|
|
Development of glutamatergic innervation during maturation of adult-born neurons |
Cristina V. Dieni( ),Adam J. Wieckert,Linda Overstreet-Wadiche |
Department of Neurobiology and Evelyn McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294,USA |
|
|
Abstract The dentate gyrus is the entrance of the hippocampal formation and a primary target of excitatory afferents from the entorhinal cortex that carry spatial and sensory information. Mounting evidence suggests that continual adult neurogenesis contributes to appropriate processing of cortical information. The ongoing integration of adult born neurons dynamically modulates connectivity of the network, potentially contributing to dentate cognitive function. Here we review the current understanding of how glutamatergic innervation develops during the progression of adult-born neuron maturation. Summarizing the developmental stages of dentate neurogenesis, we also demonstrate that new neurons at an immature stage of maturation begin to process afferent activity from both medial and lateral entorhinal cortices.
|
Keywords
dentate gyrus
adult neurogenesis
glutamatergic innervation
granule cell
neuroprogenitor
|
Corresponding Author(s):
Cristina V. Dieni
|
Just Accepted Date: 07 May 2015
Online First Date: 14 July 2015
Issue Date: 14 August 2015
|
|
78a |
Overstreet-Wadiche L, Bensen A L, Westbrook G L (2006). Delayed development of adult-generated granule cells in dentate gyrus. J Neurosci, 26(8): 2326–2334
|
1 |
Abraham W C, McNaughton N (1984). Differences in synaptic transmission between medial and lateral components of the perforant path. Brain Res, 303(2): 251–260
https://doi.org/10.1016/0006-8993(84)91211-3
pmid: 6331573
|
2 |
Alvarez-Buylla A, Lim D A (2004). For the long run: maintaining germinal niches in the adult brain. Neuron, 41(5): 683–686
https://doi.org/10.1016/S0896-6273(04)00111-4
pmid: 15003168
|
3 |
Amaral D G (1978). A Golgi study of cell types in the hilar region of the hippocampus in the rat. J Comp Neurol, 182(4 Pt 2): 851–914
https://doi.org/10.1002/cne.901820508
pmid: 730852
|
4 |
Amaral D G, Kurz J (1985). An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J Comp Neurol, 240(1): 37–59
https://doi.org/10.1002/cne.902400104
pmid: 4056104
|
5 |
Amaral D G, Witter M P (1989). The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience, 31(3): 571–591
https://doi.org/10.1016/0306-4522(89)90424-7
pmid: 2687721
|
6 |
Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O, Gaiarsa J L (1997). GABAA, NMDA and AMPA receptors: a developmentally regulated ‘ménage à trois’. Trends Neurosci, 20(11): 523–529
https://doi.org/10.1016/S0166-2236(97)01147-8
pmid: 9364667
|
7 |
Berg D A, Belnoue L, Song H, Simon A (2013). Neurotransmitter-mediated control of neurogenesis in the adult vertebrate brain. Development, 140(12): 2548–2561
https://doi.org/10.1242/dev.088005
pmid: 23715548
|
8 |
Brunner J, Neubrandt M, Van-Weert S, Andrási T, Kleine Borgmann F B, Jessberger S, Szabadics J (2014). Adult-born granule cells mature through two functionally distinct states. eLife, 3: e03104
https://doi.org/10.7554/eLife.03104
pmid: 25061223
|
9 |
Brus M, Keller M, Lévy F (2013). Temporal features of adult neurogenesis: differences and similarities across mammalian species. Front Neurosci, 7: 135
https://doi.org/10.3389/fnins.2013.00135
pmid: 23935563
|
10 |
Buckmaster P S, Strowbridge B W, Kunkel D D, Schmiege D L, Schwartzkroin P A (1992). Mossy cell axonal projections to the dentate gyrus molecular layer in the rat hippocampal slice. Hippocampus, 2(4): 349–362
https://doi.org/10.1002/hipo.450020403
pmid: 1284975
|
11 |
Buckmaster P S, Wenzel H J, Kunkel D D, Schwartzkroin P A (1996). Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J Comp Neurol, 366(2): 271–292
https://doi.org/10.1002/(SICI)1096-9861(19960304)366:2<270::AID-CNE7>3.0.CO;2-2
pmid: 8698887
|
12 |
Campbell N R, Fernandes C C, Halff A W, Berg D K (2010). Endogenous signaling through alpha7-containing nicotinic receptors promotes maturation and integration of adult-born neurons in the hippocampus. J Neurosci, 30(26): 8734–8744
https://doi.org/10.1523/JNEUROSCI.0931-10.2010
pmid: 20592195
|
13 |
Chancey J H, Adlaf E W, Sapp M C, Pugh P C, Wadiche J I, Overstreet-Wadiche L S (2013). GABA depolarization is required for experience-dependent synapse unsilencing in adult-born neurons. J Neurosci, 33(15): 6614–6622
https://doi.org/10.1523/JNEUROSCI.0781-13.2013
pmid: 23575858
|
14 |
Chancey J H, Poulsen D J, Wadiche J I, Overstreet-Wadiche L (2014). Hilar mossy cells provide the first glutamatergic synapses to adult-born dentate granule cells. J Neurosci, 34(6): 2349–2354
https://doi.org/10.1523/JNEUROSCI.3620-13.2014
pmid: 24501373
|
15 |
Chiu C Q, Castillo P E (2008). Input-specific plasticity at excitatory synapses mediated by endocannabinoids in the dentate gyrus. Neuropharmacology, 54(1): 68–78
https://doi.org/10.1016/j.neuropharm.2007.06.026
pmid: 17706254
|
16 |
Coulter D A, Carlson G C (2007). Functional regulation of the dentate gyrus by GABA-mediated inhibition. Prog Brain Res, 163: 235–243
https://doi.org/10.1016/S0079-6123(07)63014-3
pmid: 17765722
|
17 |
Deng W, Aimone J B, Gage F H (2010). New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci, 11(5): 339–350
https://doi.org/10.1038/nrn2822
pmid: 20354534
|
18 |
Dent J A, Galvin N J, Stanfield B B, Cowan W M (1983). The mode of termination of the hypothalamic projection to the dentate gyrus: an EM autoradiographic study. Brain Res, 258(1): 1–10
https://doi.org/10.1016/0006-8993(83)91220-9
pmid: 24010158
|
19 |
Diaz J, Ridray S, Mignon V, Griffon N, Schwartz J C, Sokoloff P (1997). Selective expression of dopamine D3 receptor mRNA in proliferative zones during embryonic development of the rat brain. J Neurosci, 17(11): 4282–4292
pmid: 9151745
|
20 |
Dieni C V, Nietz A K, Panichi R, Wadiche J I, Overstreet-Wadiche L (2013). Distinct determinants of sparse activation during granule cell maturation. J Neurosci, 33(49): 19131–19142
https://doi.org/10.1523/JNEUROSCI.2289-13.2013
pmid: 24305810
|
21 |
Domínguez-Escribà L, Hernández-Rabaza V, Soriano-Navarro M, Barcia J A, Romero F J, García-Verdugo J M, Canales J J (2006). Chronic cocaine exposure impairs progenitor proliferation but spares survival and maturation of neural precursors in adult rat dentate gyrus. Eur J Neurosci, 24(2): 586–594
https://doi.org/10.1111/j.1460-9568.2006.04924.x
pmid: 16903860
|
22 |
Durand G M, Kovalchuk Y, Konnerth A (1996). Long-term potentiation and functional synapse induction in developing hippocampus. Nature, 381(6577): 71–75
https://doi.org/10.1038/381071a0
pmid: 8609991
|
23 |
Encinas J M, Michurina T V, Peunova N, Park J H, Tordo J, Peterson D A, Fishell G, Koulakov A, Enikolopov G (2011). Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell, 8(5): 566–579
https://doi.org/10.1016/j.stem.2011.03.010
pmid: 21549330
|
24 |
Eriksson P S, Perfilieva E, Bj?rk-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317
https://doi.org/10.1038/3305
pmid: 9809557
|
25 |
Espósito M S, Piatti V C, Laplagne D A, Morgenstern N A, Ferrari C C, Pitossi F J, Schinder A F (2005). Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci, 25(44): 10074–10086
https://doi.org/10.1523/JNEUROSCI.3114-05.2005
pmid: 16267214
|
26 |
Ewell L A, Jones M V (2010). Frequency-tuned distribution of inhibition in the dentate gyrus. J Neurosci, 30(38): 12597–12607
https://doi.org/10.1523/JNEUROSCI.1854-10.2010
pmid: 20861366
|
27 |
Frotscher M (1991). Target cell specificity of synaptic connections in the hippocampus. Hippocampus, 1(2): 123–130
https://doi.org/10.1002/hipo.450010202
pmid: 1669289
|
28 |
Gage F H (2000). Mammalian neural stem cells. Science, 287(5457): 1433–1438
https://doi.org/10.1126/science.287.5457.1433
pmid: 10688783
|
29 |
Ge S, Goh E L, Sailor K A, Kitabatake Y, Ming G L, Song H (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076): 589–593
https://doi.org/10.1038/nature04404
pmid: 16341203
|
30 |
Ge S, Pradhan D A, Ming G L, Song H (2007). GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neurosci, 30(1): 1–8
https://doi.org/10.1016/j.tins.2006.11.001
pmid: 17116335
|
31 |
Gilbert P E, Kesner R P, Lee I (2001). Dissociating hippocampal subregions: double dissociation between dentate gyrus and CA1. Hippocampus, 11(6): 626–636
https://doi.org/10.1002/hipo.1077
pmid: 11811656
|
32 |
Goldowitz D, White W F, Steward O, Lynch G, Cotman C (1975). Anatomical evidence for a projection from the entorhinal cortex to the contralateral dentate gyrus of the rat. Exp Neurol, 47(3): 433–441
https://doi.org/10.1016/0014-4886(75)90075-8
pmid: 1132457
|
33 |
Gu Y, Arruda-Carvalho M, Wang J, Janoschka S R, Josselyn S A, Frankland P W, Ge S (2012). Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci, 15(12): 1700–1706
https://doi.org/10.1038/nn.3260
pmid: 23143513
|
34 |
Hafting T, Fyhn M, Molden S, Moser M B, Moser E I (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052): 801–806
https://doi.org/10.1038/nature03721
pmid: 15965463
|
35 |
Hargreaves E L, Rao G, Lee I, Knierim J J (2005). Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Science, 308(5729): 1792–1794
https://doi.org/10.1126/science.1110449
pmid: 15961670
|
36 |
Herman M A, Jahr C E (2007). Extracellular glutamate concentration in hippocampal slice. J Neurosci, 27(36): 9736–9741
https://doi.org/10.1523/JNEUROSCI.3009-07.2007
pmid: 17804634
|
37 |
H?glinger G U, Rizk P, Muriel M P, Duyckaerts C, Oertel W H, Caille I, Hirsch E C (2004). Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci, 7(7): 726–735
https://doi.org/10.1038/nn1265
pmid: 15195095
|
38 |
Isaac J T, Crair M C, Nicoll R A, Malenka R C (1997). Silent synapses during development of thalamocortical inputs. Neuron, 18(2): 269–280
https://doi.org/10.1016/S0896-6273(00)80267-6
pmid: 9052797
|
39 |
Isaac J T, Nicoll R A, Malenka R C (1995). Evidence for silent synapses: implications for the expression of LTP. Neuron, 15(2): 427–434
https://doi.org/10.1016/0896-6273(95)90046-2
pmid: 7646894
|
40 |
Itou Y, Nochi R, Kuribayashi H, Saito Y, Hisatsune T (2011). Cholinergic activation of hippocampal neural stem cells in aged dentate gyrus. Hippocampus, 21(4): 446–459
https://doi.org/10.1002/hipo.20761
pmid: 20054812
|
41 |
Jinde S, Zsiros V, Nakazawa K (2013). Hilar mossy cell circuitry controlling dentate granule cell excitability. Front Neural Circuits, 7: 14
https://doi.org/10.3389/fncir.2013.00014
pmid: 23407806
|
42 |
Kaneko N, Okano H, Sawamoto K (2006). Role of the cholinergic system in regulating survival of newborn neurons in the adult mouse dentate gyrus and olfactory bulb. Genes Cells, 11(10): 1145–1159
https://doi.org/10.1111/j.1365-2443.2006.01010.x
pmid: 16999735
|
43 |
Kilbride J, Rush A M, Rowan M J, Anwyl R (2001). Presynaptic group II mGluR inhibition of short-term depression in the medial perforant path of the dentate gyrus in vitro. J Neurophysiol, 85(6): 2509–2515
pmid: 11387397
|
44 |
Kiss J, Csáki A, Bokor H, Shanabrough M, Leranth C (2000). The supramammillo-hippocampal and supramammillo-septal glutamatergic/aspartatergic projections in the rat: a combined [3H]D-aspartate autoradiographic and immunohistochemical study. Neuroscience, 97(4): 657–669
https://doi.org/10.1016/S0306-4522(00)00127-5
pmid: 10842010
|
45 |
Kullmann D M (1994). Amplitude fluctuations of dual-component EPSCs in hippocampal pyramidal cells: implications for long-term potentiation. Neuron, 12(5): 1111–1120
https://doi.org/10.1016/0896-6273(94)90318-2
pmid: 7910467
|
46 |
Kumamoto N, Gu Y, Wang J, Janoschka S, Takemaru K, Levine J, Ge S (2012) A role for primary cilia in glutamatergic synaptic integration of adult-born neurons. Nat Neurosci, 15: 399–405, S391
|
47 |
Kwon H B, Castillo P E (2008). Role of glutamate autoreceptors at hippocampal mossy fiber synapses. Neuron, 60(6): 1082–1094
https://doi.org/10.1016/j.neuron.2008.10.045
pmid: 19109913
|
48 |
Laplagne D A, Espósito M S, Piatti V C, Morgenstern N A, Zhao C, van Praag H, Gage F H, Schinder A F (2006). Functional convergence of neurons generated in the developing and adult hippocampus. PLoS Biol, 4(12): e409
https://doi.org/10.1371/journal.pbio.0040409
pmid: 17121455
|
49 |
Laurberg S, S?rensen K E (1981). Associational and commissural collaterals of neurons in the hippocampal formation (hilus fasciae dentatae and subfield CA3). Brain Res, 212(2): 287–300
https://doi.org/10.1016/0006-8993(81)90463-7
pmid: 7225870
|
50 |
Leranth C, Hajszan T (2007). Extrinsic afferent systems to the dentate gyrus. Prog Brain Res, 163: 63–84
https://doi.org/10.1016/S0079-6123(07)63004-0
pmid: 17765712
|
51 |
Leutgeb J K, Leutgeb S, Moser M B, Moser E I (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science, 315(5814): 961–966
https://doi.org/10.1126/science.1135801
pmid: 17303747
|
52 |
Li Y, Stam F J, Aimone J B, Goulding M, Callaway E M, Gage F H (2013). Molecular layer perforant path-associated cells contribute to feed-forward inhibition in the adult dentate gyrus. Proc Natl Acad Sci USA, 110(22): 9106–9111
https://doi.org/10.1073/pnas.1306912110
pmid: 23671081
|
53 |
Liao D, Hessler N A, Malinow R (1995). Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature, 375(6530): 400–404
https://doi.org/10.1038/375400a0
pmid: 7760933
|
54 |
Lisman J E, Jensen O (2013). The θ-γ neural code. Neuron, 77(6): 1002–1016
https://doi.org/10.1016/j.neuron.2013.03.007
pmid: 23522038
|
55 |
Lübke J, Deller T, Frotscher M (1997). Septal innervation of mossy cells in the hilus of the rat dentate gyrus: an anterograde tracing and intracellular labeling study. Exp Brain Res, 114(3): 423–432
https://doi.org/10.1007/PL00005651
pmid: 9187278
|
56 |
Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, G?tz M, Haas C A, Kempermann G, Taylor V, Giachino C (2010). Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell, 6(5): 445–456
https://doi.org/10.1016/j.stem.2010.03.017
pmid: 20452319
|
57 |
Ma D K, Jang M H, Guo J U, Kitabatake Y, Chang M L, Pow-Anpongkul N, Flavell R A, Lu B, Ming G L, Song H (2009). Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science, 323(5917): 1074–1077
https://doi.org/10.1126/science.1166859
pmid: 19119186
|
58 |
Ma W, Maric D, Li B S, Hu Q, Andreadis J D, Grant G M, Liu Q Y, Shaffer K M, Chang Y H, Zhang L, Pancrazio J J, Pant H C, Stenger D A, Barker J L (2000). Acetylcholine stimulates cortical precursor cell proliferation in vitro via muscarinic receptor activation and MAP kinase phosphorylation. Eur J Neurosci, 12(4): 1227–1240
https://doi.org/10.1046/j.1460-9568.2000.00010.x
pmid: 10762352
|
59 |
Macek T A, Winder D G, Gereau R W 4th, Ladd C O, Conn P J (1996). Differential involvement of group II and group III mGluRs as autoreceptors at lateral and medial perforant path synapses. J Neurophysiol, 76(6): 3798–3806
pmid: 8985877
|
60 |
Maglóczky Z, Acsády L, Freund T F (1994). Principal cells are the postsynaptic targets of supramammillary afferents in the hippocampus of the rat. Hippocampus, 4(3): 322–334
https://doi.org/10.1002/hipo.450040316
pmid: 7531093
|
61 |
Manzoni O, Bockaert J (1995). Metabotropic glutamate receptors inhibiting excitatory synapses in the CA1 area of rat hippocampus. Eur J Neurosci, 7(12): 2518–2523
https://doi.org/10.1111/j.1460-9568.1995.tb01051.x
pmid: 8845958
|
62 |
Manzoni O J, Castillo P E, Nicoll R A (1995). Pharmacology of metabotropic glutamate receptors at the mossy fiber synapses of the guinea pig hippocampus. Neuropharmacology, 34(8): 965–971
https://doi.org/10.1016/0028-3908(95)00060-J
pmid: 8532177
|
63 |
Marín-Burgin A, Mongiat L A, Pardi M B, Schinder A F (2012). Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science, 335(6073): 1238–1242
https://doi.org/10.1126/science.1214956
pmid: 22282476
|
64 |
Markwardt S, Overstreet-Wadiche L (2008). GABAergic signalling to adult-generated neurons. J Physiol, 586(16): 3745–3749
https://doi.org/10.1113/jphysiol.2008.155713
pmid: 18511482
|
65 |
Markwardt S J, Dieni C V, Wadiche J I, Overstreet-Wadiche L (2011). Ivy/neurogliaform interneurons coordinate activity in the neurogenic niche. Nat Neurosci, 14(11): 1407–1409
https://doi.org/10.1038/nn.2935
pmid: 21983681
|
66 |
McNaughton B L (1980). Evidence for two physiologically distinct perforant pathways to the fascia dentata. Brain Res, 199(1): 1–19
https://doi.org/10.1016/0006-8993(80)90226-7
pmid: 7407615
|
67 |
Mignone J L, Kukekov V, Chiang A S, Steindler D, Enikolopov G (2004). Neural stem and progenitor cells in nestin-GFP transgenic mice. J Comp Neurol, 469(3): 311–324
https://doi.org/10.1002/cne.10964
pmid: 14730584
|
68 |
Milner T A, Bacon C E (1989). Ultrastructural localization of somatostatin-like immunoreactivity in the rat dentate gyrus. J Comp Neurol, 290(4): 544–560
https://doi.org/10.1002/cne.902900409
pmid: 2613944
|
69 |
Ming G L, Song H (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4): 687–702
https://doi.org/10.1016/j.neuron.2011.05.001
pmid: 21609825
|
70 |
Mohapel P, Leanza G, Kokaia M, Lindvall O (2005). Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol Aging, 26(6): 939–946
https://doi.org/10.1016/j.neurobiolaging.2004.07.015
pmid: 15718053
|
71 |
Mongiat L A, Espósito M S, Lombardi G, Schinder A F (2009). Reliable activation of immature neurons in the adult hippocampus. PLoS ONE, 4(4): e5320
https://doi.org/10.1371/journal.pone.0005320
pmid: 19399173
|
72 |
Moser E I, Roudi Y, Witter M P, Kentros C, Bonhoeffer T, Moser M B (2014). Grid cells and cortical representation. Nat Rev Neurosci, 15(7): 466–481
https://doi.org/10.1038/nrn3766
pmid: 24917300
|
73 |
Mosko S, Lynch G, Cotman C W (1973). The distribution of septal projections to the hippocampus of the rat. J Comp Neurol, 152(2): 163–174
https://doi.org/10.1002/cne.901520204
pmid: 4761657
|
74 |
Mu Y, Zhao C, Gage F H (2011). Dopaminergic modulation of cortical inputs during maturation of adult-born dentate granule cells. J Neurosci, 31(11): 4113–4123
https://doi.org/10.1523/JNEUROSCI.4913-10.2011
pmid: 21411652
|
75 |
Nakashiba T, Cushman J D, Pelkey K A, Renaudineau S, Buhl D L, McHugh T J, Rodriguez Barrera V, Chittajallu R, Iwamoto K S, McBain C J, Fanselow M S, Tonegawa S (2012). Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell, 149(1): 188–201
https://doi.org/10.1016/j.cell.2012.01.046
pmid: 22365813
|
76 |
Neunuebel J P, Knierim J J (2012). Spatial firing correlates of physiologically distinct cell types of the rat dentate gyrus. J Neurosci, 32(11): 3848–3858
https://doi.org/10.1523/JNEUROSCI.6038-11.2012
pmid: 22423105
|
77 |
Nochi R, Kato T, Kaneko J, Itou Y, Kuribayashi H, Fukuda S, Terazono Y, Matani A, Kanatani S, Nakajima K, Hisatsune T (2012). Involvement of metabotropic glutamate receptor 5 signaling in activity-related proliferation of adult hippocampal neural stem cells. Eur J Neurosci, 36(3): 2273–2283
https://doi.org/10.1111/j.1460-9568.2012.08128.x
pmid: 22591399
|
78 |
Overstreet Wadiche L, Bromberg D A, Bensen A L, Westbrook G L (2005). GABAergic signaling to newborn neurons in dentate gyrus. J Neurophysiol, 94(6): 4528–4532
https://doi.org/10.1152/jn.00633.2005
pmid: 16033936
|
79 |
Overstreet-Wadiche L S, Westbrook G L (2006). Functional maturation of adult-generated granule cells. Hippocampus, 16(3): 208–215
https://doi.org/10.1002/hipo.20152
pmid: 16411232
|
80 |
Park J H, Enikolopov G (2010). Transient elevation of adult hippocampal neurogenesis after dopamine depletion. Exp Neurol, 222(2): 267–276
https://doi.org/10.1016/j.expneurol.2010.01.004
pmid: 20079351
|
81 |
Petersen R P, Moradpour F, Eadie B D, Shin J D, Kannangara T S, Delaney K R, Christie B R (2013). Electrophysiological identification of medial and lateral perforant path inputs to the dentate gyrus. Neuroscience, 252: 154–168
https://doi.org/10.1016/j.neuroscience.2013.07.063
pmid: 23933307
|
82 |
Piatti V C, Davies-Sala M G, Espósito M S, Mongiat L A, Trinchero M F, Schinder A F (2011). The timing for neuronal maturation in the adult hippocampus is modulated by local network activity. J Neurosci, 31(21): 7715–7728
https://doi.org/10.1523/JNEUROSCI.1380-11.2011
pmid: 21613484
|
83 |
Regan J, Smalley M (2007). Prospective isolation and functional analysis of stem and differentiated cells from the mouse mammary gland. Stem Cell Rev, 3(2): 124–136
https://doi.org/10.1007/s12015-007-0017-3
pmid: 17873345
|
84 |
Regan M R, Huang Y H, Kim Y S, Dykes-Hoberg M I, Jin L, Watkins A M, Bergles D E, Rothstein J D (2007). Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci, 27(25): 6607–6619
https://doi.org/10.1523/JNEUROSCI.0790-07.2007
pmid: 17581948
|
85 |
Renzel R, Sadek A R, Chang C H, Gray W P, Seifert G, Steinh?user C (2013). Polarized distribution of AMPA, but not GABAA, receptors in radial glia-like cells of the adult dentate gyrus. Glia, 61(7): 1146–1154
https://doi.org/10.1002/glia.22505
pmid: 23633386
|
86 |
Sahay A, Wilson D A, Hen R (2011). Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron, 70(4): 582–588
https://doi.org/10.1016/j.neuron.2011.05.012
pmid: 21609817
|
87 |
Schmidt-Hieber C, Jonas P, Bischofberger J (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 429(6988): 184–187
https://doi.org/10.1038/nature02553
pmid: 15107864
|
88 |
Schmidt-Salzmann C, Li L, Bischofberger J (2014). Functional properties of extrasynaptic AMPA and NMDA receptors during postnatal hippocampal neurogenesis. J Physiol, 592(Pt 1): 125–140
https://doi.org/10.1113/jphysiol.2013.267203
pmid: 24218546
|
89 |
Sloviter R S, L?mo T (2012). Updating the lamellar hypothesis of hippocampal organization. Front Neural Circuits, 6: 102
https://doi.org/10.3389/fncir.2012.00102
pmid: 23233836
|
90 |
Snyder J S, Ferrante S C, Cameron H A (2012). Late maturation of adult-born neurons in the temporal dentate gyrus. PLoS ONE, 7(11): e48757
https://doi.org/10.1371/journal.pone.0048757
pmid: 23144957
|
91 |
Soltesz I, Bourassa J, Deschênes M (1993). The behavior of mossy cells of the rat dentate gyrus during theta oscillations in vivo. Neuroscience, 57(3): 555–564
https://doi.org/10.1016/0306-4522(93)90005-Z
pmid: 8309524
|
92 |
Song J, Sun J, Moss J, Wen Z, Sun G J, Hsu D, Zhong C, Davoudi H, Christian K M, Toni N, Ming G L, Song H (2013). Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus. Nat Neurosci, 16(12): 1728–1730
https://doi.org/10.1038/nn.3572
pmid: 24212671
|
93 |
Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Bostr?m E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227
https://doi.org/10.1016/j.cell.2013.05.002
pmid: 23746839
|
94 |
Spalding K L, Bhardwaj R D, Buchholz B A, Druid H, Frisén J (2005). Retrospective birth dating of cells in humans. Cell, 122(1): 133–143
https://doi.org/10.1016/j.cell.2005.04.028
pmid: 16009139
|
95 |
Steward O (1976). Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. J Comp Neurol, 167(3): 285–314
https://doi.org/10.1002/cne.901670303
pmid: 1270625
|
96 |
Steward O, Scoville S A (1976). Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol, 169(3): 347–370
https://doi.org/10.1002/cne.901690306
pmid: 972204
|
97 |
Stone S S, Teixeira C M, Zaslavsky K, Wheeler A L, Martinez-Canabal A, Wang A H, Sakaguchi M, Lozano A M, Frankland P W (2011). Functional convergence of developmentally and adult-generated granule cells in dentate gyrus circuits supporting hippocampus-dependent memory. Hippocampus, 21(12): 1348–1362
https://doi.org/10.1002/hipo.20845
pmid: 20824726
|
98 |
Suh H, Consiglio A, Ray J, Sawai T, D’Amour K A, Gage F H (2007). In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell, 1(5): 515–528
https://doi.org/10.1016/j.stem.2007.09.002
pmid: 18371391
|
99 |
Suh H, Deng W, Gage F H (2009). Signaling in adult neurogenesis. Annu Rev Cell Dev Biol, 25(1): 253–275
https://doi.org/10.1146/annurev.cellbio.042308.113256
pmid: 19575663
|
100 |
Tashiro A, Sandler V M, Toni N, Zhao C, Gage F H (2006). NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature, 442(7105): 929–933
https://doi.org/10.1038/nature05028
pmid: 16906136
|
101 |
Temprana S G, Mongiat L A, Yang S M, Trinchero M F, Alvarez D D, Kropff E, Giacomini D, Beltramone N, Lanuza G M, Schinder A F (2015). Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells. Neuron, 85(1): 116–130
https://doi.org/10.1016/j.neuron.2014.11.023
pmid: 25533485
|
102 |
Toni N, Laplagne D A, Zhao C, Lombardi G, Ribak C E, Gage F H, Schinder A F (2008). Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci, 11(8): 901–907
https://doi.org/10.1038/nn.2156
pmid: 18622400
|
103 |
Toni N, Teng E M, Bushong E A, Aimone J B, Zhao C, Consiglio A, van Praag H, Martone M E, Ellisman M H, Gage F H (2007). Synapse formation on neurons born in the adult hippocampus. Nat Neurosci, 10(6): 727–734
https://doi.org/10.1038/nn1908
pmid: 17486101
|
104 |
Tozuka Y, Fukuda S, Namba T, Seki T, Hisatsune T (2005). GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron, 47(6): 803–815
https://doi.org/10.1016/j.neuron.2005.08.023
pmid: 16157276
|
105 |
van Groen T, Miettinen P, Kadish I (2003). The entorhinal cortex of the mouse: organization of the projection to the hippocampal formation. Hippocampus, 13(1): 133–149
https://doi.org/10.1002/hipo.10037
pmid: 12625464
|
106 |
Vivar C, Potter M C, Choi J, Lee J Y, Stringer T P, Callaway E M, Gage F H, Suh H, van Praag H (2012). Monosynaptic inputs to new neurons in the dentate gyrus. Nat Commun, 3: 1107
https://doi.org/10.1038/ncomms2101
pmid: 23033083
|
107 |
Vivar C, Potter M C, van Praag H (2013). All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. Curr Top Behav Neurosci, 15: 189–210
https://doi.org/10.1007/7854_2012_220
pmid: 22847651
|
108 |
Vivar C, van Praag H (2013). Functional circuits of new neurons in the dentate gyrus. Front Neural Circuits, 7: 15
https://doi.org/10.3389/fncir.2013.00015
pmid: 23443839
|
109 |
Vogt K E, Regehr W G (2001). Cholinergic modulation of excitatory synaptic transmission in the CA3 area of the hippocampus. J Neurosci, 21(1): 75–83
pmid: 11150322
|
110 |
Wang L P, Kempermann G, Kettenmann H (2005). A subpopulation of precursor cells in the mouse dentate gyrus receives synaptic GABAergic input. Mol Cell Neurosci, 29(2): 181–189
https://doi.org/10.1016/j.mcn.2005.02.002
pmid: 15911343
|
111 |
Wang S, Scott B W, Wojtowicz J M (2000). Heterogenous properties of dentate granule neurons in the adult rat. J Neurobiol, 42(2): 248–257
https://doi.org/10.1002/(SICI)1097-4695(20000205)42:2<248::AID-NEU8>3.0.CO;2-J
pmid: 10640331
|
112 |
Witter M P (2007). The perforant path: projections from the entorhinal cortex to the dentate gyrus. Prog Brain Res, 163: 43–61
https://doi.org/10.1016/S0079-6123(07)63003-9
pmid: 17765711
|
113 |
Witter M P, Amaral D G (1991). Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. J Comp Neurol, 307(3): 437–459
https://doi.org/10.1002/cne.903070308
pmid: 1713237
|
114 |
Witter M P, Van Hoesen G W, Amaral D G (1989). Topographical organization of the entorhinal projection to the dentate gyrus of the monkey. J Neurosci, 9(1): 216–228
pmid: 2913203
|
115 |
Wu G, Malinow R, Cline H T (1996). Maturation of a central glutamatergic synapse. Science, 274(5289): 972–976
https://doi.org/10.1126/science.274.5289.972
pmid: 8875937
|
116 |
Zhao C, Deng W, Gage F H (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4): 645–660
https://doi.org/10.1016/j.cell.2008.01.033
pmid: 18295581
|
117 |
Zhao C, Teng E M, Summers R G Jr, Ming G L, Gage F H (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci, 26(1): 3–11
https://doi.org/10.1523/JNEUROSCI.3648-05.2006
pmid: 16399667
|
118 |
Zhao S, Zhou Y, Gross J, Miao P, Qiu L, Wang D, Chen Q, Feng G (2010). Fluorescent labeling of newborn dentate granule cells in GAD67-GFP transgenic mice: a genetic tool for the study of adult neurogenesis. PLoS ONE, 5(9): 5
https://doi.org/10.1371/journal.pone.0012506
pmid: 20824075
|
119 |
Zhou C, Wen Z X, Shi D M, Xie Z P (2004). Muscarinic acetylcholine receptors involved in the regulation of neural stem cell proliferation and differentiation in vitro. Cell Biol Int, 28(1): 63–67
https://doi.org/10.1016/j.cellbi.2003.10.005
pmid: 14759770
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|