|
| 31 |
Khan S, Vihinen M (2010). Performance of protein stability predictors. Hum Mutat, 31(6): 675–678
https://doi.org/10.1002/humu.21242
|
| 32 |
Kim C E, Gallagher P M, Guttormsen A B, Refsum H, Ueland P M, Ose L, Folling I, Whitehead A S, Tsai M Y, Kruger W (1997). Functional modeling of vitamin responsiveness in yeast: a common pyridoxine-responsive cystathionine b synthase mutation in homocystinuria. Hum Mol Genet, 6(13): 2213–2221
https://doi.org/10.1093/hmg/6.13.2213
|
| 33 |
Kraus J P, Janosík M, Kozich V, Mandell R, Shih V, Sperandeo M P, Sebastio G, de Franchis R, Andria G, Kluijtmans L A, Blom H, Boers G H, Gordon R B, Kamoun P, Tsai M Y, Kruger W D, Koch H G, Ohura T, Gaustadnes M(1999). Cystathionine beta-synthase mutations in homocystinuria. Hum Mutat, 13: 362–375
https://doi.org/10.1002/(SICI)1098-1004(1999)13:5<362::AID-HUMU4>3.0.CO;2-K
|
| 34 |
Kruger W D, Wang L, Jhee K H, Singh R H, Elsas L J2nd (2003). Cystathionine beta-synthase deficiency in Georgia (USA): correlation of clinical and biochemical phenotype with genotype. Hum Mutat, 22(6): 434–441
https://doi.org/10.1002/humu.10290
|
| 35 |
Lee P H, Shatkay H (2008). F-SNP: computationally predicted functional SNPs for disease association studies. Nucleic Acids Res, 36(Database): D820–D824
https://doi.org/10.1093/nar/gkm904
|
| 36 |
Lee P H, Shatkay H (2009). An integrative scoring system for ranking SNPs by their potential deleterious effects. Bioinformatics, 25(8): 1048–1055
https://doi.org/10.1093/bioinformatics/btp103
|
| 37 |
Lino Cardenas C L, Renault N, Farce A, Cauffiez C, Allorge D, Lo-Guidice J M, Lhermitte M, Chavatte P, Broly F, Chevalier D (2011). Genetic polymorphism of CYP4A11 and CYP4A22 genes and in silico insights from comparative 3D modelling in a French population. Gene, 487(1): 10–20
https://doi.org/10.1016/j.gene.2011.07.015
|
| 38 |
Macintyre G, Bailey J, Haviv I, Kowalczyk A (2010). is-rSNP: a novel technique for in silico regulatory SNP detection. Bioinformatics, 26(18): i524–i530
https://doi.org/10.1093/bioinformatics/btq378
|
| 39 |
Magesh R, George Priya Doss C (2012). Computational methods to work as first-pass filter in deleterious SNP analysis of alkaptonuria. ScientificWorldJournal, 2012: 738423
|
| 40 |
Martinez CA, Northrup H, Lin J I, Morrison A C, Fletcher J M, Tyerman G H, Au K S (2009). Genetic association study of putative functional single nucleotide polymorphisms of genes in folate metabolism and spina bifida. Am J Obstet Gynecol201: 394e1–11
|
| 41 |
Meier M, Janosik M, Kery V, Kraus J P, Burkhard P (2001). Structure of human cystathionine beta-synthase: a unique pyridoxal 5′-phosphate-dependent heme protein. EMBO J, 20(15): 3910–3916
https://doi.org/10.1093/emboj/20.15.3910
|
| 42 |
Meier M, Oliveriusova J, Kraus J P, Burkhard P (2003). Structural insights into mutations of cystathionine beta-synthase. Biochim Biophys Acta, 1647(1–2): 206–213
https://doi.org/10.1016/S1570-9639(03)00048-7
|
| 43 |
Metayer C, Scélo G, Chokkalingam A P, Barcellos L F, Aldrich M C, Chang J S, Guha N, Urayama K Y, Hansen H M, Block G, Kiley V, Wiencke J K, Wiemels J L, Buffler P A (2011). Genetic variants in the folate pathway and risk of childhood acute lymphoblastic leukemia. Cancer Causes Control, 22(9): 1243–1258
https://doi.org/10.1007/s10552-011-9795-7
|
| 44 |
Mudd S H, Levy H, Kraus J P (2001). Disorders in transsulfuration. In: The Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill, NY, pp. 2007–2056
|
| 45 |
Ng P C, Henikoff S (2003). SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res, 31(13): 3812–3814
https://doi.org/10.1093/nar/gkg509
|
| 46 |
Paré G, Chasman D I, Parker A N, Zee R R, M?larstig A, Seedorf U, Collins R, Watkins H, Hamsten A, Miletich J P, Ridker P M (2009). Novel associations of CPS1, MUT, NOX4, and DPEP1 with plasma homocysteine in a healthy population: a genome-wide evaluation of 13 974 participants in the Women's Genome Health Study. Circ Cardiovasc Genet, 2(2): 142–150
https://doi.org/10.1161/CIRCGENETICS.108.829804
|
| 47 |
Rabbani B, Mahdieh N, Haghi Ashtiani M T, Setoodeh A, Rabbani A (2012). In silico structural, functional and pathogenicity evaluation of a novel mutation: an overview of HSD3B2 gene mutations. Gene, 503(2): 215–221
https://doi.org/10.1016/j.gene.2012.04.080
|
| 48 |
Sandberg R, Neilson J R, Sarma A, Sharp P A, Burge C B (2008). Proliferating cells express mrnas with shortened 39 untranslated regions and fewer microRNA target sites. Science, 320(5883): 1643–1647
https://doi.org/10.1126/science.1155390
|
| 49 |
Sandelin A, Alkema W, Engstr?m P, Wasserman W W, Lenhard B (2004). JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res, 32(90001): D91–D94
https://doi.org/10.1093/nar/gkh012
|
| 50 |
Schwarz J M, R?delsperger C, Schuelke M, Seelow D (2010). MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods, 7(8): 575–576
https://doi.org/10.1038/nmeth0810-575
|
| 51 |
Sherry S T, Ward M, Sirotkin K (2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Res, 29(1): 308–311
https://doi.org/10.1093/nar/29.1.308
|
| 52 |
Singh L R, Chen X, Kozich V, Kruger W D (2007). Chemical chaperone rescue of mutant human cystathionine beta-synthase. Mol Genet Metab, 91(4): 335–342
https://doi.org/10.1016/j.ymgme.2007.04.011
|
| 53 |
Steck P A, Pershouse M A, Jasser S A, Yung W K, Lin H, Ligon A H, Langford L A, Baumgard M L, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng D H, Tavtigian S V (1997). Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet, 15(4): 356–362
https://doi.org/10.1038/ng0497-356
|
| 54 |
Steinmaus C, Yuan Y, Kalman D, Rey O A, Skibola C F, Dauphine D, Basu A, Porter K E, Hubbard A, Bates M N, Smith M T, Smith A H (2010). Individual differences in arsenic metabolism and lung cancer in a case-control study in Cordoba, Argentina. Toxicol Appl Pharmacol, 247(2): 138–145
https://doi.org/10.1016/j.taap.2010.06.006
|
| 55 |
Thusberg J, Olatubosun A, Vihinen M (2011). Performance of mutation pathogenicity prediction methods on missense variants. Hum Mutat, 32(4): 358–368
https://doi.org/10.1002/humu.21445
|
| 56 |
Thusberg J, Vihinen M (2009). Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods. Hum Mutat, 30(5): 703–714
https://doi.org/10.1002/humu.20938
|
| 57 |
Tilley M M, Northrup H, Au K S (2012). Genetic studies of the cystathionine beta-synthase gene and myelomeningocele. Birth Defects Res A Clin Mol Teratol, 94(1): 52–56
https://doi.org/10.1002/bdra.22855
|
| 58 |
van Aalten D M, Amadei A, Linssen A B, Eijsink V G, Vriend G, Berendsen H J (1995). The essential dynamics of thermolysin: confirmation of the hinge-bending motion and comparison of simulation in vacuum and water. Proteins, 22(1): 45–54
https://doi.org/10.1002/prot.340220107
|
| 59 |
Wang G, Guo X, Floros J (2005). Differences in the translation efficiency and mRNA stability mediated by 59-UTR splice variants of human SP-A1 and SPA2 genes. AJP- Lung Physiol, 289: L497–L508
|
| 60 |
Wei Q, Wang L, Wang Q, Kruger W D, Dunbrack R L (2010). Testing computational prediction of missense mutation phenotypes: functional characterization of 204 mutations of human cystathionine beta synthase. Proteins, 78: 2058–2074
|
| 61 |
Wernimont S M, Clark A G, Stover P J, Wells M T, Litonjua A A, Weiss S T, Gaziano J M, Tucker K L, Baccarelli A, Schwartz J, Bollati V, Cassano P A (2011). Folate network genetic variation, plasma homocysteine, and global genomic methylation content: a genetic association study. BMC Med Genet, 12(1): 150
https://doi.org/10.1186/1471-2350-12-150
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|