Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (1) : 52-60    https://doi.org/10.1007/s11515-014-1339-6
REVIEW
Intermediate conductance, Ca2+-activated K+ channels: a novel target for chronic renal diseases
Claudia A. BERTUCCIO(),Daniel C. DEVOR
Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
 Download: PDF(181 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Renal failure is a medical condition in which the kidneys are not working properly. There are two types of kidney failure: 1) acute kidney failure, which is sudden and often reversible with adequate treatment; and 2) chronic renal failure, which develops slowly and often is not reversible. The last stage of chronic renal failure is fatal without dialysis or kidney transplant. The treatment for chronic renal failure is focusing on slowing the progression of kidney damage. Several reports have described a promising approach to slow the loss of renal function through inhibition of the basolateral membrane, Ca2+-activated K+ (KCa3.1) channel with a selective and nontoxic blocker TRAM-34. This review summarizes pathophysiological studies that describe the role of KCa3.1 in kidney diseases.

Keywords Ca2+-activated K+ channels      KCa3.1      renal fibrosis      polycystic kidney disease      diabetes nephropathy      transplant      cell proliferation      Cl- secretion      renal failure     
Corresponding Author(s): Claudia A. BERTUCCIO   
Just Accepted Date: 03 November 2014   Online First Date: 03 December 2014    Issue Date: 14 February 2015
 Cite this article:   
Claudia A. BERTUCCIO,Daniel C. DEVOR. Intermediate conductance, Ca2+-activated K+ channels: a novel target for chronic renal diseases[J]. Front. Biol., 2015, 10(1): 52-60.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1339-6
https://academic.hep.com.cn/fib/EN/Y2015/V10/I1/52
1 Albaqumi M, Srivastava S, Li Z, Zhdnova O, Wulff H, Itani O, Wallace D P, Skolnik E Y (2008). KCa3.1 potassium channels are critical for cAMP-dependent chloride secretion and cyst growth in autosomal-dominant polycystic kidney disease. Kidney Int, 74(6): 740-749
https://doi.org/10.1038/ki.2008.246 pmid: 18547995
2 Amann B, Tinzmann R, Angelkort B (2003). ACE inhibitors improve diabetic nephropathy through suppression of renal MCP-1. Diabetes Care, 26(8): 2421-2425
https://doi.org/10.2337/diacare.26.8.2421 pmid: 12882873
3 Ataga K I, Smith W R, De Castro L M, Swerdlow P, Saunthararajah Y, Castro O, Vichinsky E, Kutlar A, Orringer E P, Rigdon G C, Stocker J W, the ICA-17043-05 Investigators (2008). Efficacy and safety of the Gardos channel blocker, senicapoc (ICA-17043), in patients with sickle cell anemia. Blood, 111(8): 3991-3997
https://doi.org/10.1182/blood-2007-08-110098 pmid: 18192510
4 Banba N, Nakamura T, Matsumura M, Kuroda H, Hattori Y, Kasai K (2000). Possible relationship of monocyte chemoattractant protein-1 with diabetic nephropathy. Kidney Int, 58(2): 684-690
https://doi.org/10.1046/j.1523-1755.2000.00214.x pmid: 10916091
5 Barmeyer C, Rahner C, Yang Y, Sigworth F J, Binder H J, Rajendran V M (2010). Cloning and identification of tissue-specific expression of KCNN4 splice variants in rat colon. Am J Physiol Cell Physiol, 299(2): C251-C263
https://doi.org/10.1152/ajpcell.00091.2009 pmid: 20445171
6 Beeton C, Wulff H, Barbaria J, Clot-Faybesse O, Pennington M, Bernard D, Cahalan M D, Chandy K G, Béraud E (2001). Selective blockade of T lymphocyte K(+) channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci U S A, 98(24): 13942-13947
https://doi.org/10.1073/pnas.241497298 pmid: 11717451
7 Beeton C, Wulff H, Singh S, Botsko S, Crossley G, Gutman G A, Cahalan M D, Pennington M, Chandy K G (2003). A novel fluorescent toxin to detect and investigate Kv1.3 channel up-regulation in chronically activated T lymphocytes. J Biol Chem, 278(11): 9928-9937
https://doi.org/10.1074/jbc.M212868200 pmid: 12511563
8 Beeton C, Wulff H, Standifer N E, Azam P, Mullen K M, Pennington M W, Kolski-Andreaco A, Wei E, Grino A, Counts D R, Wang P H, LeeHealey C J, S Andrews B, Sankaranarayanan A, Homerick D, Roeck W W, Tehranzadeh J, Stanhope K L, Zimin P, Havel P J, Griffey S, Knaus H G, Nepom G T, Gutman G A, Calabresi P A, Chandy K G (2006). Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci U S A, 103(46): 17414-17419
https://doi.org/10.1073/pnas.0605136103 pmid: 17088564
9 Bertuccio C A, Lee S L, Wu G, Butterworth M B, Hamilton K L, Devor D C (2014). Anterograde trafficking of KCa3.1 in polarized epithelia is Rab1- and Rab8-dependent and recycling endosome-independent. PLoS One, 9(3): e92013
https://doi.org/10.1371/journal.pone.0092013 pmid: 24632741
10 Biernacka A, Dobaczewski M, Frangogiannis N G (2011). TGF-β signaling in fibrosis. Growth Factors, 29(5): 196-202
https://doi.org/10.3109/08977194.2011.595714 pmid: 21740331
11 Border W A, Noble N A (1994). Transforming growth factor beta in tissue fibrosis. N Engl J Med, 331(19): 1286-1292
https://doi.org/10.1056/NEJM199411103311907 pmid: 7935686
12 Bradding P, Wulff H (2009). The K+ channels K(Ca)3.1 and K(v)1.3 as novel targets for asthma therapy. Br J Pharmacol, 157(8): 1330-1339
https://doi.org/10.1111/j.1476-5381.2009.00362.x pmid: 19681865
13 Br?hler S, Kaistha A, Schmidt V J, W?lfle S E, Busch C, Kaistha B P, Kacik M, Hasenau A L, Grgic I, Si H, Bond C T, Adelman J P, Wulff H, de Wit C, Hoyer J, K?hler R (2009). Genetic deficit of SK3 and IK1 channels disrupts the endothelium-derived hyperpolarizing factor vasodilator pathway and causes hypertension. Circulation, 119(17): 2323-2332
https://doi.org/10.1161/CIRCULATIONAHA.108.846634 pmid: 19380617
14 Cahalan M D, Chandy K G, DeCoursey T E, Gupta S (1985). A voltage-gated potassium channel in human T lymphocytes. J Physiol, 358: 197-237
pmid: 2580081
15 Centers for Disease Control and Prevention (CDC) (2005). Incidence of end-stage renal disease among persons with diabetes—United States, 1990-2002. MMWR Morb Mortal Wkly Rep, 54(43): 1097-1100
pmid: 16267496
16 Chen M X, Gorman S A, Benson B, Singh K, Hieble J P, Michel M C, Tate S N, Trezise D J (2004). Small and intermediate conductance Ca(2+)-activated K+ channels confer distinctive patterns of distribution in human tissues and differential cellular localisation in the colon and corpus cavernosum. Naunyn Schmiedebergs Arch Pharmacol, 369(6): 602-615
https://doi.org/10.1007/s00210-004-0934-5 pmid: 15127180
17 Cruse G, Duffy S M, Brightling C E, Bradding P (2006). Functional KCa3.1 K+ channels are required for human lung mast cell migration. Thorax, 61(10): 880-885
https://doi.org/10.1136/thx.2006.060319 pmid: 16809411
18 Davidow C J, Maser R L, Rome L A, Calvet J P, Grantham J J (1996). The cystic fibrosis transmembrane conductance regulator mediates transepithelial fluid secretion by human autosomal dominant polycystic kidney disease epithelium in vitro. Kidney Int, 50(1): 208-218
https://doi.org/10.1038/ki.1996.304 pmid: 8807590
19 DeCoursey T E, Chandy K G, Gupta S, Cahalan M D (1984). Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature, 307(5950): 465-468
https://doi.org/10.1038/307465a0 pmid: 6320007
20 Devor D C, Bridges R J, Pilewski J M (2000). Pharmacological modulation of ion transport across wild-type and DeltaF508 CFTR-expressing human bronchial epithelia. Am J Physiol Cell Physiol, 279(2): C461-C479
pmid: 10913013
21 Devor D C, Singh A K, Frizzell R A, Bridges R J (1996). Modulation of Cl- secretion by benzimidazolones. I. Direct activation of a Ca(2+)-dependent K+ channel. Am J Physiol, 271(5 Pt 1): L775-L784
pmid: 8944721
22 Devor D C, Singh A K, Lambert L C, DeLuca A, Frizzell R A, Bridges R J (1999). Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells. J Gen Physiol, 113(5): 743-760
https://doi.org/10.1085/jgp.113.5.743 pmid: 10228185
23 Di L, Srivastava S, Zhdanova O, Ding Y, Li Z, Wulff H, Lafaille M, Skolnik E Y (2010). Inhibition of the K+ channel KCa3.1 ameliorates T cell-mediated colitis. Proc Natl Acad Sci U S A, 107(4): 1541-1546
https://doi.org/10.1073/pnas.0910133107 pmid: 20080610
24 Dieu-Nosjean M C, Massacrier C, Homey B, Vanbervliet B, Pin J J, Vicari A, Lebecque S, Dezutter-Dambuyant C, Schmitt D, Zlotnik A, Caux C (2000). Macrophage inflammatory protein 3alpha is expressed at inflamed epithelial surfaces and is the most potent chemokine known in attracting Langerhans cell precursors. J Exp Med, 192(5): 705-718
https://doi.org/10.1084/jem.192.5.705 pmid: 10974036
25 Eitner F, Ostendorf T, Kretzler M, Cohen C D, Eriksson U, Gr?ne H J, Floege J, and the ERCB-Consortium (2003). PDGF-C expression in the developing and normal adult human kidney and in glomerular diseases. J Am Soc Nephrol, 14(5): 1145-1153
https://doi.org/10.1097/01.ASN.0000062964.75006.A8 pmid: 12707385
26 Fujimoto M, Maezawa Y, Yokote K, Joh K, Kobayashi K, Kawamura H, Nishimura M, Roberts A B, Saito Y, Mori S (2003). Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochem Biophys Res Commun, 305(4): 1002-1007
https://doi.org/10.1016/S0006-291X(03)00885-4 pmid: 12767930
27 Gewin L, Zent R (2012). How does TGF-β mediate tubulointerstitial fibrosis? Semin Nephrol, 32(3): 228-235
https://doi.org/10.1016/j.semnephrol.2012.04.001 pmid: 22835453
28 Ghanshani S, Wulff H, Miller M J, Rohm H, Neben A, Gutman G A, Cahalan M D, Chandy K G (2000). Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J Biol Chem, 275(47): 37137-37149
https://doi.org/10.1074/jbc.M003941200 pmid: 10961988
29 Gore-Hyer E, Shegogue D, Markiewicz M, Lo S, Hazen-Martin D, Greene E L, Grotendorst G, Trojanowska M (2002). TGF-beta and CTGF have overlapping and distinct fibrogenic effects on human renal cells. Am J Physiol Renal Physiol, 283(4): F707-F716
pmid: 12217862
30 Grantham J J, Chapman A B, Torres V E (2006). Volume progression in autosomal dominant polycystic kidney disease: the major factor determining clinical outcomes. Clin J Am Soc Nephrol, 1(1): 148-157
https://doi.org/10.2215/CJN.00330705 pmid: 17699202
31 Grantham J J, Cook L T, Torres V E, Bost J E, Chapman A B, Harris P C, Guay-Woodford L M, Bae K T (2008). Determinants of renal volume in autosomal-dominant polycystic kidney disease. Kidney Int, 73(1): 108-116
https://doi.org/10.1038/sj.ki.5002624 pmid: 17960141
32 Grantham J J, Geiser J L, Evan A P (1987). Cyst formation and growth in autosomal dominant polycystic kidney disease. Kidney Int, 31(5): 1145-1152
https://doi.org/10.1038/ki.1987.121 pmid: 3599654
33 Grantham J J, Torres V E, Chapman A B, Guay-Woodford L M, Bae K T, King B F Jr, Wetzel L H, Baumgarten D A, Kenney P J, Harris P C, Klahr S, Bennett W M, Hirschman G N, Meyers C M, Zhang X, Zhu F, Miller J P, and the CRISP Investigators (2006). Volume progression in polycystic kidney disease. N Engl J Med, 354(20): 2122-2130
https://doi.org/10.1056/NEJMoa054341 pmid: 16707749
34 Grgic I, Campanholle G, Bijol V, Wang C, Sabbisetti V S, Ichimura T, Humphreys B D, Bonventre J V (2012). Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int, 82(2): 172-183
https://doi.org/10.1038/ki.2012.20 pmid: 22437410
35 Grgic I, Eichler I, Heinau P, Si H, Brakemeier S, Hoyer J, K?hler R (2005). Selective blockade of the intermediate-conductance Ca2+-activated K+ channel suppresses proliferation of microvascular and macrovascular endothelial cells and angiogenesis in vivo. Arterioscler Thromb Vasc Biol, 25(4): 704-709
https://doi.org/10.1161/01.ATV.0000156399.12787.5c pmid: 15662023
36 Grgic I, Kiss E, Kaistha B P, Busch C, Kloss M, Sautter J, Müller A, Kaistha A, Schmidt C, Raman G, Wulff H, Strutz F, Gr?ne H J, K?hler R, Hoyer J (2009). Renal fibrosis is attenuated by targeted disruption of KCa3.1 potassium channels. Proc Natl Acad Sci U S A, 106(34): 14518-14523
https://doi.org/10.1073/pnas.0903458106 pmid: 19706538
37 Grgic I, Wulff H, Eichler I, Flothmann C, K?hler R, Hoyer J (2009). Blockade of T-lymphocyte KCa3.1 and Kv1.3 channels as novel immunosuppression strategy to prevent kidney allograft rejection. Transplant Proc, 41(6): 2601-2606
https://doi.org/10.1016/j.transproceed.2009.06.025 pmid: 19715983
38 Grissmer S, Dethlefs B, Wasmuth J J, Goldin A L, Gutman G A, Cahalan M D, Chandy K G (1990). Expression and chromosomal localization of a lymphocyte K+ channel gene. Proc Natl Acad Sci U S A, 87(23): 9411-9415
https://doi.org/10.1073/pnas.87.23.9411 pmid: 2251283
39 Homey B, Dieu-Nosjean M C, Wiesenborn A, Massacrier C, Pin J J, Oldham E, Catron D, Buchanan M E, Müller A, deWaal Malefyt R, Deng G, Orozco R, Ruzicka T, Lehmann P, Lebecque S, Caux C, Zlotnik A (2000). Up-regulation of macrophage inflammatory protein-3 alpha/CCL20 and CC chemokine receptor 6 in psoriasis. J Immunol, 164(12): 6621-6632
https://doi.org/10.4049/jimmunol.164.12.6621 pmid: 10843722
40 Huang C, Day M L, Poronnik P, Pollock C A, Chen X M (2014). Inhibition of KCa3.1 suppresses TGF-β1 induced MCP-1 expression in human proximal tubular cells through Smad3, p38 and ERK1/2 signaling pathways. Int J Biochem Cell Biol, 47: 1-10
https://doi.org/10.1016/j.biocel.2013.11.017 pmid: 24291552
41 Huang C, Pollock CA, Chen XM (2014) High glucose induces CCL20 in proximal tubular cells via activation of the KCa3.1 channel. PLoS One, 9(4): e95173
42 Huang C, Shen S, Ma Q, Chen J, Gill A, Pollock C A, Chen X M (2013). Blockade of KCa3.1 ameliorates renal fibrosis through the TGF-β1/Smad pathway in diabetic mice. Diabetes, 62(8): 2923-2934
https://doi.org/10.2337/db13-0135 pmid: 23656889
43 Huang X R, Chung A C, Yang F, Yue W, Deng C, Lau C P, Tse H F, Lan H Y (2010). Smad3 mediates cardiac inflammation and fibrosis in angiotensin II-induced hypertensive cardiac remodeling. Hypertension, 55(5): 1165-1171
https://doi.org/10.1161/HYPERTENSIONAHA.109.147611 pmid: 20231525
44 Ishii T M, Silvia C, Hirschberg B, Bond C T, Adelman J P, Maylie J (1997). A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci U S A, 94(21): 11651-11656
https://doi.org/10.1073/pnas.94.21.11651 pmid: 9326665
45 Isono M, Chen S, Hong S W, Iglesias-de la Cruz M C, Ziyadeh F N (2002). Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-beta-induced fibronectin in mesangial cells. Biochem Biophys Res Commun, 296(5): 1356-1365
https://doi.org/10.1016/S0006-291X(02)02084-3 pmid: 12207925
46 Iwano M, Kubo A, Nishino T, Sato H, Nishioka H, Akai Y, Kurioka H, Fujii Y, Kanauchi M, Shiiki H, Dohi K (1996). Quantification of glomerular TGF-beta 1 mRNA in patients with diabetes mellitus. Kidney Int, 49(4): 1120-1126
https://doi.org/10.1038/ki.1996.162 pmid: 8691733
47 Iwano M, Neilson E G (2004). Mechanisms of tubulointerstitial fibrosis. Curr Opin Nephrol Hypertens, 13(3): 279-284
https://doi.org/10.1097/00041552-200405000-00003 pmid: 15073485
48 Izu L T, McCulle S L, Ferreri-Jacobia M T, Devor D C, Duffey M E (2002). Vasoactive intestinal peptide-stimulated Cl- secretion: activation of cAMP-dependent K+ channels. J Membr Biol, 186(3): 145-157
https://doi.org/10.1007/s00232-001-0145-7 pmid: 12148841
49 J?ger H, Dreker T, Buck A, Giehl K, Gress T, Grissmer S (2004). Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol Pharmacol, 65(3): 630-638
https://doi.org/10.1124/mol.65.3.630 pmid: 14978241
50 K?hler R, Wulff H, Eichler I, Kneifel M, Neumann D, Knorr A, Grgic I, K?mpfe D, Si H, Wibawa J, Real R, Borner K, Brakemeier S, Orzechowski H D, Reusch H P, Paul M, Chandy K G, Hoyer J (2003). Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation, 108(9): 1119-1125
https://doi.org/10.1161/01.CIR.0000086464.04719.DD pmid: 12939222
51 Lambert P P (1947). Polycystic disease of the kidney; a review. Arch Pathol (Chic), 44(1): 34-58
pmid: 20258281
52 Leichtman A B (2007). Balancing efficacy and toxicity in kidney-transplant immunosuppression. N Engl J Med, 357(25): 2625-2627
https://doi.org/10.1056/NEJMe078181 pmid: 18094383
53 Li H, Findlay I A, Sheppard D N (2004). The relationship between cell proliferation, Cl- secretion, and renal cyst growth: a study using CFTR inhibitors. Kidney Int, 66(5): 1926-1938
https://doi.org/10.1111/j.1523-1755.2004.00967.x pmid: 15496164
54 Li J, Qu X, Yao J, Caruana G, Ricardo S D, Yamamoto Y, Yamamoto H, Bertram J F (2010). Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes, 59(10): 2612-2624
https://doi.org/10.2337/db09-1631 pmid: 20682692
55 Logsdon N J, Kang J, Togo J A, Christian E P, Aiyar J (1997). A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J Biol Chem, 272(52): 32723-32726
https://doi.org/10.1074/jbc.272.52.32723 pmid: 9407042
56 López-Hernández F J, López-Novoa J M (2012). Role of TGF-β in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell Tissue Res, 347(1): 141-154
https://doi.org/10.1007/s00441-011-1275-6 pmid: 22105921
57 Mall M, Gonska T, Thomas J, Schreiber R, Seydewitz H H, Kuehr J, Brandis M, Kunzelmann K (2003). Modulation of Ca2+-activated Cl- secretion by basolateral K+ channels in human normal and cystic fibrosis airway epithelia. Pediatr Res, 53(4): 608-618
https://doi.org/10.1203/01.PDR.0000057204.51420.DC pmid: 12612194
58 Mangos S, Lam P Y, Zhao A, Liu Y, Mudumana S, Vasilyev A, Liu A, Drummond I A (2010). The ADPKD genes pkd1a/b and pkd2 regulate extracellular matrix formation. Dis Model Mech, 3(5-6): 354-365
https://doi.org/10.1242/dmm.003194 pmid: 20335443
59 Matteson D R, Deutsch C (1984). K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature, 307(5950): 468-471
https://doi.org/10.1038/307468a0 pmid: 6320008
60 Mezzano S, Aros C, Droguett A, Burgos M E, Ardiles L, Flores C, Schneider H, Ruiz-Ortega M, Egido J (2004). NF-kappaB activation and overexpression of regulated genes in human diabetic nephropathy. Nephrol Dial Transplant, 19(10): 2505-2512
https://doi.org/10.1093/ndt/gfh207 pmid: 15280531
61 Morii T, Fujita H, Narita T, Shimotomai T, Fujishima H, Yoshioka N, Imai H, Kakei M, Ito S (2003). Association of monocyte chemoattractant protein-1 with renal tubular damage in diabetic nephropathy. J Diabetes Complications, 17(1): 11-15
https://doi.org/10.1016/S1056-8727(02)00176-9 pmid: 12505750
62 Nakayama T, Fujisawa R, Yamada H, Horikawa T, Kawasaki H, Hieshima K, Izawa D, Fujiie S, Tezuka T, Yoshie O (2001). Inducible expression of a CC chemokine liver- and activation-regulated chemokine (LARC)/macrophage inflammatory protein (MIP)-3 alpha/CCL20 by epidermal keratinocytes and its role in atopic dermatitis. Int Immunol, 13(1): 95-103
https://doi.org/10.1093/intimm/13.1.95 pmid: 11133838
63 Neilson E G (2006). Mechanisms of disease: Fibroblasts—a new look at an old problem. Nat Clin Pract Nephrol, 2(2): 101-108
https://doi.org/10.1038/ncpneph0093 pmid: 16932401
64 Neylon C B, Lang R J, Fu Y, Bobik A, Reinhart P H (1999). Molecular cloning and characterization of the intermediate-conductance Ca(2+)-activated K(+) channel in vascular smooth muscle: relationship between K(Ca) channel diversity and smooth muscle cell function. Circ Res, 85(9): e33-e43
https://doi.org/10.1161/01.RES.85.9.e33 pmid: 10532960
65 Nilius B, Droogmans G (2001). Ion channels and their functional role in vascular endothelium. Physiol Rev, 81(4): 1415-1459
pmid: 11581493
66 O’Sullivan D A, Torres V E, Gabow P A, Thibodeau S N, King B F, Bergstralh E J (1998). Cystic fibrosis and the phenotypic expression of autosomal dominant polycystic kidney disease. Am J Kidney Dis, 32(6): 976-983
https://doi.org/10.1016/S0272-6386(98)70072-1 pmid: 9856513
67 Ohga S, Shikata K, Yozai K, Okada S, Ogawa D, Usui H, Wada J, Shikata Y, Makino H (2007). Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-kappaB activation. Am J Physiol Renal Physiol, 292(4): F1141-F1150
pmid: 17190910
68 Pankewycz O G, Guan J X, Bolton W K, Gomez A, Benedict J F (1994). Renal TGF-beta regulation in spontaneously diabetic NOD mice with correlations in mesangial cells. Kidney Int, 46(3): 748-758
https://doi.org/10.1038/ki.1994.330 pmid: 7996797
69 Park I S, Kiyomoto H, Abboud S L, Abboud H E (1997). Expression of transforming growth factor-beta and type IV collagen in early streptozotocin-induced diabetes. Diabetes, 46(3): 473-480
https://doi.org/10.2337/diab.46.3.473 pmid: 9032105
70 Pe?a T L, Chen S H, Konieczny S F, Rane S G (2000). Ras/MEK/ERK Up-regulation of the fibroblast KCa channel FIK is a common mechanism for basic fibroblast growth factor and transforming growth factor-beta suppression of myogenesis. J Biol Chem, 275(18): 13677-13682
https://doi.org/10.1074/jbc.275.18.13677 pmid: 10788486
71 Pe?a T L, Rane S G (1999). The fibroblast intermediate conductance K(Ca) channel, FIK, as a prototype for the cell growth regulatory function of the IK channel family. J Membr Biol, 172(3): 249-257
https://doi.org/10.1007/s002329900601 pmid: 10568794
72 Qi W, Chen X, Polhill T S, Sumual S, Twigg S, Gilbert R E, Pollock C A (2006). TGF-beta1 induces IL-8 and MCP-1 through a connective tissue growth factor-independent pathway. Am J Physiol Renal Physiol, 290(3): F703-F709
pmid: 16204411
73 Qi W, Chen X, Zhang Y, Holian J, Mreich E, Gilbert R E, Kelly D J, Pollock C A (2007). High glucose induces macrophage inflammatory protein-3 alpha in renal proximal tubule cells via a transforming growth factor-beta 1 dependent mechanism. Nephrol Dial Transplant, 22(11): 3147-3153
https://doi.org/10.1093/ndt/gfm365 pmid: 17664181
74 Qi W, Holian J, Tan C Y, Kelly D J, Chen X M, Pollock C A (2011). The roles of Kruppel-like factor 6 and peroxisome proliferator-activated receptor-γ in the regulation of macrophage inflammatory protein-3α at early onset of diabetes. Int J Biochem Cell Biol, 43(3): 383-392
https://doi.org/10.1016/j.biocel.2010.11.008 pmid: 21109018
75 Reddy G R, Kotlyarevska K, Ransom R F, Menon R K (2008). The podocyte and diabetes mellitus: is the podocyte the key to the origins of diabetic nephropathy? Curr Opin Nephrol Hypertens, 17(1): 32-36
https://doi.org/10.1097/MNH.0b013e3282f2904d pmid: 18090667
76 Robinette L, Abraham W M, Bradding P, Krajewski J, Antonio B, Shelton T, Bannon A W, Rigdon G, Krafte D, Wagoner K, Castle N A (2008) Senicapoc? (ICA-17043), a potent and selective KCa 3.1 K+ channel blocker, attenuates allergen-induced asthma in sheep. 15th International Conference of the Inflammation Research Association
77 Rosolowsky E T, Skupien J, Smiles A M, Niewczas M, Roshan B, Stanton R, Eckfeldt J H, Warram J H, Krolewski A S (2011). Risk for ESRD in type 1 diabetes remains high despite renoprotection. J Am Soc Nephrol, 22(3): 545-553
https://doi.org/10.1681/ASN.2010040354 pmid: 21355053
78 Rufo P A, Jiang L, Moe S J, Brugnara C, Alper S L, Lencer W I (1996). The antifungal antibiotic, clotrimazole, inhibits Cl- secretion by polarized monolayers of human colonic epithelial cells. J Clin Invest, 98(9): 2066-2075
https://doi.org/10.1172/JCI119012 pmid: 8903326
79 Ruiz-Ortega M, Rupérez M, Esteban V, Rodríguez-Vita J, Sánchez-López E, Carvajal G, Egido J (2006). Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol Dial Transplant, 21(1): 16-20
https://doi.org/10.1093/ndt/gfi265 pmid: 16280370
80 Rus H, Pardo C A, Hu L, Darrah E, Cudrici C, Niculescu T, Niculescu F, Mullen K M, Allie R, Guo L, Wulff H, Beeton C, Judge S I, Kerr D A, Knaus H G, Chandy K G, Calabresi P A (2005). The voltage-gated potassium channel Kv1.3 is highly expressed on inflammatory infiltrates in multiple sclerosis brain. Proc Natl Acad Sci U S A, 102(31): 11094-11099
https://doi.org/10.1073/pnas.0501770102 pmid: 16043714
81 Schlichter L, Sidell N, Hagiwara S (1986). K channels are expressed early in human T-cell development. Proc Natl Acad Sci U S A, 83(15): 5625-5629
https://doi.org/10.1073/pnas.83.15.5625 pmid: 2426701
82 Schmid H, Boucherot A, Yasuda Y, Henger A, Brunner B, Eichinger F, Nitsche A, Kiss E, Bleich M, Gr?ne H J, Nelson P J, Schl?ndorff D, Cohen C D, Kretzler M, and the European Renal cDNA Bank (ERCB) Consortium (2006). Modular activation of nuclear factor-kappaB transcriptional programs in human diabetic nephropathy. Diabetes, 55(11): 2993-3003
https://doi.org/10.2337/db06-0477 pmid: 17065335
83 Sharma K, McGowan T A (2000). TGF-beta in diabetic kidney disease: role of novel signaling pathways. Cytokine Growth Factor Rev, 11(1-2): 115-123
https://doi.org/10.1016/S1359-6101(99)00035-0 pmid: 10708959
84 Sharma K, Ziyadeh F N, Alzahabi B, McGowan T A, Kapoor S, Kurnik B R, Kurnik P B, Weisberg L S (1997). Increased renal production of transforming growth factor-beta1 in patients with type II diabetes. Diabetes, 46(5): 854-859
https://doi.org/10.2337/diab.46.5.854 pmid: 9133555
85 Si H, Grgic I, Heyken W T, Maier T, Hoyer J, Reusch H P, K?hler R (2006). Mitogenic modulation of Ca2+ -activated K+ channels in proliferating A7r5 vascular smooth muscle cells. Br J Pharmacol, 148(7): 909-917
https://doi.org/10.1038/sj.bjp.0706793 pmid: 16770324
86 Si H, Heyken W T, W?llfle S E, Tysiac M, Schubert R, Grgic I, Vilianovich L, Giebing G, Maier T, Gross V, Bader M, de Wit C, Hoyer J, K?hler R (2006). Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+-activated K+ channel. Circ Res, 99(5): 537-544
https://doi.org/10.1161/01.RES.0000238377.08219.0c pmid: 16873714
87 Singh S, Syme C A, Singh A K, Devor D C, Bridges R J (2001). Benzimidazolone activators of chloride secretion: potential therapeutics for cystic fibrosis and chronic obstructive pulmonary disease. J Pharmacol Exp Ther, 296(2): 600-611
pmid: 11160649
88 Strutz F, Zeisberg M, Hemmerlein B, Sattler B, Hummel K, Becker V, Müler G A (2000). Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney Int, 57(4): 1521-1538
https://doi.org/10.1046/j.1523-1755.2000.00997.x pmid: 10760088
89 Sugita S, Kohno T, Yamamoto K, Imaizumi Y, Nakajima H, Ishimaru T, Matsuyama T (2002). Induction of macrophage-inflammatory protein-3alpha gene expression by TNF-dependent NF-kappaB activation. J Immunol, 168(11): 5621-5628
https://doi.org/10.4049/jimmunol.168.11.5621 pmid: 12023359
90 Sullivan L P, Wallace D P, Grantham J J (1998). Epithelial transport in polycystic kidney disease. Physiol Rev, 78(4): 1165-1191
pmid: 9790573
91 Terryn S, Ho A, Beauwens R, Devuyst O (2011). Fluid transport and cystogenesis in autosomal dominant polycystic kidney disease. Biochim Biophys Acta, 1812(10): 1314-1321
https://doi.org/10.1016/j.bbadis.2011.01.011 pmid: 21255645
92 Tharp D L, Wamhoff B R, Turk J R, Bowles D K (2006). Upregulation of intermediate-conductance Ca2+-activated K+ channel (IKCa1) mediates phenotypic modulation of coronary smooth muscle. Am J Physiol Heart Circ Physiol, 291(5): H2493-H2503
pmid: 16798818
93 Tharp D L, Wamhoff B R, Wulff H, Raman G, Cheong A, Bowles D K (2008). Local delivery of the KCa3.1 blocker, TRAM-34, prevents acute angioplasty-induced coronary smooth muscle phenotypic modulation and limits stenosis. Arterioscler Thromb Vasc Biol, 28(6): 1084-1089
https://doi.org/10.1161/ATVBAHA.107.155796 pmid: 18309114
94 Torres V E, Harris P C (2009). Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int, 76(2): 149-168
https://doi.org/10.1038/ki.2009.128 pmid: 19455193
95 Torres V E, Harris P C, Pirson Y (2007). Autosomal dominant polycystic kidney disease. Lancet, 369(9569): 1287-1301
https://doi.org/10.1016/S0140-6736(07)60601-1 pmid: 17434405
96 Toyama K, Wulff H, Chandy K G, Azam P, Raman G, Saito T, Fujiwara Y, Mattson D L, Das S, Melvin J E, Pratt P F, Hatoum O A, Gutterman D D, Harder D R, Miura H (2008). The intermediate-conductance calcium-activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J Clin Invest, 118(9): 3025-3037
https://doi.org/10.1172/JCI30836 pmid: 18688283
97 Wada T, Furuichi K, Sakai N, Iwata Y, Yoshimoto K, Shimizu M, Takeda S I, Takasawa K, Yoshimura M, Kida H, Kobayashi K I, Mukaida N, Naito T, Matsushima K, Yokoyama H (2000). Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int, 58(4): 1492-1499
https://doi.org/10.1046/j.1523-1755.2000.00311.x pmid: 11012884
98 Wallace D P, Grantham J J, Sullivan L P (1996). Chloride and fluid secretion by cultured human polycystic kidney cells. Kidney Int, 50(4): 1327-1336
https://doi.org/10.1038/ki.1996.445 pmid: 8887295
99 Wang L P, Wang Y, Zhao L M, Li G R, Deng X L (2013). Angiotensin II upregulates K(Ca)3.1 channels and stimulates cell proliferation in rat cardiac fibroblasts. Biochem Pharmacol, 85(10): 1486-1494
https://doi.org/10.1016/j.bcp.2013.02.032 pmid: 23500546
100 Wang Z H, Shen B, Yao H L, Jia Y C, Ren J, Feng Y J, Wang Y Z (2007). Blockage of intermediate-conductance-Ca2+ -activated K+ channels inhibits progression of human endometrial cancer. Oncogene, 26(35): 5107-5114
https://doi.org/10.1038/sj.onc.1210308 pmid: 17310992
101 Wojtulewski J A, Gow P J, Walter J, Grahame R, Gibson T, Panayi G S, Mason J (1980). Clotrimazole in rheumatoid arthritis. Ann Rheum Dis, 39(5): 469-472
https://doi.org/10.1136/ard.39.5.469 pmid: 7002065
102 Wolf G (2003). Growth factors and the development of diabetic nephropathy. Curr Diab Rep, 3(6): 485-490
https://doi.org/10.1007/s11892-003-0012-2 pmid: 14611745
103 Wolf G, Ziyadeh F N (1999). Molecular mechanisms of diabetic renal hypertrophy. Kidney Int, 56(2): 393-405
https://doi.org/10.1046/j.1523-1755.1999.00590.x pmid: 10432377
104 Wulff H, Calabresi P A, Allie R, Yun S, Pennington M, Beeton C, Chandy K G (2003). The voltage-gated Kv1.3 K+ channel in effector memory T cells as new target for MS. J Clin Invest, 111(11): 1703-1713
https://doi.org/10.1172/JCI16921 pmid: 12782673
105 Xu N, Glockner J F, Rossetti S, Babovich-Vuksanovic D, Harris P C, Torres V E (2006). Autosomal dominant polycystic kidney disease coexisting with cystic fibrosis. J Nephrol, 19(4): 529-534
pmid: 17048214
106 Yamamoto T, Nakamura T, Noble N A, Ruoslahti E, Border W A (1993). Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci U S A, 90(5): 1814-1818
https://doi.org/10.1073/pnas.90.5.1814 pmid: 7680480
107 Ye M, Grantham J J (1993). The secretion of fluid by renal cysts from patients with autosomal dominant polycystic kidney disease. N Engl J Med, 329(5): 310-313
https://doi.org/10.1056/NEJM199307293290503 pmid: 8321258
108 Yoshie O, Imai T, Nomiyama H (2001). Chemokines in immunity. Adv Immunol, 78: 57-110
https://doi.org/10.1016/S0065-2776(01)78002-9 pmid: 11432208
109 Yu L, Border W A, Huang Y, Noble N A (2003). TGF-β isoforms in renal fibrogenesis. Kidney Int, 64(3): 844-856
https://doi.org/10.1046/j.1523-1755.2003.00162.x pmid: 12911534
110 Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R (2003). BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med, 9(7): 964-968
https://doi.org/10.1038/nm888 pmid: 12808448
111 Zhang F, Tsai S, Kato K, Yamanouchi D, Wang C, Rafii S, Liu B, Kent K C (2009). Transforming growth factor-beta promotes recruitment of bone marrow cells and bone marrow-derived mesenchymal stem cells through stimulation of MCP-1 production in vascular smooth muscle cells. J Biol Chem, 284(26): 17564-17574
https://doi.org/10.1074/jbc.M109.013987 pmid: 19406748
112 Zhao L M, Zhang W, Wang L P, Li G R, Deng X L (2012). Advanced glycation end products promote proliferation of cardiac fibroblasts by upregulation of KCa3.1 channels. Pflugers Arch, 464(6): 613-621
https://doi.org/10.1007/s00424-012-1165-0 pmid: 23053478
113 Zheng H, Whitman S A, Wu W, Wondrak G T, Wong P K, Fang D, Zhang D D (2011). Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes, 60(11): 3055-3066
https://doi.org/10.2337/db11-0807 pmid: 22025779
[1] Shuxia Wang. Role of upstream stimulatory factor 2 in diabetic nephropathy[J]. Front. Biol., 2015, 10(3): 221-229.
[2] Chen Guang YU. Distinct roles for ERK1 and ERK2 in pathophysiology of CNS[J]. Front Biol, 2012, 7(3): 267-276.
[3] Jiani CAO, Zhifeng XIAO, Bing CHEN, Yuan GAO, Chunying SHI, Jinhuan WANG, Jianwu DAI. Differential effects of recombinant fusion proteins TAT-OCT4 and TAT-NANOG on adult human fibroblasts[J]. Front Biol, 2010, 5(5): 424-430.
[4] Hedong LI, Wei SHI. Neural progenitor diversity and their therapeutic potential for spinal cord repair[J]. Front Biol, 2010, 5(5): 386-395.
[5] Jia Bingbing, Xiang Ying, Xie Chungang, Wang Jinfu. Experimental study on ex vivo expanded hematopoietic stem/progenitor in the two step culture from human umbilical cord blood transplanted into NOD/SCID mice[J]. Front. Biol., 2006, 1(2): 137-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed