Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (5) : 439-447    https://doi.org/10.1007/s11515-015-1369-8
RESEARCH ARTICLE
Dynamic methylation driven by neuronal activity in hippocampal neurons impacts complex behavior
Anita E. Autry,Megumi Adachi,Lisa M. Monteggia()
Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9070, USA
 Download: PDF(390 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Epigenetic processes are well-known to play critical roles in learning and memory. Among epigenetic processes, accumulating data suggests that DNA methylation in particular is a critical determinant of learning and memory. In vitro data have suggested that DNA methyltransferase inhibitors can trigger DNA demethylation and subsequent gene expression of the brain-derived neurotrophic factor gene in an activity dependent manner. To examine if these processes occur in vivo, we chronically infused DNMT inhibitors into the hippocampus and examined the impact on behavior. We find that chronic DNMT inhibition in the hippocampus results in increased anxiety-related behavior and deficits in context-dependent fear conditioning accompanied by an increase in BDNF expression. Gene expression changes were blocked by pretreatment with the NMDA receptor antagonist AP5, suggesting that DNMT inhibition enhances gene expression in an activity-dependent manner and that, conversely, the behavior deficits and abnormal gene expression are facilitated by NMDA receptor activity.

Keywords DNA methylation      NMDA receptors      learning and memory      behavior      hippocampus     
Corresponding Author(s): Lisa M. Monteggia   
Just Accepted Date: 17 August 2015   Online First Date: 17 September 2015    Issue Date: 30 October 2015
 Cite this article:   
Anita E. Autry,Megumi Adachi,Lisa M. Monteggia. Dynamic methylation driven by neuronal activity in hippocampal neurons impacts complex behavior[J]. Front. Biol., 2015, 10(5): 439-447.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1369-8
https://academic.hep.com.cn/fib/EN/Y2015/V10/I5/439
Fig.1  Overview of the infusion paradigm. (A) Mice were implanted with bilateral cannulae directed toward the dentate gyrus attached to a minipump and allowed to recover from surgery for six days. Starting on day 7, mice were tested for behavioral impact of chronic infusion of either vehicle or DNMT inhibitors 5azaC or zebularine (Zeb) including elevated plus maze, social interaction, locomotion, and fear conditioning. (B) Cannula placement was confirmed by examining the location of the cannula track in cressyl violet stained tissue.
Fig.2  Chronic DNMT inhibitor infusion enhances anxiety-like behavior. (A, C) Mice treated with DNMT inhibitors 5azaC (A) or zebularine (C) spend less time exploring the open arm of the elevated plus maze compared with vehicle-infused animals (*p<0.05). (B, D) Similarly, mice treated with 5azaC (B) or zebularine (D) spend more time in the closed arm of the EPM compared to vehicle-treated mice (*p<0.05).
Fig.3  Chronic DNMT inhibitor treatment does not impact locomotor activity. Treatment by 5azaC (A) or zebularine (B) does not alter locomotor behavior .
Fig.4  Chronic inhibition of DNMT activity in the dentate gyrus impairs context dependent fear memory. (A,B). Mice receiving (A) 5azaC or (B) zebularine spent significantly less time freezing in the context in which fear training was administered the previous day compared to vehicle-treated mice (*p<0.05).
Fig.5  Blockade of excitatory signaling blocks effects of DNMT inhibition. (A) Chronic DNMT inhibition results in increased anxiety-related behavior (F3-37 = 2.852, p = 0.05, main effect by one-way ANOVA) and this effect is blocked by co-treatment with AP5 (significant post-hoc analysis after Neuman-Keul’s correction, 5azaC vs. AP5+ 5azaC groups). (B) As previously shown, DNMT inhibition impairs context-dependent fear memory (F3−37 = 2.759, p = 0.05, main effect by one-way ANOVA, significant post-hoc analysis Neuman-Keul’s correction, vehicle vs. 5azaC) while co-treatment of 5azaC+ AP5 is indistinguishable from vehicle treatment, though AP5 alone produces no effect on contextual fear memory. (C) Quantitative reverse transcription PCR reveals that DNMT inhibition does not appear to globally enhance transcription, but specifically regulates Bdnf levels in the dentate gyrus (F3−23 = 3.263, p = 0.04) (post-hoc analysis by Dunnett’s test between vehicle and 5azaC, *p<0.05). This effect is blocked by antagonism of NMDA receptors by AP5, while AP5 treatment alone does not affect bdnf or other transcript levels (F3−23 = 0.3418, p = 0.79 for reelin; F3−23 = 0.6404, p = 0.59 for PP1, one-way ANOVA).
1 Abel  T, Nguyen  P V, Barad  M, Deuel  T A, Kandel  E R, Bourtchouladze  R (1997). Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell, 88(5): 615–626
https://doi.org/10.1016/S0092-8674(00)81904-2 pmid: 9054501
2 Adachi  M, Autry  A E, Covington  H E 3rd, Monteggia  L M (2009). MeCP2-mediated transcription repression in the basolateral amygdala may underlie heightened anxiety in a mouse model of Rett syndrome. J Neurosci, 29(13): 4218–4227
https://doi.org/10.1523/JNEUROSCI.4225-08.2009 pmid: 19339616
3 Allsop  S A, Vander Weele  C M, Wichmann  R, Tye  K M (2014). Optogenetic insights on the relationship between anxiety-related behaviors and social deficits. Front Behav Neurosci, 8: 241
https://doi.org/10.3389/fnbeh.2014.00241 pmid: 25076878
4 Amir  R E, Van den Veyver  I B, Wan  M, Tran  C Q, Francke  U, Zoghbi  H Y (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet, 23(2): 185–188
https://doi.org/10.1038/13810 pmid: 10508514
5 Bergink  V, van Megen  H J, Westenberg  H G (2004). Glutamate and anxiety. Eur Neuropsychopharmacol, 14(3): 175–183
https://doi.org/10.1016/S0924-977X(03)00100-7 pmid: 15056476
6 Berton  O, McClung  C A, Dileone  R J, Krishnan  V, Renthal  W, Russo  S J, Graham  D, Tsankova  N M, Bolanos  C A, Rios  M, Monteggia  L M, Self  D W, Nestler  E J (2006). Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science, 311(5762): 864–868
https://doi.org/10.1126/science.1120972 pmid: 16469931
7 Bird  A (2002). DNA methylation patterns and epigenetic memory. Genes Dev, 16(1): 6–21
https://doi.org/10.1101/gad.947102 pmid: 11782440
8 Charney  D S, Deutch  A (1996). A functional neuroanatomy of anxiety and fear: implications for the pathophysiology and treatment of anxiety disorders. Crit Rev Neurobiol, 10(3-4): 419–446
https://doi.org/10.1615/CritRevNeurobiol.v10.i3-4.70 pmid: 8978989
9 Davis  S, Butcher  S P, Morris  R G (1992). The NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro. J Neurosci, 12(1): 21–34
pmid: 1345945
10 Day  J J, Kennedy  A J, Sweatt  J D (2015). DNA methylation and its implications and accessibility for neuropsychiatric therapeutics. Annu Rev Pharmacol Toxicol, 55(1): 591–611
https://doi.org/10.1146/annurev-pharmtox-010814-124527 pmid: 25340930
11 Feng  J, Zhou  Y, Campbell  S L, Le  T, Li  E, Sweatt  J D, Silva  A J, Fan  G (2010). Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci, 13(4): 423–430
https://doi.org/10.1038/nn.2514 pmid: 20228804
12 Gemelli  T, Berton  O, Nelson  E D, Perrotti  L I, Jaenisch  R, Monteggia  L M (2006). Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biol Psychiatry, 59(5): 468–476
https://doi.org/10.1016/j.biopsych.2005.07.025 pmid: 16199017
13 Hansen  R S, Wijmenga  C, Luo  P, Stanek  A M, Canfield  T K, Weemaes  C M, Gartler  S M (1999). The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci USA, 96(25): 14412–14417
https://doi.org/10.1073/pnas.96.25.14412 pmid: 10588719
14 Levenson  J M, Sweatt  J D (2006). Epigenetic mechanisms: a common theme in vertebrate and invertebrate memory formation. Cell Mol Life Sci, 63(9): 1009–1016
https://doi.org/10.1007/s00018-006-6026-6 pmid: 16596331
15 Li  X, Wei  W, Ratnu  V S, Bredy  T W (2013). On the potential role of active DNA demethylation in establishing epigenetic states associated with neural plasticity and memory. Neurobiol Learn Mem, 105: 125–132
https://doi.org/10.1016/j.nlm.2013.06.009 pmid: 23806749
16 Ma  D K, Jang  M H, Guo  J U, Kitabatake  Y, Chang  M L, Pow-Anpongkul  N, Flavell  R A, Lu  B, Ming  G L, Song  H (2009). Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science, 323(5917): 1074–1077
https://doi.org/10.1126/science.1166859 pmid: 19119186
17 Madabhushi  R, Gao  F, Pfenning  A R, Pan  L, Yamakawa  S, Seo  J, Rueda  R, Phan  T X, Yamakawa  H, Pao  P C, Stott  R T, Gjoneska  E, Nott  A, Cho  S, Kellis  M, Tsai  L H (2015). Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell, 161(7): 1592–1605
https://doi.org/10.1016/j.cell.2015.05.032 pmid: 26052046
18 Martinowich  K, Hattori  D, Wu  H, Fouse  S, He  F, Hu  Y, Fan  G, Sun  Y E (2003). DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science, 302(5646): 890–893
https://doi.org/10.1126/science.1090842 pmid: 14593184
19 Miller  C A, Sweatt  J D (2007). Covalent modification of DNA regulates memory formation. Neuron, 53(6): 857–869
https://doi.org/10.1016/j.neuron.2007.02.022 pmid: 17359920
20 Monteggia  L M, Barrot  M, Powell  C M, Berton  O, Galanis  V, Gemelli  T, Meuth  S, Nagy  A, Greene  R W, Nestler  E J (2004). Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci USA, 101(29): 10827–10832
https://doi.org/10.1073/pnas.0402141101 pmid: 15249684
21 Morris  M J, Adachi  M, Na  E S, Monteggia  L M (2014). Selective role for DNMT3a in learning and memory. Neurobiol Learn Mem, 115: 30–37
https://doi.org/10.1016/j.nlm.2014.06.005 pmid: 24937014
22 Morris  M J, Monteggia  L M (2014). Role of DNA methylation and the DNA methyltransferases in learning and memory. Dialogues Clin Neurosci, 16(3): 359–371
pmid: 25364286
23 Na  E S, Morris  M J, Nelson  E D, Monteggia  L M (2014). GABAA receptor antagonism ameliorates behavioral and synaptic impairments associated with MeCP2 overexpression. Neuropsychopharmacology, 39(8): 1946–1954
https://doi.org/10.1038/npp.2014.43 pmid: 24549116
24 Na  E S, Nelson  E D, Adachi  M, Autry  A E, Mahgoub  M A, Kavalali  E T, Monteggia  L M (2012). A mouse model for MeCP2 duplication syndrome: MeCP2 overexpression impairs learning and memory and synaptic transmission. J Neurosci, 32(9): 3109–3117
https://doi.org/10.1523/JNEUROSCI.6000-11.2012 pmid: 22378884
25 Nelson  E D, Kavalali  E T, Monteggia  L M (2008). Activity-dependent suppression of miniature neurotransmission through the regulation of DNA methylation. J Neurosci, 28(2): 395–406
https://doi.org/10.1523/JNEUROSCI.3796-07.2008 pmid: 18184782
26 Nelson  E D, Monteggia  L M (2011). Epigenetics in the mature mammalian brain: effects on behavior and synaptic transmission. Neurobiol Learn Mem, 96(1): 53–60
https://doi.org/10.1016/j.nlm.2011.02.015 pmid: 21396474
27 Papaleo  F, Silverman  J L, Aney  J, Tian  Q, Barkan  C L, Chadman  K K, Crawley  J N (2011). Working memory deficits, increased anxiety-like traits, and seizure susceptibility in BDNF overexpressing mice. Learn Mem, 18(8): 534–544
https://doi.org/10.1101/lm.2213711 pmid: 21791566
28 Peña  C J, Bagot  R C, Labonté  B, Nestler  E J (2014). Epigenetic signaling in psychiatric disorders. J Mol Biol, 426(20): 3389–3412
https://doi.org/10.1016/j.jmb.2014.03.016 pmid: 24709417
29 Phillips  R G, LeDoux  J E (1992). Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci, 106(2): 274–285
https://doi.org/10.1037/0735-7044.106.2.274 pmid: 1590953
30 Rudenko  A, Tsai  L H (2014). Epigenetic regulation in memory and cognitive disorders. Neuroscience, 264: 51–63
https://doi.org/10.1016/j.neuroscience.2012.12.034 pmid: 23291453
31 Sui  L, Wang  Y, Ju  L H, Chen  M (2012). Epigenetic regulation of reelin and brain-derived neurotrophic factor genes in long-term potentiation in rat medial prefrontal cortex. Neurobiol Learn Mem, 97(4): 425–440
https://doi.org/10.1016/j.nlm.2012.03.007 pmid: 22469747
32 Turner  G, Webb  T, Wake  S, Robinson  H (1996). Prevalence of fragile X syndrome. Am J Med Genet, 64(1): 196–197
https://doi.org/10.1002/(SICI)1096-8628(19960712)64:1<196::AID-AJMG35>3.0.CO;2-G pmid: 8826475
33 Xiao  Z, Jaiswal  M K, Deng  P Y, Matsui  T, Shin  H S, Porter  J E, Lei  S (2012). Requirement of phospholipase C and protein kinase C in cholecystokinin-mediated facilitation of NMDA channel function and anxiety-like behavior. Hippocampus, 22(6): 1438–1450
https://doi.org/10.1002/hipo.20984 pmid: 22072552
34 Zovkic  I B, Paulukaitis  B S, Day  J J, Etikala  D M, Sweatt  J D (2014). Histone H2A.Z subunit exchange controls consolidation of recent and remote memory. Nature, 515(7528): 582–586
https://doi.org/10.1038/nature13707 pmid: 25219850
[1] Rachel Babij,Natalia De Marco Garcia. Neuronal activity controls the development of interneurons in the somatosensory cortex[J]. Front. Biol., 2016, 11(6): 459-470.
[2] Ying-Tao Zhao,Maria Fasolino,Zhaolan Zhou. Locus- and cell type-specific epigenetic switching during cellular differentiation in mammals[J]. Front. Biol., 2016, 11(4): 311-322.
[3] Charlotte M. Ermine,Jordan L. Wright,Clare L. Parish,Davor Stanic,Lachlan H. Thompson. Combined immunohistochemical and retrograde tracing reveals little evidence of innervation of the rat dentate gyrus by midbrain dopamine neurons[J]. Front. Biol., 2016, 11(3): 246-255.
[4] Paul J. Lucassen,Charlotte A. Oomen. Stress, hippocampal neurogenesis and cognition: functional correlations[J]. Front. Biol., 2016, 11(3): 182-192.
[5] Martha Hvoslef-Eide,Charlotte A. Oomen. Adult neurogenesis and pattern separation in rodents: A critical evaluation of data, tasks and interpretation[J]. Front. Biol., 2016, 11(3): 168-181.
[6] Stacy Nguy,Maria Victoria Tejada-Simon. Phenotype analysis and rescue on female FVB.129-Fmr1 knockout mice[J]. Front. Biol., 2016, 11(1): 43-52.
[7] Joshua D. TOMPKINS,Arthur D. RIGGS. An epigenetic perspective on the failing heart and pluripotent-derived-cardiomyocytes for cell replacement therapy[J]. Front. Biol., 2015, 10(1): 11-27.
[8] Aaron MCGEE,Guohui LI,Zhongming LU,Shenfeng QIU. Convergent synaptic and circuit substrates underlying autism genetic risks[J]. Front. Biol., 2014, 9(2): 137-150.
[9] Amir ABDOLI. Toxoplasma, testosterone, and behavior manipulation: the role of parasite strain, host variations, and intensity of infection[J]. Front. Biol., 2014, 9(2): 151-160.
[10] Qichao WANG, Xianmin ZHU, Yun FENG, Zhigang XUE, Guoping FAN. Single-cell genomics: An overview[J]. Front Biol, 2013, 8(6): 569-576.
[11] Simon M.G. BRAUN, Sebastian JESSBERGER. Adult neurogenesis in the mammalian brain[J]. Front Biol, 2013, 8(3): 295-304.
[12] Dengke K. MA, Niels RINGSTAD. The neurobiology of sensing respiratory gases for the control of animal behavior[J]. Front Biol, 2012, 7(3): 246-253.
[13] Awoyemi A. AWOFALA. Application of microarray technology in Drosophila ethanol behavioral research[J]. Front Biol, 2012, 7(1): 65-72.
[14] Tong LUO, Wei-Hua WU, Bo-Shiun CHEN. NMDA receptor signaling: death or survival?[J]. Front Biol, 2011, 6(6): 468-476.
[15] Xiangpeng DAI, Xiaoyang ZHAO, Hai TANG, Jie HAO, Jean-Paul RENARD, Qi ZHOU, Alice JOUNEAU, Liu WANG. Cloning efficiency following ES cell nuclear transfer is influenced by the methylation state of the donor nucleus altered by mutation of DNA methyltransferase 3a and 3b[J]. Front Biol, 2010, 5(5): 439-444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed