Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (3) : 221-229    https://doi.org/10.1007/s11515-015-1359-x
REVIEW
Role of upstream stimulatory factor 2 in diabetic nephropathy
Shuxia Wang()
Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
 Download: PDF(391 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Diabetic nephropathy (DN) is the most common cause of end-stage renal disease (ESRD). About 20%–30% of people with type 1 and type 2 diabetes develop DN . DN is characterized by both glomerulosclerosis with thickening of the glomerular basement membrane and mesangial matrix expansion, and tubulointerstitial fibrosis . Hyperglycemia and the activation of the intra-renal renin-angiotensin system (RAS) in diabetes have been suggested to play a critical role in the pathogenesis of DN. However, the mechanisms are not well known.

Studies from our laboratory demonstrated that the transcription factor—upstream stimulatory factor 2 (USF2) is an important regulator of DN. Moreover, the renin gene is a downstream target of USF2. Importantly, USF2 transgenic (Tg) mice demonstrate a specific increase in renal renin expression and angiotensin II (AngII) levels in kidney and exhibit increased urinary albumin excretion and extracellular matrix deposition in glomeruli, supporting a role for USF2 in the development of diabetic nephropathy. In this review, we summarize our findings of the mechanisms by which diabetes regulates USF2 in kidney cells and its role in regulation of renal renin-angiotensin system and the development of diabetic nephropathy.

Keywords USF2      renin-angiotensin system      TGF-β      renal fibrosis     
Corresponding Author(s): Shuxia Wang   
Just Accepted Date: 17 April 2015   Online First Date: 14 May 2015    Issue Date: 23 June 2015
 Cite this article:   
Shuxia Wang. Role of upstream stimulatory factor 2 in diabetic nephropathy[J]. Front. Biol., 2015, 10(3): 221-229.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1359-x
https://academic.hep.com.cn/fib/EN/Y2015/V10/I3/221
Fig.1  Schematic illustration of USF2 structure and its regulated genes. USR: USF-specific region; B: basic region; HLH: Helix–loop–helix domain; LZ: leucine zipper domain.
Fig.2  siRNA-USF2 transfection inhibits high glucose levels-induced TGF-β production. Mouse mesangial cells were transfected with siRNA-USF2 or control siRNA for 48 h. Then cells were treated with normal or high glucose media for 24h. Conditioned media were collected and used for measuring active and total TGF-β levels by PAI-1/Lucifersae assay. Cells were harvested to determine the USF2 protein levels in nuclear extracts by immunoblotting. TBP (anti-TATA binding protein) was used as internal nuclear loading control. Data are represented as mean of 3 replicates±S.D. *, p<0.05 vs. NG. &, p<0.05 vs. NG of control siRNA. # P<0.05 vs. HG of control siRNA.
Fig.3  Model of the role of USF2 in DN. Diabetic conditions upregulate kidney USF2 levels. USF2 binds to renin promoter and increases renin gene expression and stimulates angiotensin II production in kidney cells. Increased angiotensin II increases TGF-β levels and then extracellular matrix production in kidney cells, which leads to renal fibrosis.
1 Andersen S, Tarnow L, Rossing P, Hansen B V, Parving H H (2000). Renoprotective effects of angiotensin II receptor blockade in type 1 diabetic patients with diabetic nephropathy. Kidney Int, 57(2): 601-606
https://doi.org/10.1046/j.1523-1755.2000.00880.x pmid: 10652037
2 Anderson S, Jung F F, Ingelfinger J R (1993). Renal renin-angiotensin system in diabetes: functional, immunohistochemical, and molecular biological correlations. Am J Physiol, 265(4 Pt 2): F477-F486
pmid: 8238377
3 Andrade A Q, Casarini D E, Schor N, Boim M A (2002). Characterization of renin mRNA expression and enzyme activity in rat and mouse mesangial cells. Braz J Med Biol Res, 35(1): 17-24
https://doi.org/10.1590/S0100-879X2002000100003 pmid: 11743610
4 Bertoluci M C, Schmid H, Lachat J J, Coimbra T M (1996). Transforming growth factor-beta in the development of rat diabetic nephropathy. A 10-month study with insulin-treated rats. Nephron, 74(1): 189-196
https://doi.org/10.1159/000189300 pmid: 8883039
5 Bidder M, Shao J S, Charlton-Kachigian N, Loewy A P, Semenkovich C F, Towler D A (2002). Osteopontin transcription in aortic vascular smooth muscle cells is controlled by glucose-regulated upstream stimulatory factor and activator protein-1 activities. J Biol Chem, 277(46): 44485-44496
https://doi.org/10.1074/jbc.M206235200 pmid: 12200434
6 Borch-Johnsen K, Andersen P K, Deckert T (1985). The effect of proteinuria on relative mortality in type 1 (insulin-dependent) diabetes mellitus. Diabetologia, 28(8): 590-596
https://doi.org/10.1007/BF00281993 pmid: 4054448
7 Border W A, Noble N A (1998a). Evidence that TGF-beta should be a therapeutic target in diabetic nephropathy. Kidney Int, 54(4): 1390-1391
https://doi.org/10.1046/j.1523-1755.1998.00127.x pmid: 9773681
8 Border W A, Noble N A (1998b). Interactions of transforming growth factor-beta and angiotensin II in renal fibrosis. Hypertension, 31(1 Pt 2): 181-188
https://doi.org/10.1161/01.HYP.31.1.181 pmid: 9453300
9 Border W A, Noble N A, Ketteler M (1995). TGF-beta: a cytokine mediator of glomerulosclerosis and a target for therapeutic intervention. Kidney Int Suppl, 49(61): S59-S61
pmid: 7674597
10 Brenner B M, Cooper M E, de Zeeuw D, Keane W F, Mitch W E, Parving H H, Remuzzi G, Snapinn S M, Zhang Z, Shahinfar S, and the RENAAL Study Investigators (2001). Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med, 345(12): 861-869
https://doi.org/10.1056/NEJMoa011161 pmid: 11565518
11 Burden A C, Thurston H (1979). Plasma renin activity in diabetes mellitus. Clin Sci (Lond), 56(3): 255-259
pmid: 477208
12 Carey R M, Siragy H M (2003). The intrarenal renin-angiotensin system and diabetic nephropathy. Trends Endocrinol Metab, 14(6): 274-281
https://doi.org/10.1016/S1043-2760(03)00111-5 pmid: 12890592
13 Chan J C, Ko G T, Leung D H, Cheung R C, Cheung M Y, So W Y, Swaminathan R, Nicholls M G, Critchley J A, Cockram C S (2000). Long-term effects of angiotensin-converting enzyme inhibition and metabolic control in hypertensive type 2 diabetic patients. Kidney Int, 57(2): 590-600
https://doi.org/10.1046/j.1523-1755.2000.00879.x pmid: 10652036
14 Chen L, Shen Y H, Wang X, Wang J, Gan Y, Chen N, Wang J, LeMaire S A, Coselli J S, Wang X L (2006). Human prolyl-4-hydroxylase alpha(I) transcription is mediated by upstream stimulatory factors. J Biol Chem, 281(16): 10849-10855
https://doi.org/10.1074/jbc.M511237200 pmid: 16488890
15 Chen S, Hong S W, Iglesias-de la Cruz M C, Isono M, Casaretto A, Ziyadeh F N (2001). The key role of the transforming growth factor-beta system in the pathogenesis of diabetic nephropathy. Ren Fail, 23(3-4): 471-481
https://doi.org/10.1081/JDI-100104730 pmid: 11499562
16 Cooper M E (2001). Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy. Diabetologia, 44(11): 1957-1972
https://doi.org/10.1007/s001250100000 pmid: 11719827
17 Corre S, Galibert M D (2005). Upstream stimulating factors: highly versatile stress-responsive transcription factors. Pigment Cell Res, 18(5): 337-348
https://doi.org/10.1111/j.1600-0749.2005.00262.x pmid: 16162174
18 Dabhi B, Mistry K N (2015). Oxidative stress and its association with TNF-alpha-308 G/C and IL-1alpha-889 C/T gene polymorphisms in patients with diabetes and diabetic nephropathy. Gene. 56(2): 197-202
19 Daniel C, Schaub K, Amann K, Lawler J, Hugo C (2007). Thrombospondin-1 is an endogenous activator of TGF-beta in experimental diabetic nephropathy in vivo. Diabetes, 56(12): 2982-2989
https://doi.org/10.2337/db07-0551 pmid: 17878288
20 Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart R E, Acton S (2000). A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res, 87(5): E1-E9
https://doi.org/10.1161/01.RES.87.5.e1 pmid: 10969042
21 Durvasula R V, Shankland S J (2008). Activation of a local renin angiotensin system in podocytes by glucose. Am J Physiol Renal Physiol, 294(4): F830-F839
https://doi.org/10.1152/ajprenal.00266.2007 pmid: 18216149
22 Erman A, Veksler S, Gafter U, Boner G, Wittenberg C, van Dijk D J (2004). Renin-angiotensin system blockade prevents the increase in plasma transforming growth factor beta 1, and reduces proteinuria and kidney hypertrophy in the streptozotocin-diabetic rat. J Renin Angiotensin Aldosterone Syst, 5(3): 146-151
https://doi.org/10.3317/jraas.2004.032 pmid: 15526251
23 Feener E P, King G L (1997). Vascular dysfunction in diabetes mellitus. Lancet, 350(Suppl 1): SI9-SI13
https://doi.org/10.1016/S0140-6736(97)90022-2 pmid: 9250277
24 Feldman D L, Jin L, Xuan H, Contrepas A, Zhou Y, Webb R L, Mueller D N, Feldt S, Cumin F, Maniara W, Persohn E, Schuetz H, Jan Danser A H, Nguyen G (2008). Effects of aliskiren on blood pressure, albuminuria, and (pro)renin receptor expression in diabetic TG(mRen-2)27 rats. Hypertension, 52(1): 130-136
https://doi.org/10.1161/HYPERTENSIONAHA.107.108845 pmid: 18490518
25 Ferrario C M, Trask A J, Jessup J A (2005). Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1-7) in regulation of cardiovascular function. Am J Physiol Heart Circ Physiol, 289(6): H2281-H2290
https://doi.org/10.1152/ajpheart.00618.2005 pmid: 16055515
26 Fogo A B (1999). Mesangial matrix modulation and glomerulosclerosis. Exp Nephrol, 7(2): 147-159
https://doi.org/10.1159/000020595 pmid: 10213868
27 Forbes J M, Fukami K, Cooper M E (2007). Diabetic nephropathy: where hemodynamics meets metabolism. Exp Clin Endocrinol Diabetes, 115(2): 69-84
https://doi.org/10.1055/s-2007-949721 pmid: 17318765
28 Giacco F, Brownlee M (2010). Oxidative stress and diabetic complications. Circ Res, 107(9): 1058-1070
https://doi.org/10.1161/CIRCRESAHA.110.223545 pmid: 21030723
29 Gleizes P E, Munger J S, Nunes I, Harpel J G, Mazzieri R, Noguera I, Rifkin D B (1997). TGF-beta latency: biological significance and mechanisms of activation. Stem Cells, 15(3): 190-197
https://doi.org/10.1002/stem.150190 pmid: 9170210
30 Gurley S B, Coffman T M (2007). The renin-angiotensin system and diabetic nephropathy. Semin Nephrol, 27(2): 144-152
https://doi.org/10.1016/j.semnephrol.2007.01.009 pmid: 17418683
31 Hadsell D L, Bonnette S, George J, Torres D, Klimentidis Y, Gao S, Haney P M, Summy-Long J, Soloff M S, Parlow A F, Sirito M, Sawadogo M (2003). Diminished milk synthesis in upstream stimulatory factor 2 null mice is associated with decreased circulating oxytocin and decreased mammary gland expression of eukaryotic initiation factors 4E and 4G. Mol Endocrinol, 17(11): 2251-2267
https://doi.org/10.1210/me.2002-0031 pmid: 12907752
32 Hong S W, Isono M, Chen S, Iglesias-De La Cruz M C, Han D C, Ziyadeh F N (2001). Increased glomerular and tubular expression of transforming growth factor-beta1, its type II receptor, and activation of the Smad signaling pathway in the db/db mouse. Am J Pathol, 158(5): 1653-1663
https://doi.org/10.1016/S0002-9440(10)64121-1 pmid: 11337363
33 Hsieh T J, Fustier P, Zhang S L, Filep J G, Tang S S, Ingelfinger J R, Fantus I G, Hamet P, Chan J S (2003). High glucose stimulates angiotensinogen gene expression and cell hypertrophy via activation of the hexosamine biosynthesis pathway in rat kidney proximal tubular cells. Endocrinology, 144(10): 4338-4349
https://doi.org/10.1210/en.2003-0220 pmid: 12960040
34 Ichihara A, Suzuki F, Nakagawa T, Kaneshiro Y, Takemitsu T, Sakoda M, Nabi A H, Nishiyama A, Sugaya T, Hayashi M, Inagami T (2006). Prorenin receptor blockade inhibits development of glomerulosclerosis in diabetic angiotensin II type 1a receptor-deficient mice. J Am Soc Nephrol, 17(7): 1950-1961
https://doi.org/10.1681/ASN.2006010029 pmid: 16738017
35 Ishimura E, Sterzel R B, Morii H, Kashgarian M (1992). Extracellular matrix protein: gene expression and synthesis in cultured rat mesangial cells. Nihon Jinzo Gakkai Shi, 34(1): 9-17
pmid: 1593802
36 Isono M, Chen S, Hong S W, Iglesias-de la Cruz M C, Ziyadeh F N (2002). Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-beta-induced fibronectin in mesangial cells. Biochem Biophys Res Commun, 296(5): 1356-1365
https://doi.org/10.1016/S0006-291X(02)02084-3 pmid: 12207925
37 Kagami S, Border W A, Miller D E, Noble N A (1994). Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells. J Clin Invest, 93(6): 2431-2437
https://doi.org/10.1172/JCI117251 pmid: 8200978
38 Kanwar Y S, Wada J, Sun L, Xie P, Wallner E I, Chen S, Chugh S, Danesh F R (2008). Diabetic nephropathy: mechanisms of renal disease progression. Exp Biol Med (Maywood), 233(1): 4-11
https://doi.org/10.3181/0705-MR-134 pmid: 18156300
39 Kelly D J, Zhang Y, Moe G, Naik G, Gilbert R E (2007). Aliskiren, a novel renin inhibitor, is renoprotective in a model of advanced diabetic nephropathy in rats. Diabetologia, 50(11): 2398-2404
https://doi.org/10.1007/s00125-007-0795-9 pmid: 17828524
40 Kingsley-Kallesen M, Luster T A, Rizzino A (2001). Transcriptional regulation of the transforming growth factor-beta2 gene in glioblastoma cells. In Vitro Cell Dev Biol Anim, 37(10): 684-690
https://doi.org/10.1290/1071-2690(2001)037<0684:TROTTG>2.0.CO;2 pmid: 11776974
41 Kobori H, Nangaku M, Navar L G, Nishiyama A (2007). The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev, 59(3): 251-287
https://doi.org/10.1124/pr.59.3.3 pmid: 17878513
42 Lawrence D A (1996). Transforming growth factor-beta: a general review. Eur Cytokine Netw, 7(3): 363-374
pmid: 8954178
43 Leehey D J, Singh A K, Alavi N, Singh R (2000). Role of angiotensin II in diabetic nephropathy. Kidney Int Suppl, 77(8): S93-S98
pmid: 10997697
44 Leehey D J, Singh A K, Bast J P, Sethupathi P, Singh R (2008). Glomerular renin angiotensin system in streptozotocin diabetic and Zucker diabetic fatty rats. Transl Res, 151(4): 208-216
https://doi.org/10.1016/j.trsl.2008.01.003 pmid: 18355768
45 Lewis E J (2002). The role of angiotensin II receptor blockers in preventing the progression of renal disease in patients with type 2 diabetes. Am J Hypertens, 15(10 Pt 2): 123S-128S
https://doi.org/10.1016/S0895-7061(02)03007-8 pmid: 12383593
46 Lewis E J, Hunsicker L G, Clarke W R, Berl T, Pohl M A, Lewis J B, Ritz E, Atkins R C, Rohde R, Raz I, and the Collaborative Study Group (2001). Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med, 345(12): 851-860
https://doi.org/10.1056/NEJMoa011303 pmid: 11565517
47 Li Y, Wang S (2010). Glycated albumin upregulates upstream stimulatory factor 2 gene transcription in mesangial cells. Am J Physiol Renal Physiol, 299(1): F121-F127
https://doi.org/10.1152/ajprenal.00074.2010 pmid: 20410211
48 Lim A Kh (2014). Diabetic nephropathy- complications and treatment. Int J Nephrol Renovasc Dis, 7: 361-381
https://doi.org/10.2147/IJNRD.S40172 pmid: 25342915
49 Liu F, Brezniceanu M L, Wei C C, Chénier I, Sachetelli S, Zhang S L, Filep J G, Ingelfinger J R, Chan J S (2008). Overexpression of angiotensinogen increases tubular apoptosis in diabetes. J Am Soc Nephrol, 19(2): 269-280
https://doi.org/10.1681/ASN.2007010074 pmid: 18057217
50 Liu S, Shi L, Wang S (2007). Overexpression of upstream stimulatory factor 2 accelerates diabetic kidney injury. Am J Physiol Renal Physiol, 293(5): F1727-F1735
https://doi.org/10.1152/ajprenal.00316.2007 pmid: 17881461
51 Lyons R M, Gentry L E, Purchio A F, Moses H L (1990). Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J Cell Biol, 110(4): 1361-1367
https://doi.org/10.1083/jcb.110.4.1361 pmid: 2139036
52 Márquez E, Riera M, Pascual J, Soler M J (2015). Renin-angiotensin system within the diabetic podocyte. Am J Physiol Renal Physiol, 308(1): F1-F10
https://doi.org/10.1152/ajprenal.00531.2013 pmid: 25339703
53 Miyata N, Park F, Li X F, Cowley A W Jr (1999). Distribution of angiotensin AT1 and AT2 receptor subtypes in the rat kidney. Am J Physiol, 277(3 Pt 2): F437-F446
pmid: 10484527
54 Navar L G, Harrison-Bernard L M, Nishiyama A, Kobori H (2002). Regulation of intrarenal angiotensin II in hypertension. Hypertension, 39(2 Pt 2): 316-322
https://doi.org/10.1161/hy0202.103821 pmid: 11882566
55 Navar L G, Inscho E W, Majid S A, Imig J D, Harrison-Bernard L M, Mitchell K D (1996). Paracrine regulation of the renal microcirculation. Physiol Rev, 76(2): 425-536
pmid: 8618962
56 Navarro-González J F, Mora-Fernández C (2008). The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol, 19(3): 433-442
https://doi.org/10.1681/ASN.2007091048 pmid: 18256353
57 Nguyen G, Bouzhir L, Delarue F, Rondeau E, Sraer J D (1998). [Evidence of a renin receptor on human mesangial cells: effects on PAI1 and cGMP]. Nephrologie, 19(7): 411-416 (Evidence of a renin receptor on human mesangial cells: effects on PAI1 and cGMP)
pmid: 9857376
58 Nguyen G, Delarue F, Berrou J, Rondeau E, Sraer J D (1996). Specific receptor binding of renin on human mesangial cells in culture increases plasminogen activator inhibitor-1 antigen. Kidney Int, 50(6): 1897-1903
https://doi.org/10.1038/ki.1996.511 pmid: 8943472
59 Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, Vaulont S (2001). Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci USA, 98(15): 8780-8785
https://doi.org/10.1073/pnas.151179498 pmid: 11447267
60 Niranjan T, Bielesz B, Gruenwald A, Ponda M P, Kopp J B, Thomas D B, Susztak K (2008). The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat Med, 14(3): 290-298
https://doi.org/10.1038/nm1731 pmid: 18311147
61 Oh J H, Ha H, Yu M R, Lee H B (1998). Sequential effects of high glucose on mesangial cell transforming growth factor-beta 1 and fibronectin synthesis. Kidney Int, 54(6): 1872-1878
https://doi.org/10.1046/j.1523-1755.1998.00193.x pmid: 9853252
62 Pan L, Black T A, Shi Q, Jones C A, Petrovic N, Loudon J, Kane C, Sigmund C D, Gross K W (2001). Critical roles of a cyclic AMP responsive element and an E-box in regulation of mouse renin gene expression. J Biol Chem, 276(49): 45530-45538
https://doi.org/10.1074/jbc.M103010200 pmid: 11564732
63 Park J T, Kato M, Lanting L, Castro N, Nam B Y, Wang M, Kang S W, Natarajan R (2014). Repression of let-7 by transforming growth factor-β1-induced Lin28 upregulates collagen expression in glomerular mesangial cells under diabetic conditions. Am J Physiol Renal Physiol, 307(12): F1390-F1403
https://doi.org/10.1152/ajprenal.00458.2014 pmid: 25354942
64 Parving H H, Persson F, Lewis J B, Lewis E J, Hollenberg N K, the AVOID Study Investigators (2008). Aliskiren combined with losartan in type 2 diabetes and nephropathy. N Engl J Med, 358(23): 2433-2446
https://doi.org/10.1056/NEJMoa0708379 pmid: 18525041
65 Peach M J (1977). Renin-angiotensin system: biochemistry and mechanisms of action. Physiol Rev, 57(2): 313-370
pmid: 191856
66 Petrica L, Vlad A, Gluhovschi G, Gadalean F, Dumitrascu V, Vlad D, Popescu R, Velciov S, Gluhovschi C, Bob F, Ursoniu S, Petrica M, Jianu D C (2015). Glycated peptides are associated with the variability of endothelial dysfunction in the cerebral vessels and the kidney in type 2 diabetes mellitus patients: a cross-sectional study. J Diabetes Complications, 29(2): 230-237
https://doi.org/10.1016/j.jdiacomp.2014.11.014 pmid: 25511877
67 Phillips A (2007). The role of proximal tubular cells in interstitial fibrosis: understanding TGF-beta1. Chang Gung Med J, 30(1): 2-6
pmid: 17477023
68 Phillips A, Janssen U, Floege J (1999). Progression of diabetic nephropathy. Insights from cell culture studies and animal models. Kidney Blood Press Res, 22(1-2): 81-97
https://doi.org/10.1159/000025912 pmid: 10352411
69 Price D A, Porter L E, Gordon M, Fisher N D, De’Oliveira J M, Laffel L M, Passan D R, Williams G H, Hollenberg N K (1999). The paradox of the low-renin state in diabetic nephropathy. J Am Soc Nephrol, 10(11): 2382-2391
pmid: 10541298
70 Qian J, Kaytor E N, Towle H C, Olson L K (1999). Upstream stimulatory factor regulates Pdx-1 gene expression in differentiated pancreatic beta-cells. Biochem J, 341 (Pt 2): 315-322
71 Qyang Y, Luo X, Lu T, Ismail P M, Krylov D, Vinson C, Sawadogo M (1999). Cell-type-dependent activity of the ubiquitous transcription factor USF in cellular proliferation and transcriptional activation. Mol Cell Biol, 19(2): 1508-1517
pmid: 9891084
72 Re R (2007). Intracellular renin-angiotensin system: the tip of the intracrine physiology iceberg. Am J Physiol Heart Circ Physiol, 293(2): H905-H906
https://doi.org/10.1152/ajpheart.00552.2007 pmid: 17526648
73 Riccio A, Pedone P V, Lund L R, Olesen T, Olsen H S, Andreasen P A (1992). Transforming growth factor beta 1-responsive element: closely associated binding sites for USF and CCAAT-binding transcription factor-nuclear factor I in the type 1 plasminogen activator inhibitor gene. Mol Cell Biol, 12(4): 1846-1855
pmid: 1549130
74 Rifkin D B, Kojima S, Abe M, Harpel J G (1993). TGF-beta: structure, function, and formation. Thromb Haemost, 70(1): 177-179
pmid: 8236098
75 Rippe R A, Umezawa A, Kimball J P, Breindl M, Brenner D A (1997). Binding of upstream stimulatory factor to an E-box in the 3′-flanking region stimulates alpha1(I) collagen gene transcription. J Biol Chem, 272(3): 1753-1760
https://doi.org/10.1074/jbc.272.3.1753 pmid: 8999857
76 Ruiz-Ortega M, Lorenzo O, Egido J (1998). Angiotensin III up-regulates genes involved in kidney damage in mesangial cells and renal interstitial fibroblasts. Kidney Int Suppl, 68(5): S41-S45
https://doi.org/10.1046/j.1523-1755.1998.06811.x pmid: 9839282
77 Sawadogo M, Roeder R G (1985). Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell, 43(1): 165-175
https://doi.org/10.1016/0092-8674(85)90021-2 pmid: 4075392
78 Schultz-Cherry S, Lawler J, Murphy-Ullrich J E (1994). The type 1 repeats of thrombospondin 1 activate latent transforming growth factor-beta. J Biol Chem, 269(43): 26783-26788
pmid: 7929414
79 Schultz-Cherry S, Murphy-Ullrich J E (1993). Thrombospondin causes activation of latent transforming growth factor-beta secreted by endothelial cells by a novel mechanism. J Cell Biol, 122(4): 923-932
https://doi.org/10.1083/jcb.122.4.923 pmid: 8349738
80 Shankland S J, Scholey J W, Ly H, Thai K (1994). Expression of transforming growth factor-beta 1 during diabetic renal hypertrophy. Kidney Int, 46(2): 430-442
https://doi.org/10.1038/ki.1994.291 pmid: 7967355
81 Sharma K, Eltayeb B O, McGowan T A, Dunn S R, Alzahabi B, Rohde R, Ziyadeh F N, Lewis E J (1999). Captopril-induced reduction of serum levels of transforming growth factor-beta1 correlates with long-term renoprotection in insulin-dependent diabetic patients. Am J Kidney Dis, 34(5): 818-823
https://doi.org/10.1016/S0272-6386(99)70037-5 pmid: 10561136
82 Sharma K, Jin Y, Guo J, Ziyadeh F N (1996). Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes, 45(4): 522-530
https://doi.org/10.2337/diab.45.4.522 pmid: 8603776
83 Sharma K, Ziyadeh F N (1994). Renal hypertrophy is associated with upregulation of TGF-beta 1 gene expression in diabetic BB rat and NOD mouse. Am J Physiol, 267(6 Pt 2): F1094-F01
pmid: 7810696
84 Sharma K, Ziyadeh F N, Alzahabi B, McGowan T A, Kapoor S, Kurnik B R, Kurnik P B, Weisberg L S (1997). Increased renal production of transforming growth factor-beta1 in patients with type II diabetes. Diabetes, 46(5): 854-859
https://doi.org/10.2337/diab.46.5.854 pmid: 9133555
85 Shi L, Nikolic D, Liu S, Lu H, Wang S (2009). Activation of renal renin-angiotensin system in upstream stimulatory factor 2 transgenic mice. Am J Physiol Renal Physiol, 296(2): F257-F265
https://doi.org/10.1152/ajprenal.90493.2008 pmid: 19004931
86 Singh R, Alavi N, Singh A K, Leehey D J (1999). Role of angiotensin II in glucose-induced inhibition of mesangial matrix degradation. Diabetes, 48(10): 2066-2073
https://doi.org/10.2337/diabetes.48.10.2066 pmid: 10512375
87 Singh R, Singh A K, Leehey D J (2005). A novel mechanism for angiotensin II formation in streptozotocin-diabetic rat glomeruli. Am J Physiol Renal Physiol, 288(6): F1183-F1190
https://doi.org/10.1152/ajprenal.00159.2003 pmid: 15701818
88 Sirito M, Lin Q, Deng J M, Behringer R R, Sawadogo M (1998). Overlapping roles and asymmetrical cross-regulation of the USF proteins in mice. Proc Natl Acad Sci USA, 95(7): 3758-3763
https://doi.org/10.1073/pnas.95.7.3758 pmid: 9520440
89 Sirito M, Lin Q, Maity T, Sawadogo M (1994). Ubiquitous expression of the 43- and 44-kDa forms of transcription factor USF in mammalian cells. Nucleic Acids Res, 22(3): 427-433
https://doi.org/10.1093/nar/22.3.427 pmid: 8127680
90 Skyler J S (1996). Diabetic complications. The importance of glucose control. Endocrinol Metab Clin North Am, 25(2): 243-254
https://doi.org/10.1016/S0889-8529(05)70323-6 pmid: 8799699
91 Sonneveld R, van der Vlag J, Baltissen M P, Verkaart S A, Wetzels J F, Berden J H, Hoenderop J G, Nijenhuis T (2014). Glucose specifically regulates TRPC6 expression in the podocyte in an AngII-dependent manner. Am J Pathol, 184(6): 1715-1726
https://doi.org/10.1016/j.ajpath.2014.02.008 pmid: 24731445
92 Taipale J, Lohi J, Saarinen J, Kovanen P T, Keski-Oja J (1995). Human mast cell chymase and leukocyte elastase release latent transforming growth factor-beta 1 from the extracellular matrix of cultured human epithelial and endothelial cells. J Biol Chem, 270(9): 4689-4696
https://doi.org/10.1074/jbc.270.9.4689 pmid: 7876240
93 Tamura J, Konno A, Hashimoto Y, Kon Y (2005). Upregulation of renal renin-angiotensin system in mouse diabetic nephropathy. Jpn J Vet Res, 53(1-2): 13-26
pmid: 16190318
94 Vallet V S, Henrion A A, Bucchini D, Casado M, Raymondjean M, Kahn A, Vaulont S (1997). Glucose-dependent liver gene expression in upstream stimulatory factor 2-/- mice. J Biol Chem, 272(35): 21944-21949
https://doi.org/10.1074/jbc.272.35.21944 pmid: 9268329
95 Vasanthakumar R, Mohan V, Anand G, Deepa M, Babu S, Aravindhan V (2015). Serum IL-9, IL-17, and TGF-β levels in subjects with diabetic kidney disease (CURES-134). Cytokine, 72(1): 109-112
https://doi.org/10.1016/j.cyto.2014.10.009 pmid: 25542095
96 Velez J C, Bland A M, Arthur J M, Raymond J R, Janech M G (2007). Characterization of renin-angiotensin system enzyme activities in cultured mouse podocytes. Am J Physiol Renal Physiol, 293(1): F398-F407
https://doi.org/10.1152/ajprenal.00050.2007 pmid: 17429035
97 Vidotti D B, Casarini D E, Cristovam P C, Leite C A, Schor N, Boim M A (2004). High glucose concentration stimulates intracellular renin activity and angiotensin II generation in rat mesangial cells. Am J Physiol Renal Physiol, 286(6): F1039-F1045
https://doi.org/10.1152/ajprenal.00371.2003 pmid: 14722017
98 Visavadiya N P, Li Y, Wang S (2011). High glucose upregulates upstream stimulatory factor 2 in human renal proximal tubular cells through angiotensin II-dependent activation of CREB. Nephron, Exp Nephrol, 117(3): e62-e70
https://doi.org/10.1159/000320593 pmid: 20814220
99 Wang S, Skorczewski J, Feng X, Mei L, Murphy-Ullrich J E (2004). Glucose up-regulates thrombospondin 1 gene transcription and transforming growth factor-beta activity through antagonism of cGMP-dependent protein kinase repression via upstream stimulatory factor 2. J Biol Chem, 279(33): 34311-34322
https://doi.org/10.1074/jbc.M401629200 pmid: 15184388
100 Wang W, Qiu L, Howard A, Solis N, Li C, Wang X, Kopp J B, Levi M (2014). Protective effects of aliskiren and valsartan in mice with diabetic nephropathy. J Renin Angiotensin Aldosterone Syst, 15(4): 384-395
https://doi.org/10.1177/1470320313507123 pmid: 25031296
101 Wang Z, Ni J, Shao D, Liu J, Shen Y, Zhou L, Huang Y, Yu C, Wang J, Xue H, Lu L (2013). Elevated transcriptional co-activator p102 mediates angiotensin II type 1 receptor up-regulation and extracellular matrix overproduction in the high glucose-treated rat glomerular mesangial cells and isolated glomeruli. Eur J Pharmacol, 702(1-3): 208-217
https://doi.org/10.1016/j.ejphar.2013.01.031 pmid: 23376562
102 Weigert C, Brodbeck K, Sawadogo M, Haring H U, Schleicher E D (2004). USF proteins induce human TGF-beta1 gene activation via the glucose response element -1013/-1002 in mesangial cells- upregulation of USF activity by the hexosamine biosynthetic pathway. J Biol Chem, 2: 2
103 White K E (2006). Research into the glomerular podocyte—is it relevant to diabetic nephropathy? Diabet Med, 23(7): 715-719
https://doi.org/10.1111/j.1464-5491.2006.01790.x pmid: 16842474
104 Wong D W, Oudit G Y, Reich H, Kassiri Z, Zhou J, Liu Q C, Backx P H, Penninger J M, Herzenberg A M, Scholey J W (2007). Loss of angiotensin-converting enzyme-2 (Ace2) accelerates diabetic kidney injury. Am J Pathol, 171(2): 438-451
https://doi.org/10.2353/ajpath.2007.060977 pmid: 17600118
105 Yamout H, Lazich I, Bakris G L (2014). Blood pressure, hypertension, RAAS blockade, and drug therapy in diabetic kidney disease. Adv Chronic Kidney Dis, 21(3): 281-286
https://doi.org/10.1053/j.ackd.2014.03.005 pmid: 24780456
106 Yoo T H, Li J J, Kim J J, Jung D S, Kwak S J, Ryu D R, Choi H Y, Kim J S, Kim H J, Han S H, Lee J E, Han D S, Kang S W (2007). Activation of the renin-angiotensin system within podocytes in diabetes. Kidney Int, 71(10): 1019-1027
https://doi.org/10.1038/sj.ki.5002195 pmid: 17361112
107 Young B A, Johnson R J, Alpers C E, Eng E, Gordon K, Floege J, Couser W G, Seidel K (1995). Cellular events in the evolution of experimental diabetic nephropathy. Kidney Int, 47(3): 935-944
https://doi.org/10.1038/ki.1995.139 pmid: 7752595
108 Zhang S L, To C, Chen X, Filep J G, Tang S S, Ingelfinger J R, Chan J S (2002). Essential role(s) of the intrarenal renin-angiotensin system in transforming growth factor-beta1 gene expression and induction of hypertrophy of rat kidney proximal tubular cells in high glucose. J Am Soc Nephrol, 13(2): 302-312
pmid: 11805157
109 Zhang Z, Shahinfar S, Keane W F, Ramjit D, Dickson T Z, Gleim G W, Mogensen C E, de Zeeuw D, Brenner B M, Snapinn S M (2005). Importance of baseline distribution of proteinuria in renal outcomes trials: lessons from the reduction of endpoints in NIDDM with the angiotensin II antagonist losartan (RENAAL) study. J Am Soc Nephrol, 16(6): 1775-1780
https://doi.org/10.1681/ASN.2004080632 pmid: 15872078
110 Zhu Y, Casado M, Vaulont S, Sharma K (2005). Role of upstream stimulatory factors in regulation of renal transforming growth factor-beta1. Diabetes, 54(7): 1976-1984
https://doi.org/10.2337/diabetes.54.7.1976 pmid: 15983197
111 Ziyadeh, F. N. (2004). Mediators of diabetic renal disease: the case for tgf-Beta as the major mediator. J Am Soc Nephrol, 15 (Suppl 1), S55-57
112 Ziyadeh F N, Sharma K, Ericksen M, Wolf G (1994). Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of transforming growth factor-beta. J Clin Invest, 93(2): 536-542
https://doi.org/10.1172/JCI117004 pmid: 8113392
[1] Claudia A. BERTUCCIO,Daniel C. DEVOR. Intermediate conductance, Ca2+-activated K+ channels: a novel target for chronic renal diseases[J]. Front. Biol., 2015, 10(1): 52-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed