Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (5) : 382-388    https://doi.org/10.1007/s11515-014-1325-z
REVIEW
dsRNA binding protein PACT/RAX in gene silencing, development and diseases
Yue YONG1,Jia LUO2,*(),Zun-Ji KE1,3,*()
1. Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
2. Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
3. Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
 Download: PDF(205 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

PACT (Protein kinase, interferon-inducible double stranded RNA dependent activator) and its murine ortholog RAX (PKR-associated protein X) were originally identified as a protein activator for the dsRNA-dependent, interferon-inducible protein kinase (PKR). Endogenous PACT/RAX activates PKR in response to diverse stress signals such as serum starvation, and peroxide or arsenite treatment. PACT/RAX heterodimerized with PKR and activated it with its third motif in the absence of dsRNA. The activation of PKR leads to enhanced eIF2α phosphorylation followed by apoptosis or inhibition of growth. Besides the role of activating PKR, PACT is associated with a ~500 kDa complex that contains Dicer, hAgo2, and TRBP (TAR RNA binding protein) and it associates with Dicer to facilitate the production of small interfering RNA. PACT/RAX plays an important role in diverse physiological and pathological processes. Pact-/- mice exhibit notable developmental abnormalities including microtia, with craniofacial ear, and hearing defects. Pact-/- mice had smaller body sizes and fertility defects, both of which were caused by defective pituitary functions. It was found that dRAX disrupted fly embryos homozygous, displayed highly abnormal commissural axon structure of the central nervous system, and 70% of the flies homozygous for the mutant allele died prior to adulthood. Using high density SNP genotyping arrays, it was found that a mutation in PRKRA (the PACT/RAX gene) is the causative genetic mutation in DYT16, a novel autosomal recessive dystonia-parkinsonism syndrome in Brazilian patients.

Keywords PACT/RAX      PKR      TRBP      Dicer      DYT16     
Corresponding Author(s): Jia LUO   
Online First Date: 11 August 2014    Issue Date: 11 October 2014
 Cite this article:   
Yue YONG,Jia LUO,Zun-Ji KE. dsRNA binding protein PACT/RAX in gene silencing, development and diseases[J]. Front. Biol., 2014, 9(5): 382-388.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1325-z
https://academic.hep.com.cn/fib/EN/Y2014/V9/I5/382
Fig.1  Role of PACT/RAX in the development and diseases. PACT/RAX is activated by various cellular stresses and interacts with PKR, resulting in eIF2α phosphorylation and subsequent inhibition of protein synthesis and induction of apoptosis or growth inhibition. RAX/PACT-PKR interaction promotes p53 sumoylation, leading to G1 cell cycle arrest. PACT/RAX associates with TRBP, Dicer and Ago2 and regulates siRNA/miRNA generation and gene silencing. PACT/RAX knockout or mutation leads to diseases and serious development defects through unknown mechanisms. PACT/RAX is an important stress responsive protein and plays important in cell physiology and development.
1 Abraham N, Stojdl D F, Duncan P I, Méthot N, Ishii T, Dubé M, Vanderhyden B C, Atkins H L, Gray D A, McBurney M W, Koromilas A E, Brown E G, Sonenberg N, Bell J C (1999). Characterization of transgenic mice with targeted disruption of the catalytic domain of the double-stranded RNA-dependent protein kinase, PKR. J Biol Chem, 274(9): 5953–5962
https://doi.org/10.1074/jbc.274.9.5953 pmid: 10026221
2 Bando Y, Onuki R, Katayama T, Manabe T, Kudo T, Taira K, Tohyama M (2005). Double-strand RNA dependent protein kinase (PKR) is involved in the extrastriatal degeneration in Parkinson’s disease and Huntington’s disease. Neurochem Int, 46(1): 11–18
https://doi.org/10.1016/j.neuint.2004.07.005 pmid: 15567511
3 Bennett R L, Blalock W L, Abtahi D M, Pan Y, Moyer S A, May W S (2006). RAX, the PKR activator, sensitizes cells to inflammatory cytokines, serum withdrawal, chemotherapy, and viral infection. Blood, 108(3): 821–829
https://doi.org/10.1182/blood-2005-11-006817 pmid: 16861340
4 Bennett R L, Blalock W L, Choi E J, Lee Y J, Zhang Y, Zhou L, Oh S P, May W S (2008). RAX is required for fly neuronal development and mouse embryogenesis. Mech Dev, 125(9-10): 777–785
https://doi.org/10.1016/j.mod.2008.06.009 pmid: 18634873
5 Bennett R L, Blalock W L, May W S (2004). Serine 18 phosphorylation of RAX, the PKR activator, is required for PKR activation and consequent translation inhibition. J Biol Chem, 279(41): 42687–42693
https://doi.org/10.1074/jbc.M403321200 pmid: 15299031
6 Bennett R L, Pan Y, Christian J, Hui T, May W S Jr (2012). The RAX/PACT-PKR stress response pathway promotes p53 sumoylation and activation, leading to G? arrest. Cell Cycle, 11(2): 407–417
https://doi.org/10.4161/cc.11.2.18999 pmid: 22214662
7 Bernstein E, Caudy A A, Hammond S M, Hannon G J (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409(6818): 363–366
https://doi.org/10.1038/35053110 pmid: 11201747
8 Camargos S, Scholz S, Simón-Sánchez J, Paisán-Ruiz C, Lewis P, Hernandez D, Ding J, Gibbs J R, Cookson M R, Bras J, Guerreiro R, Oliveira C R, Lees A, Hardy J, Cardoso F, Singleton A B (2008). DYT16, a novel young-onset dystonia-parkinsonism disorder: identification of a segregating mutation in the stress-response protein PRKRA. Lancet Neurol, 7(3): 207–215
https://doi.org/10.1016/S1474-4422(08)70022-X pmid: 18243799
9 Carmell M A, Xuan Z, Zhang M Q, Hannon G J (2002). The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev, 16(21): 2733–2742
https://doi.org/10.1101/gad.1026102 pmid: 12414724
10 Chen G, Ma C, Bower K A, Ke Z, Luo J (2006). Interaction between RAX and PKR modulates the effect of ethanol on protein synthesis and survival of neurons. J Biol Chem, 281(23): 15909–15915
https://doi.org/10.1074/jbc.M600612200 pmid: 16574643
11 Chendrimada T P, Gregory R I, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 436(7051): 740–744
https://doi.org/10.1038/nature03868 pmid: 15973356
12 Clemens M J, Elia A (1997). The double-stranded RNA-dependent protein kinase PKR: structure and function. J Interferon Cytokine Res, 17(9): 503–524
https://doi.org/10.1089/jir.1997.17.503 pmid: 9335428
13 Daher A, Laraki G, Singh M, Melendez-Pe?a C E, Bannwarth S, Peters A H, Meurs E F, Braun R E, Patel R C, Gatignol A (2009). TRBP control of PACT-induced phosphorylation of protein kinase R is reversed by stress. Mol Cell Biol, 29(1): 254–265
https://doi.org/10.1128/MCB.01030-08 pmid: 18936160
14 Doi N, Zenno S, Ueda R, Ohki-Hamazaki H, Ui-Tei K, Saigo K (2003). Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors. Curr Biol, 13(1): 41–46
https://doi.org/10.1016/S0960-9822(02)01394-5 pmid: 12526743
15 Fierro-Monti I, Mathews M B (2000). Proteins binding to duplexed RNA: one motif, multiple functions. Trends Biochem Sci, 25(5): 241–246
https://doi.org/10.1016/S0968-0004(00)01580-2 pmid: 10782096
16 Galabru J, Hovanessian A (1987). Autophosphorylation of the protein kinase dependent on double-stranded RNA. J Biol Chem, 262(32): 15538–15544
pmid: 3479429
17 Hannon G J (2002). RNA interference. Nature, 418(6894): 244–251
https://doi.org/10.1038/418244a pmid: 12110901
18 Hovanessian A G (1989). The double stranded RNA-activated protein kinase induced by interferon: dsRNA-PK. J Interferon Res, 9(6): 641–647
https://doi.org/10.1089/jir.1989.9.641 pmid: 2481698
19 Huang X, Hutchins B, Patel R C (2002). The C-terminal, third conserved motif of the protein activator PACT plays an essential role in the activation of double-stranded-RNA-dependent protein kinase (PKR). Biochem J, 366(Pt 1): 175–186
pmid: 11985496
20 Ito T, Yang M, May W S (1999). RAX, a cellular activator for double-stranded RNA-dependent protein kinase during stress signaling. J Biol Chem, 274(22): 15427–15432
https://doi.org/10.1074/jbc.274.22.15427 pmid: 10336432
21 Koh H R, Kidwell M A, Ragunathan K, Doudna J A, Myong S (2013). ATP-independent diffusion of double-stranded RNA binding proteins. Proc Natl Acad Sci USA, 110(1): 151–156
https://doi.org/10.1073/pnas.1212917110 pmid: 23251028
22 Kok K H, Ng M H, Ching Y P, Jin D Y (2007). Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA. J Biol Chem, 282(24): 17649–17657
https://doi.org/10.1074/jbc.M611768200 pmid: 17452327
23 Koscianska E, Starega-Roslan J, Krzyzosiak W J (2011). The role of Dicer protein partners in the processing of microRNA precursors. PLoS ONE, 6(12): e28548
https://doi.org/10.1371/journal.pone.0028548 pmid: 22163034
24 Lee E S, Yoon C H, Kim Y S, Bae Y S (2007). The double-strand RNA-dependent protein kinase PKR plays a significant role in a sustained ER stress-induced apoptosis. FEBS Lett, 581(22): 4325–4332
https://doi.org/10.1016/j.febslet.2007.08.001 pmid: 17716668
25 Lee H Y, Zhou K, Smith A M, Noland C L, Doudna J A (2013). Differential roles of human Dicer-binding proteins TRBP and PACT in small RNA processing. Nucleic Acids Res, 41(13): 6568–6576
https://doi.org/10.1093/nar/gkt361 pmid: 23661684
26 Lee Y, Hur I, Park S Y, Kim Y K, Suh M R, Kim V N (2006). The role of PACT in the RNA silencing pathway. EMBO J, 25(3): 522–532
https://doi.org/10.1038/sj.emboj.7600942 pmid: 16424907
27 Li S, Peters G A, Ding K, Zhang X, Qin J, Sen G C (2006). Molecular basis for PKR activation by PACT or dsRNA. Proc Natl Acad Sci USA, 103(26): 10005–10010
https://doi.org/10.1073/pnas.0602317103 pmid: 16785445
28 Liu J, Carmell M A, Rivas F V, Marsden C G, Thomson J M, Song J J, Hammond S M, Joshua-Tor L, Hannon G J (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science, 305(5689): 1437–1441
pmid: 15284456
29 Meister G, Landthaler M, Peters L, Chen P Y, Urlaub H, Lührmann R, Tuschl T (2005). Identification of novel argonaute-associated proteins. Curr Biol, 15(23): 2149–2155
https://doi.org/10.1016/j.cub.2005.10.048 pmid: 16289642
30 Patel C V, Handy I, Goldsmith T, Patel R C (2000). PACT, a stress-modulated cellular activator of interferon-induced double-stranded RNA-activated protein kinase, PKR. J Biol Chem, 275(48): 37993–37998
https://doi.org/10.1074/jbc.M004762200 pmid: 10988289
31 Patel R C, Sen G C (1998). PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO J, 17(15): 4379–4390
https://doi.org/10.1093/emboj/17.15.4379 pmid: 9687506
32 Peters G A, Hartmann R, Qin J, Sen G C (2001). Modular structure of PACT: distinct domains for binding and activating PKR. Mol Cell Biol, 21(6): 1908–1920
https://doi.org/10.1128/MCB.21.6.1908-1920.2001 pmid: 11238927
33 Peters G A, Li S, Sen G C (2006). Phosphorylation of specific serine residues in the PKR activation domain of PACT is essential for its ability to mediate apoptosis. J Biol Chem, 281(46): 35129–35136
https://doi.org/10.1074/jbc.M607714200 pmid: 16982605
34 Peters G A, Seachrist D D, Keri R A, Sen G C (2009). The double-stranded RNA-binding protein, PACT, is required for postnatal anterior pituitary proliferation. Proc Natl Acad Sci USA, 106(26): 10696–10701
https://doi.org/10.1073/pnas.0900735106 pmid: 19541653
35 Pires-daSilva A, Nayernia K, Engel W, Torres M, Stoykova A, Chowdhury K, Gruss P (2001). Mice deficient for spermatid perinuclear RNA-binding protein show neurologic, spermatogenic, and sperm morphological abnormalities. Dev Biol, 233(2): 319–328
https://doi.org/10.1006/dbio.2001.0169 pmid: 11336498
36 Proud C G (1995). PKR: a new name and new roles. Trends Biochem Sci, 20(6): 241–246
https://doi.org/10.1016/S0968-0004(00)89025-8 pmid: 7631421
37 Provost P, Dishart D, Doucet J, Frendewey D, Samuelsson B, R?dmark O (2002). Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J, 21(21): 5864–5874
https://doi.org/10.1093/emboj/cdf578 pmid: 12411504
38 Redfern A D, Colley S M, Beveridge D J, Ikeda N, Epis M R, Li X, Foulds C E, Stuart L M, Barker A, Russell V J, Ramsay K, Kobelke S J, Li X, Hatchell E C, Payne C, Giles K M, Messineo A, Gatignol A, Lanz R B, O’Malley B W, Leedman P J (2013). RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators. Proc Natl Acad Sci USA, 110(16): 6536–6541
https://doi.org/10.1073/pnas.1301620110 pmid: 23550157
39 Rowe T M, Rizzi M, Hirose K, Peters G A, Sen G C (2006). A role of the double-stranded RNA-binding protein PACT in mouse ear development and hearing. Proc Natl Acad Sci USA, 103(15): 5823–5828
https://doi.org/10.1073/pnas.0601287103 pmid: 16571658
40 Ryter J M, Schultz S C (1998). Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J, 17(24): 7505–7513
https://doi.org/10.1093/emboj/17.24.7505 pmid: 9857205
41 Samuel C E (1993). The eIF-2 alpha protein kinases, regulators of translation in eukaryotes from yeasts to humans. J Biol Chem, 268(11): 7603–7606
pmid: 8096514
42 Samuel C E, Duncan R, Knutson G S, Hershey J W (1984). Mechanism of interferon action. Increased phosphorylation of protein synthesis initiation factor eIF-2 alpha in interferon-treated, reovirus-infected mouse L929 fibroblasts in vitro and in vivo. J Biol Chem, 259(21): 13451–13457
pmid: 6490660
43 Saunders L R, Barber G N (2003). The dsRNA binding protein family: critical roles, diverse cellular functions. FASEB J, 17(9): 961–983
https://doi.org/10.1096/fj.02-0958rev pmid: 12773480
44 Seeman N C, Rosenberg J M, Rich A (1976). Sequence-specific recognition of double helical nucleic acids by proteins. Proc Natl Acad Sci USA, 73(3): 804–808
https://doi.org/10.1073/pnas.73.3.804 pmid: 1062791
45 Singh M, Patel R C (2012). Increased interaction between PACT molecules in response to stress signals is required for PKR activation. J Cell Biochem, 113(8): 2754–2764
https://doi.org/10.1002/jcb.24152 pmid: 22473766
46 St Johnston D, Brown N H, Gall J G, Jantsch M (1992). A conserved double-stranded RNA-binding domain. Proc Natl Acad Sci USA, 89(22): 10979–10983
https://doi.org/10.1073/pnas.89.22.10979 pmid: 1438302
47 Stalder L, Heusermann W, Sokol L, Trojer D, Wirz J, Hean J, Fritzsche A, Aeschimann F, Pfanzagl V, Basselet P, Weiler J, Hintersteiner M, Morrissey D V, Meisner-Kober N C (2013). The rough endoplasmatic reticulum is a central nucleation site of siRNA-mediated RNA silencing. EMBO J, 32(8): 1115–1127
https://doi.org/10.1038/emboj.2013.52 pmid: 23511973
48 Takahashi T, Miyakawa T, Zenno S, Nishi K, Tanokura M, Ui-Tei K (2013). Distinguishable in vitro binding mode of monomeric TRBP and dimeric PACT with siRNA. PLoS ONE, 8(5): e63434
https://doi.org/10.1371/journal.pone.0063434 pmid: 23658827
49 Tomari Y, Zamore P D (2005). Perspective: machines for RNAi. Genes Dev, 19(5): 517–529
https://doi.org/10.1101/gad.1284105 pmid: 15741316
50 Wang Q, Khillan J, Gadue P, Nishikura K(2000). Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science, 290(5497): 1765–1768
pmid: 11099415
51 Williams B R (1997). Role of the double-stranded RNA-activated protein kinase (PKR) in cell regulation. Biochem Soc Trans, 25(2): 509–513
pmid: 9191145
52 Yang Y L, Reis L F, Pavlovic J, Aguzzi A, Sch?fer R, Kumar A, Williams B R, Aguet M, Weissmann C (1995). Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J, 14(24): 6095–6106
pmid: 8557029
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed