Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (6) : 528-536    https://doi.org/10.1007/s11515-015-1377-8
RESEARCH ARTICLE
Antimicrobial properties of endophytic actinomycetes isolated from Combretum latifolium Blume, a medicinal shrub from Western Ghats of India
H. C. Yashavantha Rao1,Devaraju Rakshith1,Sreedharamurthy Satish1,2,*()
1. Microbial Drugs Laboratory, Department of Studies in Microbiology, Manasagangotri, University of Mysore, Mysore-570006, Karnataka, India
2. Department of Plant Pathology, University of Georgia, Athens 30602, USA
 Download: PDF(570 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Endophytic actinomycetes were isolated from Combretum latifolium Blume (Combretaceae), Western Ghats of Southern India and identified by its characteristic culture morphology and molecular analysis of 16S rRNA gene sequences. In this survey of endophytic actinomycetes, a total of 117 isolates representing 9 different genera of endophytic actinomycetes were obtained using four different isolation media and several of them seemed to be novel taxa. Streptomyces genera (35%) was the most frequently isolated strains, followed by Nocordiopsis (17%) and Micromonospora (13%). ISP-4 medium recovered more isolates (47%) when compared to rest of the media used. Preliminary antibacterial activity of the isolates was carried out by confrontation test. Ethyl acetate fraction of selected isolates in disc diffusion assay exhibited broad spectrum antimicrobial activity against test human pathogens. All Streptomyces spp. strains displayed significant antimicrobial activity against test pathogens. Strain CLA-66 and CLA-68 which are Nocordipsis spp. inhibited both bacterial and fungal pathogens where as other isolates inhibited atleast three test human pathogens in disc diffusion assay. Antimicrobial screening of endophytic actinomycetes from this host may represent a unique potential niche for antimicrobial compounds of industrial and pharmaceutical applications. This work is the first comprehensive report on incidence of potential endophytic actinomycetes inhabiting C. latifolium Blume.

Keywords endophytic actinomycetes      Combretum latifolium Blume      Streptomyces      antimicrobial activity     
Corresponding Author(s): Sreedharamurthy Satish   
Just Accepted Date: 24 November 2015   Online First Date: 11 December 2015    Issue Date: 26 January 2016
 Cite this article:   
H. C. Yashavantha Rao,Devaraju Rakshith,Sreedharamurthy Satish. Antimicrobial properties of endophytic actinomycetes isolated from Combretum latifolium Blume, a medicinal shrub from Western Ghats of India[J]. Front. Biol., 2015, 10(6): 528-536.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1377-8
https://academic.hep.com.cn/fib/EN/Y2015/V10/I6/528
Fig.1  Recovery of endophytic actinomycetes from different tissues of C. latifolium Blume.
Fig.2  Growth rate of endophytic actinomycetes isolates from C. latifolium Blume.
Isolation media* Number of isolated isolates Number of potential isolates % of bioactive isolates
ISP-2 27 16 59.25
ISP-4 56 41 73.21
CA 13 5 38.46
HV 21 7 33.33
Total 117 69 58.97
Tab.1  Effect of isolation media on recovery of endophytic bioactive isolates
Fig.3  Distribution of endophytic actinomycetes to different actinomycetes group sampled from C. latifolium Blume.
Fig.4  Preliminary screening for antibacterial activity of endophytic actinomycetes against human pathogens by confrontation test.
Fig.5  Colony morphology of endophytic Streptomyces sp. on ISP-4 agar after 14 days.
Family Genus Total numberof isolates Number of bioactive isolates against test pathogens
SA BC EC ST PA
Micrococcaceae Kocuria 1 0 1 0 0 0
Glycomycetaceae Glycomyces 3 0 1 0 0 0
Nocardiaceae Nocordiopsis 21 13 15 09 12 06
Streptomycetaceae Streptomyces 42 31 38 27 33 28
Streptosporangiaceae Microbispora 2 1 1 0 0 0
Micromonosporaceae Micromonospora 16 3 4 2 2 1
Pseudonocardiaceae Pseudonocardia 04 1 2 0 0 0
Spirillospora 03 0 1 0 0 0
Thermomonosporaceae Actinomadura 08 0 1 2 0 2
Unidentified 17 4 8 4 5 4
Total 117 53 72 44 52 41
Tab.2  Genus distribution of endophytic actinomycetes isolates from C. latifolium Blume and their primary screening for antibacterial activity by confrontation test
Strain code Genus Inhibition zones in diameter (mm)
Test human pathogens
S. aureus(MTCC 7443) L. monocyto-genes(MTCC 839) P. aeruginosa(MTCC 7903) S. typhi(MTCC 733) C. albicans(MTCC 183) M. canis(MTCC 2820)
CLA01 Streptomyces sp. +++ +++ +++ +++ ++ +++
CLA34 Actinomadura sp. - ++ +++ + - -
CLA56 Micromonospora sp. ++ ++ ++ + ++ ++
CLA66 Nocordiopsis sp. ++ ++ +++ ++ ++ -
CLA68 Nocordiopsis sp. ++ +++ ++ +++ +++ ++
CLA12 Streptomyces sp. +++ +++ +++ +++ +++ +++
CLA14 Glycomyces sp. ++ ++ +++ ++ - ++
CLA34 Streptomyces sp. ++ +++ +++ +++ +++ ++
CLA56 Microbispora sp. + ++ + ++ - ++
CLA72 Streptomyces sp. +++ ++ +++ +++ +++ +++
CLA98 Unidentified +++ ++ +++ +++ ++ +++
CLA-104 Unidentified +++ +++ +++ ++ +++ ++
Tab.3  Determination of activity of ethyl acetate extract of selected endophytic actinomycetes by disc diffusion assay
31a Rao H C Y, Satish S (2015). Genomic and chromatographic approach for the discovery of polyketide antimicrobial metabolites from an endophytic Phomopsis liquidambaris CBR-18. Front Life Sci, 8: 200–207
31b Rao H C Y, Santosh P, Rakshith D, Satish S (2015). Molecular characterization of an endophytic Phomopsis liquidambaris CBR-15 from Cryptolepis buchanani Roem. and impact of culture media on biosynthesis of antimicrobial metabolites. 3Biotech, 5: 165–173
21a Kieser T, Bibb M J, Buttner M J, Chater K F, Hopwood D A (2000). Practical Streptomyces Genetics. Norwich, UK: The John Innes Foundation
1 Akshatha  V J, Nalini  M S, D’Souza  C, Prakash  H S (2014). Streptomycete endophytes from anti-diabetic medicinal plants of the Western Ghats inhibit alpha-amylase and promote glucose uptake. Lett Appl Microbiol, 58(5): 433–439
https://doi.org/10.1111/lam.12209 pmid: 24330131
2 Anibou  M, Zyadi  A, Chait  A, Benharref  A, Ouhdouch  Y (2008). Actinomycetes from Moroccan habitats: isolation and screening for cytotoxic activities. World J Microbiol Biotechnol, 24(10): 2019–2025
https://doi.org/10.1007/s11274-008-9705-7
3 Baltz  R H (2010). Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J Ind Microbiol Biotechnol, 37(8): 759–772
https://doi.org/10.1007/s10295-010-0730-9 pmid: 20467781
4 Barakate  M, Ouhdouch  Y, Oufdou  K, Beaulieu  C (2002). Characterization of rhizospheric soil Streptomycetes from Moroccan habitats and their antimicrobial activities. World J Microbiol Biotechnol, 18(1): 49–54
https://doi.org/10.1023/A:1013966407890
5 Bascom-Slack  C A, Ma  C, Moore  E, Babbs  B, Fenn  K, Greene  J S, Hann  B D, Keehner  J, Kelley-Swift  E G, Kembaiyan  V, Lee  S J, Li  P, Light  D Y, Lin  E H, Schorn  M A, Vekhter  D, Boulanger  L A, Hess  W M, Vargas  P N, Strobel  G A, Strobel  S A (2009). Multiple, novel biologically active endophytic actinomycetes isolated from upper Amazonian rainforests. Microb Ecol, 58(2): 374–383
https://doi.org/10.1007/s00248-009-9494-z pmid: 19252940
6 Bensultana  A, Ouhdouch  Y, Hassani  L, Mezrioui  N, Rafouk  L (2010). Isolation and characterization of wastewater sand filter actinomycetes. World J Microbiol Biotechnol, 26(3): 481–487
https://doi.org/10.1007/s11274-009-0194-0
7 Bérdy  J (2005). Bioactive microbial metabolites. J Antibiot (Tokyo), 58(1): 1–26
https://doi.org/10.1038/ja.2005.1 pmid: 15813176
8 Debnath  B, Debnath  A, Shilsharma  A, Paul  C (2014). Ethnomedicinal knowledge of Mog and Reang communities of south district of Tripura, India. Indian J Adv Plant Res, 1(5): 49–54
9 Demain  A L (1995). Why do microorganisms produce antimicrobials? In: Hunter PA, Darby GK, Russell NJ (ed.): Fifty years of antimicrobials: past, prospective and future trends- Symposium 53. Society of General Microbiology, Cambridge University Press: 205–228.
10 Dharmaraj  S (2011). Antagonistic potential of marine actinobacteria against fish and shellfish pathogens. Turk J Biol, 35: 303–311
11 El-Tarabily  K A, Soliman  M H, Nassar  A H, Al-Hassani  H A, Sivasithamparam  K, McKenna  F, Hardy  G E (2000). Biological control of Sclerotinia minorusing a chitinolytic bacterium and actinomycetes. Plant Pathol, 49(5): 573–583
https://doi.org/10.1046/j.1365-3059.2000.00494.x
12 Fiedler  H P, Bruntner  C, Riedlinger  J, Bull  A T, Knutsen  G, Goodfellow  M, Jones  A, Maldonado  L, Pathom-aree  W, Beil  W, Schneider  K, Keller  S, Sussmuth  R D (2008). Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora.  J Antibiot (Tokyo), 61(3): 158–163
https://doi.org/10.1038/ja.2008.125 pmid: 18503194
13 Fischbach  M A, Walsh  C T (2009). Antibiotics for emerging pathogens. Science, 325(5944): 1089–1093
https://doi.org/10.1126/science.1176667 pmid: 19713519
14 Fourati-Ben Fguira  L, Fotso  S, Ben Ameur-Mehdi  R, Mellouli  L, Laatsch  H (2005). Purification and structure elucidation of antifungal and antibacterial activities of newly isolated Streptomyces sp. strain US80. Res Microbiol, 156(3): 341–347
https://doi.org/10.1016/j.resmic.2004.10.006 pmid: 15808937
15 Gangwar  M, Dogra  S, Gupta  U P, Kharwar  R N (2014). Diversity and biopotential of endophytic actinomycetes from three medicinal plants in India. Afr J Microbiol Res, 8(2): 184–191
https://doi.org/10.5897/AJMR2012.2452
16 Highley  T L, Ricard  J (1988). Antagonism of Trichoderma spp. and Gliocladium virens against wood decay fungi. Mater Organismen, 23: 157–169
17 Hou  B C, Wang  E T, Li  Y, Jia  R Z, Chen  W F, Man  C X, Sui  X H, Chen  W X (2009). Rhizobial resource associated with epidemic legumes in Tibet. Microb Ecol, 57(1): 69–81
https://doi.org/10.1007/s00248-008-9397-4 pmid: 18568286
18 Jensen  P R, Dwight  R, Fenical  W (1991). Distribution of actinomycetes in near-shore tropical marine sediments. Appl Environ Microbiol, 57(4): 1102–1108
pmid: 2059035
19 Ji  H F, Li  X J, Zhang  H Y (2009). Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia?  EMBO Rep, 10(3): 194–200
https://doi.org/10.1038/embor.2009.12 pmid: 19229284
20 Johannes  H, Gabriele  B, Barbara  S (2006). Isolation procedures for endophytic microorganisms. Berlin, Springer. 299–305
21 Lam  K S (2006). Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol, 9(3): 245–251
https://doi.org/10.1016/j.mib.2006.03.004 pmid: 16675289
22 Li  J, Zhao  G Z, Chen  H H, Wang  H B, Qin  S, Zhu  W Y, Xu  L H, Jiang  C L, Li  W J (2008). Antitumour and antimicrobial activities of endophytic streptomycetes from pharmaceutical plants in rainforest. Lett Appl Microbiol, 47(6): 574–580
https://doi.org/10.1111/j.1472-765X.2008.02470.x pmid: 19120929
23 Li  J, Zhao  G Z, Huang  H Y, Qin  S, Zhu  W Y, Zhao  L X, Xu  L H, Zhang  S, Li  W J, Strobel  G, Strobel  G (2012). Isolation and characterization of culturable endophytic actinobacteria associated with Artemisia annua L. Antonie van Leeuwenhoek, 101(3): 515–527
https://doi.org/10.1007/s10482-011-9661-3 pmid: 22038129
24 Liu  H, Xiao  L, Wei  J, Schmitz  J C, Liu  M, Wang  C, Cheng  L, Wu  N, Chen  L, Zhang  Y, Lin  X (2013). Identification of Streptomyces sp. nov. WH26 producing cytotoxic compounds isolated from marine solar saltern in China. World J Microbiol Biotechnol, 29(7): 1271–1278
https://doi.org/10.1007/s11274-013-1290-8 pmid: 23420111
25 Loqman  S, Barka  E A, Clement  C, Ouhdouch  Y (2009). Antagonistic actinomycetes from Moroccan soil to control the grapevine gray mold. World J Microbiol Biotechnol, 25(1): 81–91
https://doi.org/10.1007/s11274-008-9864-6
26 Miyadoh  S, Hamada  M, Hotta  K, Kudo  T, Seino  A, Vobis  G (1997). Atlas of Actinomycetes, The Society for Actinomycetes, Japan. Asakura Publishing Co. Ltd. Tokyo, Japan
27 Nagpure  A, Choudhary  B, Kumar  S, Gupta  R K (2014). Isolation and characterization of chitinolytic Streptomyces sp. MT7 and its antagonism towards wood-rotting fungi. Ann Microbiol, 64(2): 531–541
https://doi.org/10.1007/s13213-013-0686-x
28 Nolan  R D, Cross  T (1988). Isolation and screening of actinomycetes. In: Goodfellow M, Williams ST, Mordarski MM (ed): Actinomycetes in biotechnology. Academic Press, ISBN 0–12–289673–4, London.
29 Qin  S, Li  J, Chen  H H, Zhao  G Z, Zhu  W Y, Jiang  C L, Xu  L H, Li  W J (2009). Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol, 75(19): 6176–6186
https://doi.org/10.1128/AEM.01034-09 pmid: 19648362
30 Qin  S, Xing  K, Jiang  J H, Xu  L H, Li  W J (2011). Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol, 89(3): 457–473
https://doi.org/10.1007/s00253-010-2923-6 pmid: 20941490
31 Ramesh  S, Mathivanan  N (2009). Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J Microbiol Biotechnol, 25(12): 2103–2111
https://doi.org/10.1007/s11274-009-0113-4
32 Schulz  D, Nachtigall  J, Riedlinger  J, Schneider  K, Poralla  K, Imhoff  J F, Beil  W, Nicholson  G, Fiedler  H P, Süssmuth  R D (2009). Piceamycin and its N-acetylcysteine adduct is produced by Streptomyces sp. GB 4-2. J Antibiot (Tokyo), 62(9): 513–518
https://doi.org/10.1038/ja.2009.64 pmid: 19609293
33 Sheil  D (1999). Tropical forest diversity, environmental change and species augmentation: after the intermediate disturbance hypothesis. J Veg Sci, 10(6): 851–860
https://doi.org/10.2307/3237310
34 Shirling  E B, Gottlieb  D (1966). Methods for characterization of Streptomyces species. Int J Syst Bacteriol, 16(3): 313–340
https://doi.org/10.1099/00207713-16-3-313
35 Shrisha  D L, Raveesha  K A, Nagabhushan (2011). Bioprospecting of selected medicinal plants for antibacterial activity against some pathogenic bacteria. J Medicinal Plants Res, 5(17): 4087–4093
36 Shutsrirung  A, Chromkaew  Y, Aree  W P, Choonluchanon  S (2013). Diversity of endophytic actinomycetes in mandarin grown in northern Thailand, their phytohormone production potential and plant growth promoting activity. Soil Sci Plant Nutr, 59(3): 322–330
https://doi.org/10.1080/00380768.2013.776935
37 Singh  J M, Padmavathy  S (2015). Nocardiopsis sp. 5 Endophytic to Tulsi Leaves- Isolation and Antimicrobial Activity. Br Microbiol Res J, 5(3): 194–202
https://doi.org/10.9734/BMRJ/2015/13523
38 Strobel  G, Daisy  B, Castillo  U, Harper  J (2004). Natural products from endophytic microorganisms. J Nat Prod, 67(2): 257–268
https://doi.org/10.1021/np030397v pmid: 14987067
39 Sujatha  P, Bapi Raju  K V V S N, Ramana  T (2005). Studies on a new marine streptomycete BT-408 producing polyketide antibiotic SBR-22 effective against methicillin resistant Staphylococcus aureus.  Microbiol Res, 160(2): 119–126
https://doi.org/10.1016/j.micres.2004.10.006 pmid: 15881828
40 Suthari  S, Sreeramalu  N, Omkar  K, Raju  V S (2014). The climbing plants of northern telangana in india and their ethnomedicinal and economic uses. Indian J Plant Sci, 2319–3824
41 Takahashi  Y, Omura  S (2003). Isolation of new actinomycete strains for the screening of new bioactive compounds. J Gen Appl Microbiol, 49(3): 141–154
https://doi.org/10.2323/jgam.49.141 pmid: 12949697
42 Verma  S K, Gond  S K, Mishra  A, Sharma  V K, Kumar  J, Singh  D K, Kumar  A, Goutam  J, Kharwar  R N (2013). Impact of environmental variables on the isolation, diversity and antibacterial activity of endophytic fungal communities from Madhuca indica Gmel. at different locations in India. Ann Microbiol
https://doi.org/10.1007/s13213-013-0707-9
43 Verma  V C, Gond  S K, Kumar  A, Mishra  A, Kharwar  R N, Gange  A C (2009). Endophytic actinomycetes from Azadirachta indica A. Juss.: isolation, diversity, and anti-microbial activity. Microb Ecol, 57(4): 749–756
https://doi.org/10.1007/s00248-008-9450-3 pmid: 18853084
44 Yan  X C (1992). Isolation and identification of actinomycete. Science Beijing, pp 45–68
45 You  J L, Cao  L X, Liu  G F, Zhou  S N, Tan  H M, Lin  Y C (2005). Isolation and characterization of actinomycetes antagonistic to pathogenic Vibrio spp. from near shore marine sediments. World J Microbiol Biotechnol, 21(5): 679–682
https://doi.org/10.1007/s11274-004-3851-3
46 Yu  H, Zhang  L, Li  L, Zheng  C, Guo  L, Li  W, Sun  P, Qin  L (2010). Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res, 165(6): 437–449
https://doi.org/10.1016/j.micres.2009.11.009 pmid: 20116229
[1] Supplementary Material Download
[1] Lu HUANG, Xiaojie CHENG, Chengsheng LIU, Ke XING, Jing ZHANG, Gangzheng SUN, Xiaoyan LI, Xiguang CHEN. Preparation, characterization, and antibacterial activity of oleic acid-grafted chitosan oligosaccharide nanoparticles[J]. Front Biol Chin, 2009, 4(3): 321-327.
[2] YANG Yang, ZHU Shunying, CAI Xiaoqiang, TANG Lifei, ZOU Guolin, LIU Deqing, HUANG Jinghua. Chemical composition and antimicrobial activity of the essential oil of (Maxim.) Hand.-Mazz[J]. Front. Biol., 2008, 3(4): 402-407.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed