Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (4) : 310-320    https://doi.org/10.1007/s11515-015-1362-2
REVIEW
Development of glutamatergic innervation during maturation of adult-born neurons
Cristina V. Dieni(),Adam J. Wieckert,Linda Overstreet-Wadiche
Department of Neurobiology and Evelyn McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294,USA
 Download: PDF(1070 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The dentate gyrus is the entrance of the hippocampal formation and a primary target of excitatory afferents from the entorhinal cortex that carry spatial and sensory information. Mounting evidence suggests that continual adult neurogenesis contributes to appropriate processing of cortical information. The ongoing integration of adult born neurons dynamically modulates connectivity of the network, potentially contributing to dentate cognitive function. Here we review the current understanding of how glutamatergic innervation develops during the progression of adult-born neuron maturation. Summarizing the developmental stages of dentate neurogenesis, we also demonstrate that new neurons at an immature stage of maturation begin to process afferent activity from both medial and lateral entorhinal cortices.

Keywords dentate gyrus      adult neurogenesis      glutamatergic innervation      granule cell      neuroprogenitor     
Corresponding Author(s): Cristina V. Dieni   
Just Accepted Date: 07 May 2015   Online First Date: 14 July 2015    Issue Date: 14 August 2015
 Cite this article:   
Cristina V. Dieni,Adam J. Wieckert,Linda Overstreet-Wadiche. Development of glutamatergic innervation during maturation of adult-born neurons[J]. Front. Biol., 2015, 10(4): 310-320.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1362-2
https://academic.hep.com.cn/fib/EN/Y2015/V10/I4/310
Fig.1  Initial silent synapses on adult born GCs arise from hilar mossy cells. (A) Left, diagram of recording from newborn GCs expressing POMC-GFP. Stimulation in the IML evokes NMDAR-only EPSCs (top right, pre-pairing) that undergo rapid incorporation of AMPARs after pairing synaptic stimulation with postsynaptic depolarization (top right, post-pairing). Ten traces overlaid (gray) with averages (black). Right bottom, plot of EPSC amplitude versus time at -70 mV (black) and+ 40 mV (blue). Adapted from Chancey et al., 2013. (B) Left, a mossy cell filled with biocytin (white) in a DG injected with ChR2-mCherry (red). Insets, mossy cell spiking in response to 455 nm light (blue bars). Scale bar, 100 μm. GCL, granule cell layer. Right, ChR2-mCherry-labeled commissural axons in the hilus and IML of the contralateral DG. Inset, example of light-evoked NMDAR EPSC in a POMC-GFP newborn GC that is blocked by CB1R agonist WIN 55 212-2. Scale bar, 100 μm. Adapted from Chancey et al., 2014.
Fig.2  Immature GCs are innervated by medial and lateral enthorinal cortex. (A) Left, cartoon showing AAV-ChR2-EGFP injection sites in LEnt or MEnt. Right, the MEnt injection site results in axonal projections expressing ChR2-GFP in the MML of the DG. (B) Left, confocal image showing ChR2-EGFP expression in the MPP and a recorded GC (white) in acute slice. Right, blue light pulses evoke AMPAR-mediated EPSCs that are blocked by CNQX (gray trace). Approximately 80% of 21-day old retroviral labeled immature GCs exhibit EPSCs evoked by selective MEnt or LEnt optogenetic stimulation. Adapted from Kumamoto et al. (2012) with permission from Nature Publishing Group. (C) Left, focal stimulation in the MEnt and LEnt also evokes AMPAR EPSCs in dentate GCs. Right, confocal image of TdTomato-labeled immature GCs in Nestin-CreER mice at 4 weeks post-tamoxifen injection (PTI). (D) Example of EPSCs in mature (left) and immature (right) GCs in response to paired-pulse stimulation of the MEnt (top) or LEnt (bottom) pathways. Adapted from Dieni et al., 2013.
Fig.3  EPSCs in ~3 week-old GCs show pharmacology of medial perforant path. (A) Immunostaining for mGluR2/3 shows selective expression in axons of MPP. (B) Percentage of GCs exhibiting EPSCs during focal MPP and LPP stimulation (*p = 0.045 Fisher’s exact test). Immature GCs were identified in GAD67-GFP reporter mice. The total number of cells recorded is indicated in the bars. (C) Left, DCG-IV (1μM) decreased EPSCs in mature GCs during MPP and LPP stimulation by 73% and 27% respectively (n = 6 each pathway, p = 0.0004 unpaired t-test). Right, examples of EPSCs recorded in mature GCs in the absence and presence of DCG-IV. (D) Left, DCG-IV decreased EPSCs in GAD67-GFP labeled immature GCs by 56% (n = 5, p = 0.0035, paired t-test). A representative time plot of EPSCs in an immature GC (left) and representative EPSCs (right).
78a Overstreet-Wadiche L, Bensen A L, Westbrook G L (2006). Delayed development of adult-generated granule cells in dentate gyrus. J Neurosci, 26(8): 2326–2334
1 Abraham W C, McNaughton N (1984). Differences in synaptic transmission between medial and lateral components of the perforant path. Brain Res, 303(2): 251–260
https://doi.org/10.1016/0006-8993(84)91211-3 pmid: 6331573
2 Alvarez-Buylla A, Lim D A (2004). For the long run: maintaining germinal niches in the adult brain. Neuron, 41(5): 683–686
https://doi.org/10.1016/S0896-6273(04)00111-4 pmid: 15003168
3 Amaral D G (1978). A Golgi study of cell types in the hilar region of the hippocampus in the rat. J Comp Neurol, 182(4 Pt 2): 851–914
https://doi.org/10.1002/cne.901820508 pmid: 730852
4 Amaral D G, Kurz J (1985). An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J Comp Neurol, 240(1): 37–59
https://doi.org/10.1002/cne.902400104 pmid: 4056104
5 Amaral D G, Witter M P (1989). The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience, 31(3): 571–591
https://doi.org/10.1016/0306-4522(89)90424-7 pmid: 2687721
6 Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O, Gaiarsa J L (1997). GABAA, NMDA and AMPA receptors: a developmentally regulated ‘ménage à trois’. Trends Neurosci, 20(11): 523–529
https://doi.org/10.1016/S0166-2236(97)01147-8 pmid: 9364667
7 Berg D A, Belnoue L, Song H, Simon A (2013). Neurotransmitter-mediated control of neurogenesis in the adult vertebrate brain. Development, 140(12): 2548–2561
https://doi.org/10.1242/dev.088005 pmid: 23715548
8 Brunner J, Neubrandt M, Van-Weert S, Andrási T, Kleine Borgmann F B, Jessberger S, Szabadics J (2014). Adult-born granule cells mature through two functionally distinct states. eLife, 3: e03104
https://doi.org/10.7554/eLife.03104 pmid: 25061223
9 Brus M, Keller M, Lévy F (2013). Temporal features of adult neurogenesis: differences and similarities across mammalian species. Front Neurosci, 7: 135
https://doi.org/10.3389/fnins.2013.00135 pmid: 23935563
10 Buckmaster P S, Strowbridge B W, Kunkel D D, Schmiege D L, Schwartzkroin P A (1992). Mossy cell axonal projections to the dentate gyrus molecular layer in the rat hippocampal slice. Hippocampus, 2(4): 349–362
https://doi.org/10.1002/hipo.450020403 pmid: 1284975
11 Buckmaster P S, Wenzel H J, Kunkel D D, Schwartzkroin P A (1996). Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J Comp Neurol, 366(2): 271–292
https://doi.org/10.1002/(SICI)1096-9861(19960304)366:2<270::AID-CNE7>3.0.CO;2-2 pmid: 8698887
12 Campbell N R, Fernandes C C, Halff A W, Berg D K (2010). Endogenous signaling through alpha7-containing nicotinic receptors promotes maturation and integration of adult-born neurons in the hippocampus. J Neurosci, 30(26): 8734–8744
https://doi.org/10.1523/JNEUROSCI.0931-10.2010 pmid: 20592195
13 Chancey J H, Adlaf E W, Sapp M C, Pugh P C, Wadiche J I, Overstreet-Wadiche L S (2013). GABA depolarization is required for experience-dependent synapse unsilencing in adult-born neurons. J Neurosci, 33(15): 6614–6622
https://doi.org/10.1523/JNEUROSCI.0781-13.2013 pmid: 23575858
14 Chancey J H, Poulsen D J, Wadiche J I, Overstreet-Wadiche L (2014). Hilar mossy cells provide the first glutamatergic synapses to adult-born dentate granule cells. J Neurosci, 34(6): 2349–2354
https://doi.org/10.1523/JNEUROSCI.3620-13.2014 pmid: 24501373
15 Chiu C Q, Castillo P E (2008). Input-specific plasticity at excitatory synapses mediated by endocannabinoids in the dentate gyrus. Neuropharmacology, 54(1): 68–78
https://doi.org/10.1016/j.neuropharm.2007.06.026 pmid: 17706254
16 Coulter D A, Carlson G C (2007). Functional regulation of the dentate gyrus by GABA-mediated inhibition. Prog Brain Res, 163: 235–243
https://doi.org/10.1016/S0079-6123(07)63014-3 pmid: 17765722
17 Deng W, Aimone J B, Gage F H (2010). New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci, 11(5): 339–350
https://doi.org/10.1038/nrn2822 pmid: 20354534
18 Dent J A, Galvin N J, Stanfield B B, Cowan W M (1983). The mode of termination of the hypothalamic projection to the dentate gyrus: an EM autoradiographic study. Brain Res, 258(1): 1–10
https://doi.org/10.1016/0006-8993(83)91220-9 pmid: 24010158
19 Diaz J, Ridray S, Mignon V, Griffon N, Schwartz J C, Sokoloff P (1997). Selective expression of dopamine D3 receptor mRNA in proliferative zones during embryonic development of the rat brain. J Neurosci, 17(11): 4282–4292
pmid: 9151745
20 Dieni C V, Nietz A K, Panichi R, Wadiche J I, Overstreet-Wadiche L (2013). Distinct determinants of sparse activation during granule cell maturation. J Neurosci, 33(49): 19131–19142
https://doi.org/10.1523/JNEUROSCI.2289-13.2013 pmid: 24305810
21 Domínguez-Escribà L, Hernández-Rabaza V, Soriano-Navarro M, Barcia J A, Romero F J, García-Verdugo J M, Canales J J (2006). Chronic cocaine exposure impairs progenitor proliferation but spares survival and maturation of neural precursors in adult rat dentate gyrus. Eur J Neurosci, 24(2): 586–594
https://doi.org/10.1111/j.1460-9568.2006.04924.x pmid: 16903860
22 Durand G M, Kovalchuk Y, Konnerth A (1996). Long-term potentiation and functional synapse induction in developing hippocampus. Nature, 381(6577): 71–75
https://doi.org/10.1038/381071a0 pmid: 8609991
23 Encinas J M, Michurina T V, Peunova N, Park J H, Tordo J, Peterson D A, Fishell G, Koulakov A, Enikolopov G (2011). Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell, 8(5): 566–579
https://doi.org/10.1016/j.stem.2011.03.010 pmid: 21549330
24 Eriksson P S, Perfilieva E, Bj?rk-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317
https://doi.org/10.1038/3305 pmid: 9809557
25 Espósito M S, Piatti V C, Laplagne D A, Morgenstern N A, Ferrari C C, Pitossi F J, Schinder A F (2005). Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci, 25(44): 10074–10086
https://doi.org/10.1523/JNEUROSCI.3114-05.2005 pmid: 16267214
26 Ewell L A, Jones M V (2010). Frequency-tuned distribution of inhibition in the dentate gyrus. J Neurosci, 30(38): 12597–12607
https://doi.org/10.1523/JNEUROSCI.1854-10.2010 pmid: 20861366
27 Frotscher M (1991). Target cell specificity of synaptic connections in the hippocampus. Hippocampus, 1(2): 123–130
https://doi.org/10.1002/hipo.450010202 pmid: 1669289
28 Gage F H (2000). Mammalian neural stem cells. Science, 287(5457): 1433–1438
https://doi.org/10.1126/science.287.5457.1433 pmid: 10688783
29 Ge S, Goh E L, Sailor K A, Kitabatake Y, Ming G L, Song H (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076): 589–593
https://doi.org/10.1038/nature04404 pmid: 16341203
30 Ge S, Pradhan D A, Ming G L, Song H (2007). GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neurosci, 30(1): 1–8
https://doi.org/10.1016/j.tins.2006.11.001 pmid: 17116335
31 Gilbert P E, Kesner R P, Lee I (2001). Dissociating hippocampal subregions: double dissociation between dentate gyrus and CA1. Hippocampus, 11(6): 626–636
https://doi.org/10.1002/hipo.1077 pmid: 11811656
32 Goldowitz D, White W F, Steward O, Lynch G, Cotman C (1975). Anatomical evidence for a projection from the entorhinal cortex to the contralateral dentate gyrus of the rat. Exp Neurol, 47(3): 433–441
https://doi.org/10.1016/0014-4886(75)90075-8 pmid: 1132457
33 Gu Y, Arruda-Carvalho M, Wang J, Janoschka S R, Josselyn S A, Frankland P W, Ge S (2012). Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci, 15(12): 1700–1706
https://doi.org/10.1038/nn.3260 pmid: 23143513
34 Hafting T, Fyhn M, Molden S, Moser M B, Moser E I (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052): 801–806
https://doi.org/10.1038/nature03721 pmid: 15965463
35 Hargreaves E L, Rao G, Lee I, Knierim J J (2005). Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Science, 308(5729): 1792–1794
https://doi.org/10.1126/science.1110449 pmid: 15961670
36 Herman M A, Jahr C E (2007). Extracellular glutamate concentration in hippocampal slice. J Neurosci, 27(36): 9736–9741
https://doi.org/10.1523/JNEUROSCI.3009-07.2007 pmid: 17804634
37 H?glinger G U, Rizk P, Muriel M P, Duyckaerts C, Oertel W H, Caille I, Hirsch E C (2004). Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci, 7(7): 726–735
https://doi.org/10.1038/nn1265 pmid: 15195095
38 Isaac J T, Crair M C, Nicoll R A, Malenka R C (1997). Silent synapses during development of thalamocortical inputs. Neuron, 18(2): 269–280
https://doi.org/10.1016/S0896-6273(00)80267-6 pmid: 9052797
39 Isaac J T, Nicoll R A, Malenka R C (1995). Evidence for silent synapses: implications for the expression of LTP. Neuron, 15(2): 427–434
https://doi.org/10.1016/0896-6273(95)90046-2 pmid: 7646894
40 Itou Y, Nochi R, Kuribayashi H, Saito Y, Hisatsune T (2011). Cholinergic activation of hippocampal neural stem cells in aged dentate gyrus. Hippocampus, 21(4): 446–459
https://doi.org/10.1002/hipo.20761 pmid: 20054812
41 Jinde S, Zsiros V, Nakazawa K (2013). Hilar mossy cell circuitry controlling dentate granule cell excitability. Front Neural Circuits, 7: 14
https://doi.org/10.3389/fncir.2013.00014 pmid: 23407806
42 Kaneko N, Okano H, Sawamoto K (2006). Role of the cholinergic system in regulating survival of newborn neurons in the adult mouse dentate gyrus and olfactory bulb. Genes Cells, 11(10): 1145–1159
https://doi.org/10.1111/j.1365-2443.2006.01010.x pmid: 16999735
43 Kilbride J, Rush A M, Rowan M J, Anwyl R (2001). Presynaptic group II mGluR inhibition of short-term depression in the medial perforant path of the dentate gyrus in vitro. J Neurophysiol, 85(6): 2509–2515
pmid: 11387397
44 Kiss J, Csáki A, Bokor H, Shanabrough M, Leranth C (2000). The supramammillo-hippocampal and supramammillo-septal glutamatergic/aspartatergic projections in the rat: a combined [3H]D-aspartate autoradiographic and immunohistochemical study. Neuroscience, 97(4): 657–669
https://doi.org/10.1016/S0306-4522(00)00127-5 pmid: 10842010
45 Kullmann D M (1994). Amplitude fluctuations of dual-component EPSCs in hippocampal pyramidal cells: implications for long-term potentiation. Neuron, 12(5): 1111–1120
https://doi.org/10.1016/0896-6273(94)90318-2 pmid: 7910467
46 Kumamoto N, Gu Y, Wang J, Janoschka S, Takemaru K, Levine J, Ge S (2012) A role for primary cilia in glutamatergic synaptic integration of adult-born neurons. Nat Neurosci, 15: 399–405, S391
47 Kwon H B, Castillo P E (2008). Role of glutamate autoreceptors at hippocampal mossy fiber synapses. Neuron, 60(6): 1082–1094
https://doi.org/10.1016/j.neuron.2008.10.045 pmid: 19109913
48 Laplagne D A, Espósito M S, Piatti V C, Morgenstern N A, Zhao C, van Praag H, Gage F H, Schinder A F (2006). Functional convergence of neurons generated in the developing and adult hippocampus. PLoS Biol, 4(12): e409
https://doi.org/10.1371/journal.pbio.0040409 pmid: 17121455
49 Laurberg S, S?rensen K E (1981). Associational and commissural collaterals of neurons in the hippocampal formation (hilus fasciae dentatae and subfield CA3). Brain Res, 212(2): 287–300
https://doi.org/10.1016/0006-8993(81)90463-7 pmid: 7225870
50 Leranth C, Hajszan T (2007). Extrinsic afferent systems to the dentate gyrus. Prog Brain Res, 163: 63–84
https://doi.org/10.1016/S0079-6123(07)63004-0 pmid: 17765712
51 Leutgeb J K, Leutgeb S, Moser M B, Moser E I (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science, 315(5814): 961–966
https://doi.org/10.1126/science.1135801 pmid: 17303747
52 Li Y, Stam F J, Aimone J B, Goulding M, Callaway E M, Gage F H (2013). Molecular layer perforant path-associated cells contribute to feed-forward inhibition in the adult dentate gyrus. Proc Natl Acad Sci USA, 110(22): 9106–9111
https://doi.org/10.1073/pnas.1306912110 pmid: 23671081
53 Liao D, Hessler N A, Malinow R (1995). Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature, 375(6530): 400–404
https://doi.org/10.1038/375400a0 pmid: 7760933
54 Lisman J E, Jensen O (2013). The θ-γ neural code. Neuron, 77(6): 1002–1016
https://doi.org/10.1016/j.neuron.2013.03.007 pmid: 23522038
55 Lübke J, Deller T, Frotscher M (1997). Septal innervation of mossy cells in the hilus of the rat dentate gyrus: an anterograde tracing and intracellular labeling study. Exp Brain Res, 114(3): 423–432
https://doi.org/10.1007/PL00005651 pmid: 9187278
56 Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, G?tz M, Haas C A, Kempermann G, Taylor V, Giachino C (2010). Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell, 6(5): 445–456
https://doi.org/10.1016/j.stem.2010.03.017 pmid: 20452319
57 Ma D K, Jang M H, Guo J U, Kitabatake Y, Chang M L, Pow-Anpongkul N, Flavell R A, Lu B, Ming G L, Song H (2009). Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science, 323(5917): 1074–1077
https://doi.org/10.1126/science.1166859 pmid: 19119186
58 Ma W, Maric D, Li B S, Hu Q, Andreadis J D, Grant G M, Liu Q Y, Shaffer K M, Chang Y H, Zhang L, Pancrazio J J, Pant H C, Stenger D A, Barker J L (2000). Acetylcholine stimulates cortical precursor cell proliferation in vitro via muscarinic receptor activation and MAP kinase phosphorylation. Eur J Neurosci, 12(4): 1227–1240
https://doi.org/10.1046/j.1460-9568.2000.00010.x pmid: 10762352
59 Macek T A, Winder D G, Gereau R W 4th, Ladd C O, Conn P J (1996). Differential involvement of group II and group III mGluRs as autoreceptors at lateral and medial perforant path synapses. J Neurophysiol, 76(6): 3798–3806
pmid: 8985877
60 Maglóczky Z, Acsády L, Freund T F (1994). Principal cells are the postsynaptic targets of supramammillary afferents in the hippocampus of the rat. Hippocampus, 4(3): 322–334
https://doi.org/10.1002/hipo.450040316 pmid: 7531093
61 Manzoni O, Bockaert J (1995). Metabotropic glutamate receptors inhibiting excitatory synapses in the CA1 area of rat hippocampus. Eur J Neurosci, 7(12): 2518–2523
https://doi.org/10.1111/j.1460-9568.1995.tb01051.x pmid: 8845958
62 Manzoni O J, Castillo P E, Nicoll R A (1995). Pharmacology of metabotropic glutamate receptors at the mossy fiber synapses of the guinea pig hippocampus. Neuropharmacology, 34(8): 965–971
https://doi.org/10.1016/0028-3908(95)00060-J pmid: 8532177
63 Marín-Burgin A, Mongiat L A, Pardi M B, Schinder A F (2012). Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science, 335(6073): 1238–1242
https://doi.org/10.1126/science.1214956 pmid: 22282476
64 Markwardt S, Overstreet-Wadiche L (2008). GABAergic signalling to adult-generated neurons. J Physiol, 586(16): 3745–3749
https://doi.org/10.1113/jphysiol.2008.155713 pmid: 18511482
65 Markwardt S J, Dieni C V, Wadiche J I, Overstreet-Wadiche L (2011). Ivy/neurogliaform interneurons coordinate activity in the neurogenic niche. Nat Neurosci, 14(11): 1407–1409
https://doi.org/10.1038/nn.2935 pmid: 21983681
66 McNaughton B L (1980). Evidence for two physiologically distinct perforant pathways to the fascia dentata. Brain Res, 199(1): 1–19
https://doi.org/10.1016/0006-8993(80)90226-7 pmid: 7407615
67 Mignone J L, Kukekov V, Chiang A S, Steindler D, Enikolopov G (2004). Neural stem and progenitor cells in nestin-GFP transgenic mice. J Comp Neurol, 469(3): 311–324
https://doi.org/10.1002/cne.10964 pmid: 14730584
68 Milner T A, Bacon C E (1989). Ultrastructural localization of somatostatin-like immunoreactivity in the rat dentate gyrus. J Comp Neurol, 290(4): 544–560
https://doi.org/10.1002/cne.902900409 pmid: 2613944
69 Ming G L, Song H (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4): 687–702
https://doi.org/10.1016/j.neuron.2011.05.001 pmid: 21609825
70 Mohapel P, Leanza G, Kokaia M, Lindvall O (2005). Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol Aging, 26(6): 939–946
https://doi.org/10.1016/j.neurobiolaging.2004.07.015 pmid: 15718053
71 Mongiat L A, Espósito M S, Lombardi G, Schinder A F (2009). Reliable activation of immature neurons in the adult hippocampus. PLoS ONE, 4(4): e5320
https://doi.org/10.1371/journal.pone.0005320 pmid: 19399173
72 Moser E I, Roudi Y, Witter M P, Kentros C, Bonhoeffer T, Moser M B (2014). Grid cells and cortical representation. Nat Rev Neurosci, 15(7): 466–481
https://doi.org/10.1038/nrn3766 pmid: 24917300
73 Mosko S, Lynch G, Cotman C W (1973). The distribution of septal projections to the hippocampus of the rat. J Comp Neurol, 152(2): 163–174
https://doi.org/10.1002/cne.901520204 pmid: 4761657
74 Mu Y, Zhao C, Gage F H (2011). Dopaminergic modulation of cortical inputs during maturation of adult-born dentate granule cells. J Neurosci, 31(11): 4113–4123
https://doi.org/10.1523/JNEUROSCI.4913-10.2011 pmid: 21411652
75 Nakashiba T, Cushman J D, Pelkey K A, Renaudineau S, Buhl D L, McHugh T J, Rodriguez Barrera V, Chittajallu R, Iwamoto K S, McBain C J, Fanselow M S, Tonegawa S (2012). Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell, 149(1): 188–201
https://doi.org/10.1016/j.cell.2012.01.046 pmid: 22365813
76 Neunuebel J P, Knierim J J (2012). Spatial firing correlates of physiologically distinct cell types of the rat dentate gyrus. J Neurosci, 32(11): 3848–3858
https://doi.org/10.1523/JNEUROSCI.6038-11.2012 pmid: 22423105
77 Nochi R, Kato T, Kaneko J, Itou Y, Kuribayashi H, Fukuda S, Terazono Y, Matani A, Kanatani S, Nakajima K, Hisatsune T (2012). Involvement of metabotropic glutamate receptor 5 signaling in activity-related proliferation of adult hippocampal neural stem cells. Eur J Neurosci, 36(3): 2273–2283
https://doi.org/10.1111/j.1460-9568.2012.08128.x pmid: 22591399
78 Overstreet Wadiche L, Bromberg D A, Bensen A L, Westbrook G L (2005). GABAergic signaling to newborn neurons in dentate gyrus. J Neurophysiol, 94(6): 4528–4532
https://doi.org/10.1152/jn.00633.2005 pmid: 16033936
79 Overstreet-Wadiche L S, Westbrook G L (2006). Functional maturation of adult-generated granule cells. Hippocampus, 16(3): 208–215
https://doi.org/10.1002/hipo.20152 pmid: 16411232
80 Park J H, Enikolopov G (2010). Transient elevation of adult hippocampal neurogenesis after dopamine depletion. Exp Neurol, 222(2): 267–276
https://doi.org/10.1016/j.expneurol.2010.01.004 pmid: 20079351
81 Petersen R P, Moradpour F, Eadie B D, Shin J D, Kannangara T S, Delaney K R, Christie B R (2013). Electrophysiological identification of medial and lateral perforant path inputs to the dentate gyrus. Neuroscience, 252: 154–168
https://doi.org/10.1016/j.neuroscience.2013.07.063 pmid: 23933307
82 Piatti V C, Davies-Sala M G, Espósito M S, Mongiat L A, Trinchero M F, Schinder A F (2011). The timing for neuronal maturation in the adult hippocampus is modulated by local network activity. J Neurosci, 31(21): 7715–7728
https://doi.org/10.1523/JNEUROSCI.1380-11.2011 pmid: 21613484
83 Regan J, Smalley M (2007). Prospective isolation and functional analysis of stem and differentiated cells from the mouse mammary gland. Stem Cell Rev, 3(2): 124–136
https://doi.org/10.1007/s12015-007-0017-3 pmid: 17873345
84 Regan M R, Huang Y H, Kim Y S, Dykes-Hoberg M I, Jin L, Watkins A M, Bergles D E, Rothstein J D (2007). Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci, 27(25): 6607–6619
https://doi.org/10.1523/JNEUROSCI.0790-07.2007 pmid: 17581948
85 Renzel R, Sadek A R, Chang C H, Gray W P, Seifert G, Steinh?user C (2013). Polarized distribution of AMPA, but not GABAA, receptors in radial glia-like cells of the adult dentate gyrus. Glia, 61(7): 1146–1154
https://doi.org/10.1002/glia.22505 pmid: 23633386
86 Sahay A, Wilson D A, Hen R (2011). Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron, 70(4): 582–588
https://doi.org/10.1016/j.neuron.2011.05.012 pmid: 21609817
87 Schmidt-Hieber C, Jonas P, Bischofberger J (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 429(6988): 184–187
https://doi.org/10.1038/nature02553 pmid: 15107864
88 Schmidt-Salzmann C, Li L, Bischofberger J (2014). Functional properties of extrasynaptic AMPA and NMDA receptors during postnatal hippocampal neurogenesis. J Physiol, 592(Pt 1): 125–140
https://doi.org/10.1113/jphysiol.2013.267203 pmid: 24218546
89 Sloviter R S, L?mo T (2012). Updating the lamellar hypothesis of hippocampal organization. Front Neural Circuits, 6: 102
https://doi.org/10.3389/fncir.2012.00102 pmid: 23233836
90 Snyder J S, Ferrante S C, Cameron H A (2012). Late maturation of adult-born neurons in the temporal dentate gyrus. PLoS ONE, 7(11): e48757
https://doi.org/10.1371/journal.pone.0048757 pmid: 23144957
91 Soltesz I, Bourassa J, Deschênes M (1993). The behavior of mossy cells of the rat dentate gyrus during theta oscillations in vivo. Neuroscience, 57(3): 555–564
https://doi.org/10.1016/0306-4522(93)90005-Z pmid: 8309524
92 Song J, Sun J, Moss J, Wen Z, Sun G J, Hsu D, Zhong C, Davoudi H, Christian K M, Toni N, Ming G L, Song H (2013). Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus. Nat Neurosci, 16(12): 1728–1730
https://doi.org/10.1038/nn.3572 pmid: 24212671
93 Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Bostr?m E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227
https://doi.org/10.1016/j.cell.2013.05.002 pmid: 23746839
94 Spalding K L, Bhardwaj R D, Buchholz B A, Druid H, Frisén J (2005). Retrospective birth dating of cells in humans. Cell, 122(1): 133–143
https://doi.org/10.1016/j.cell.2005.04.028 pmid: 16009139
95 Steward O (1976). Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. J Comp Neurol, 167(3): 285–314
https://doi.org/10.1002/cne.901670303 pmid: 1270625
96 Steward O, Scoville S A (1976). Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol, 169(3): 347–370
https://doi.org/10.1002/cne.901690306 pmid: 972204
97 Stone S S, Teixeira C M, Zaslavsky K, Wheeler A L, Martinez-Canabal A, Wang A H, Sakaguchi M, Lozano A M, Frankland P W (2011). Functional convergence of developmentally and adult-generated granule cells in dentate gyrus circuits supporting hippocampus-dependent memory. Hippocampus, 21(12): 1348–1362
https://doi.org/10.1002/hipo.20845 pmid: 20824726
98 Suh H, Consiglio A, Ray J, Sawai T, D’Amour K A, Gage F H (2007). In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell, 1(5): 515–528
https://doi.org/10.1016/j.stem.2007.09.002 pmid: 18371391
99 Suh H, Deng W, Gage F H (2009). Signaling in adult neurogenesis. Annu Rev Cell Dev Biol, 25(1): 253–275
https://doi.org/10.1146/annurev.cellbio.042308.113256 pmid: 19575663
100 Tashiro A, Sandler V M, Toni N, Zhao C, Gage F H (2006). NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature, 442(7105): 929–933
https://doi.org/10.1038/nature05028 pmid: 16906136
101 Temprana S G, Mongiat L A, Yang S M, Trinchero M F, Alvarez D D, Kropff E, Giacomini D, Beltramone N, Lanuza G M, Schinder A F (2015). Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells. Neuron, 85(1): 116–130
https://doi.org/10.1016/j.neuron.2014.11.023 pmid: 25533485
102 Toni N, Laplagne D A, Zhao C, Lombardi G, Ribak C E, Gage F H, Schinder A F (2008). Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci, 11(8): 901–907
https://doi.org/10.1038/nn.2156 pmid: 18622400
103 Toni N, Teng E M, Bushong E A, Aimone J B, Zhao C, Consiglio A, van Praag H, Martone M E, Ellisman M H, Gage F H (2007). Synapse formation on neurons born in the adult hippocampus. Nat Neurosci, 10(6): 727–734
https://doi.org/10.1038/nn1908 pmid: 17486101
104 Tozuka Y, Fukuda S, Namba T, Seki T, Hisatsune T (2005). GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron, 47(6): 803–815
https://doi.org/10.1016/j.neuron.2005.08.023 pmid: 16157276
105 van Groen T, Miettinen P, Kadish I (2003). The entorhinal cortex of the mouse: organization of the projection to the hippocampal formation. Hippocampus, 13(1): 133–149
https://doi.org/10.1002/hipo.10037 pmid: 12625464
106 Vivar C, Potter M C, Choi J, Lee J Y, Stringer T P, Callaway E M, Gage F H, Suh H, van Praag H (2012). Monosynaptic inputs to new neurons in the dentate gyrus. Nat Commun, 3: 1107
https://doi.org/10.1038/ncomms2101 pmid: 23033083
107 Vivar C, Potter M C, van Praag H (2013). All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. Curr Top Behav Neurosci, 15: 189–210
https://doi.org/10.1007/7854_2012_220 pmid: 22847651
108 Vivar C, van Praag H (2013). Functional circuits of new neurons in the dentate gyrus. Front Neural Circuits, 7: 15
https://doi.org/10.3389/fncir.2013.00015 pmid: 23443839
109 Vogt K E, Regehr W G (2001). Cholinergic modulation of excitatory synaptic transmission in the CA3 area of the hippocampus. J Neurosci, 21(1): 75–83
pmid: 11150322
110 Wang L P, Kempermann G, Kettenmann H (2005). A subpopulation of precursor cells in the mouse dentate gyrus receives synaptic GABAergic input. Mol Cell Neurosci, 29(2): 181–189
https://doi.org/10.1016/j.mcn.2005.02.002 pmid: 15911343
111 Wang S, Scott B W, Wojtowicz J M (2000). Heterogenous properties of dentate granule neurons in the adult rat. J Neurobiol, 42(2): 248–257
https://doi.org/10.1002/(SICI)1097-4695(20000205)42:2<248::AID-NEU8>3.0.CO;2-J pmid: 10640331
112 Witter M P (2007). The perforant path: projections from the entorhinal cortex to the dentate gyrus. Prog Brain Res, 163: 43–61
https://doi.org/10.1016/S0079-6123(07)63003-9 pmid: 17765711
113 Witter M P, Amaral D G (1991). Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. J Comp Neurol, 307(3): 437–459
https://doi.org/10.1002/cne.903070308 pmid: 1713237
114 Witter M P, Van Hoesen G W, Amaral D G (1989). Topographical organization of the entorhinal projection to the dentate gyrus of the monkey. J Neurosci, 9(1): 216–228
pmid: 2913203
115 Wu G, Malinow R, Cline H T (1996). Maturation of a central glutamatergic synapse. Science, 274(5289): 972–976
https://doi.org/10.1126/science.274.5289.972 pmid: 8875937
116 Zhao C, Deng W, Gage F H (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4): 645–660
https://doi.org/10.1016/j.cell.2008.01.033 pmid: 18295581
117 Zhao C, Teng E M, Summers R G Jr, Ming G L, Gage F H (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci, 26(1): 3–11
https://doi.org/10.1523/JNEUROSCI.3648-05.2006 pmid: 16399667
118 Zhao S, Zhou Y, Gross J, Miao P, Qiu L, Wang D, Chen Q, Feng G (2010). Fluorescent labeling of newborn dentate granule cells in GAD67-GFP transgenic mice: a genetic tool for the study of adult neurogenesis. PLoS ONE, 5(9): 5
https://doi.org/10.1371/journal.pone.0012506 pmid: 20824075
119 Zhou C, Wen Z X, Shi D M, Xie Z P (2004). Muscarinic acetylcholine receptors involved in the regulation of neural stem cell proliferation and differentiation in vitro. Cell Biol Int, 28(1): 63–67
https://doi.org/10.1016/j.cellbi.2003.10.005 pmid: 14759770
[1] Gregory W. Kirschen, Hanxiao Liu, Tracy Lang, Xuelin Liang, Shaoyu Ge, Qiaojie Xiong. The radial organization of neuronal primary cilia is acutely disrupted by seizure and ischemic brain injury[J]. Front. Biol., 2017, 12(2): 124-138.
[2] Paul J. Lucassen,Charlotte A. Oomen. Stress, hippocampal neurogenesis and cognition: functional correlations[J]. Front. Biol., 2016, 11(3): 182-192.
[3] Fatih Semerci,Mirjana Maletic-Savatic. Transgenic mouse models for studying adult neurogenesis[J]. Front. Biol., 2016, 11(3): 151-167.
[4] Martha Hvoslef-Eide,Charlotte A. Oomen. Adult neurogenesis and pattern separation in rodents: A critical evaluation of data, tasks and interpretation[J]. Front. Biol., 2016, 11(3): 168-181.
[5] Daniel A. Berg,Ki-Jun Yoon,Brett Will,Alex Y. Xiao,Nam-Shik Kim,Kimberly M. Christian,Hongjun Song,Guo-li Ming. Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis[J]. Front. Biol., 2015, 10(3): 262-271.
[6] Ruth Beckervordersandforth,Benjamin M. Häberle,D. Chichung Lie. Metabolic regulation of adult stem cell-derived neurons[J]. Front. Biol., 2015, 10(2): 107-116.
[7] Marlen Knobloch,Sebastian Jessberger. Metabolic control of adult neural stem cell behavior[J]. Front. Biol., 2015, 10(2): 100-106.
[8] Simon M.G. BRAUN, Sebastian JESSBERGER. Adult neurogenesis in the mammalian brain[J]. Front Biol, 2013, 8(3): 295-304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed