Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2016, Vol. 11 Issue (2) : 96-108    https://doi.org/10.1007/s11515-016-1395-1
REVIEW
Drosophila seizure disorders: genetic suppression of seizure susceptibility
Arunesh Saras1,Laura E. Simon1,Harlan J. Brawer1,Richard E. Price2,Mark A. Tanouye1,2,3,*()
1. Division of Organismal Biology, Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
2. Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
3. Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
 Download: PDF(541 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Various Drosophila models of human disease have recently received increased interest. The main goal is to uncover the fundamental biological basis for human pathology taking advantage of the power of Drosophila genetics. This review examines a set of Drosophila seizure-sensitive mutations that model human seizure disorders, especially epilepsy. Also described is a novel set of mutations that act as seizure-suppressors that ameliorate epilepsy phenotypes in double mutant combinations.

Keywords Drosophila      epilepsy      seizure disorders      sodium channel      seizure-suppressor genes     
Corresponding Author(s): Mark A. Tanouye   
Just Accepted Date: 06 April 2016   Online First Date: 25 April 2016    Issue Date: 17 May 2016
 Cite this article:   
Arunesh Saras,Laura E. Simon,Harlan J. Brawer, et al. Drosophila seizure disorders: genetic suppression of seizure susceptibility[J]. Front. Biol., 2016, 11(2): 96-108.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-016-1395-1
https://academic.hep.com.cn/fib/EN/Y2016/V11/I2/96
Fig.1  legend. Drosophila cacTS2 electrophysiology. (A) Electrical recording from a cacTS2 DLM fiber showing that seizure-like activity is not evoked by stimulation at 30V HFS, near the wild-type range. (B) Seizure-like activity is observed in cacTS2 at a larger stimulus voltage of 50V HFS, indicating that the mutant is seizure-resistant. (C) Spontaneous seizure-like activity observed in cacTS2 when the temperature is increased to 38°, indicating that the mutant is seizure-sensitive at restrictive temperatures. Recording shows a representative example of three spontaneous seizure-like discharges. Enlargement (lower trace) shows one of the spontaneous discharges at a higher sweep speed. (D) Recording from a sda DLM fiber showing seizure-like activity evoked by a 10V HFS stimulus. (E) Recording from a cacTS2; sda DLM fiber showing that a 15V HFS stimulation does not evoke seizure-like activity at this voltage; the double mutant shows a higher threshold indicating seizure-suppression by cacTS2. (F) Recording from a cacTS2; sda DLM fiber showing that seizure-like activity is evoked at 20V HFS. Horizontal calibration: 300 msec for C (upper trace); 150 msec. for A-B, C (inset), D-F; Vertical calibration: 20mV.
Seizure-sensitive mutant Threshold(V HFS) Gene product Reference
paralyzed (parabss1, parabss2) 3.2, 3.7 Na+ channel 1
paralyzed (paraGEFS+) N/A Na+ channel 2
paralyzed (paraDS) N/A Na+ channel 3
easily shocked (easPC80) 3.4 Ethanolamine kinase 4
slamdance (sda) 6.7 Aminopeptidase N 5
bang sensitive (bas1, bas2) 7.6, 3.8 Unknown 6
prickle (pksple) N/A LIM domain protein 7
technical knockout (tko25t) 9.9 Mitochondrial riboprotein 8
kazachoc (kccDHS1) 17.0 K+, Cl- cotransporter 9
couch potato (cpoEG1) 11.1 RNA binding protein 10
knockdown (kdn) 20.2 Mitochondrial citrate synthase 11
stress-sensitive (sesB) N/A Mitochondrial ATP translocase 12
Focal adhesion kinase (Fak56CG1) N/A Protein tyrosine kinase 13
shibire (shits1) N/A Dynamin 14, 15, 16
cacophony (cacTS2, cacNT27) N/A Ca2+ channel 17, 18, 19
jitterbug (jbug) 10.5 Unknown
rock-n-roll (rnr) N/A Unknown
Tab.1  Drosophila seizure-sensitive mutants and their gene products
Human gene Protein Epilepsy Fly mutation Reference
Homologous genes
?SCN1A Na+ channel Generalized epilepsy febrile seizure plus parabss1,paraGEFS+, paraDS 1-5
?Prickle1 Planar cell polarity regulator Progressive myoclonus epilepsy prickle 6-7
?SLC12A5 (KCC2) K+Cl- co-transporter Epilepsy of infancy with migrating focal seizures kcc 8-9
?CACNA1A Ca+ channel Childhood spike-wave absence epilepsy cacTS2 10-13
Similar gene functions
?MTTK Mitochondrial tRNA Myoclonic epilepsy ragged red fiber disease tko25t, sesB, kdn 15-17
Tab.2  Human epilepsy genes causing seizure phenotypes in homologous or similar fly genes
Seizure-suppressor mutant Gene product Reference
paralyzed (paraST76, paraJS1) Na channel 1, 2
male lethal (mlenapts) Na channel regulator 1
shakingB (shakB2, (shakBJS) Gap junction channel 2, 3
Shaker (ShKS133) K channel 1
escargot (esgEP684 + 4 alleles) Zn-finger transcription factor 4
snail (UAS-sna#61) Zn-finger transcription factor 4
kazal-domain protein-1 (kdp1) Kazal-type serine protease inhibitor 4
kazal-domain protein-2 (kdp2) Kazal-type serine protease 4
meiosis-P26 (mei-P26EG16, mei-P261) Ring finger B-box coiled-coil-NHL protein 5
suppressor of eas7 (su(eas7)) Unknown (Glasscock et al., 2005) 5
suppressor of eas13 (su(eas13)) Unknown (Glasscock et al., 2005) 5
topoisomerase I (top1JS + 3 alleles) DNA topoisomerase type I 6
fat facets (fafB3, fafBX3, fafBX4) Deubiquitinating enzyme 7
gilgamesh (gish04895) Casein kinase 8
shibire (shits1, shits2) Dynamin 9
cacophony (cacTS2) Ca2+ channel 10
Tab.3  Seizure-suppressor mutants and their gene products
Fig.2  A model for seizure suppression in Drosophila. This model consists of three presynaptic input circuits that act to trigger seizures (labeled Wt, Bs, and Su). These inputs drive a “trigger circuit” that is capable of delivering seizures throughout the Drosophila central nervous system via an “output circuit.” It is the threshold of the trigger circuit that determines the seizure threshold for each individual fly. Although the input circuits are given separate names, we have found no qualitative features that distinguish them. In a normal wild type fly, stimulation of two input (say, Bs and Wt) with an HFS electrical stimulus wavetrain triggers a seizure. Synaptic potentials from Bs and Wt summate temporally and spatially in the trigger circuit to generate the seizure. In a BS mutant fly, it is much easier to trigger a seizure and stimulation of only the Bs input is sufficient to bring the trigger circuit to threshold. Many suppressor mutants are also seizure resistant; it is more difficult to trigger the seizure, and necessary to drive all three inputs (Bs, Wt, and Su). In many BS; suppressor double mutant genotypes, seizure threshold has been restored to near the wild type level and a seizure is triggered by stimulating two inputs (say, Bs and Wt). We are presuming that larger stimulation voltages drive greater numbers of input neurons since single cell excitability appears to remain unchanged across different wild type and mutant strains (Kuebler et al., 2001).
1a Barreto E, Cressman J R (2011). Ion concentration dynamics as a mechanism for neuronal bursting. J Biol Phys, 37(3): 361–373
1 Bassuk A G, Wallace R H, Buhr A, Buller A R, Afawi Z, Shimojo M, Miyata S, Chen S, Gonzalez-Alegre P, Griesbach H L, Wu S, Nashelsky M, Vladar E K, Antic D, Ferguson P J, Cirak S, Voit T, Scott M P, Axelrod J D, Gurnett C, Daoud A S, Kivity S, Neufeld M Y, Mazarib A, Straussberg R, Walid S, Korczyn A D, Slusarski D C, Berkovic S F, El-Shanti H I (2008). A homozygous mutation in human PRICKLE1 causes an autosomal-recessive progressive myoclonus epilepsy-ataxia syndrome. Am J Hum Genet, 83(5): 572–581
https://doi.org/10.1016/j.ajhg.2008.10.003
2 Ben-Ari Y (2002). Excitatory actions of GABA during development: the nature of the nurture. Nature, 3: 728–739
3 Ben-Ari Y, Gaiarsa J L, Tyzio R, Khazipov R (2007). GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev, 87(4): 1215–1284
https://doi.org/10.1152/physrev.00017.2006
4 Benzer S (1971). From the gene to behavior. JAMA, 218(7): 1015–1022
https://doi.org/10.1001/jama.1971.03190200047010
5 Boettger T, Rust M B, Maier H, Seidenbecher T, Schweizer M, Keating D J, Faulhaber J, Ehmke H, Pfeffer C, Scheel O, (2003). Loss of K-Cl co-transporter KCC3 causes deafness, neurodegeneration and reduced seizure threshold. EMBO J, 22(20): 5422–5434
https://doi.org/10.1093/emboj/cdg519
6 Bullock T H, Horridge G A (1965). “Structure and Function in the Nervous System of Invertebrates”, 2 vol. San Francisco and London: W H Freeman A Comp Ltd, XXVIII, 1722pp
7 Carlson S D, Juang J L, Hilgers S L, Garment M B (2000). Blood barriers of the insect. Annu Rev Entomol, 45(1): 151–174
https://doi.org/10.1146/annurev.ento.45.1.151
8 Catterall W A (2014). Sodium channels, inherited epilepsy, and antiepileptic drugs. Annu Rev Pharmacol Toxicol, 54(1): 317–338
https://doi.org/10.1146/annurev-pharmtox-011112-140232
9 Catterall W A, Goldin A L, Waxman S G (2003). International Union of Pharmacology, XXXIX Compendium of voltage-gated ion channels: sodium channels. Pharmacol Rev, 55(4): 575–578
https://doi.org/10.1124/pr.55.4.7
10 Champoux J J (2001). DNA topoisomerases: Structure, function and mechanism. Annu Rev Biochem, 70(1): 369–413
https://doi.org/10.1146/annurev.biochem.70.1.369
11 Chung H, Sztal T, Pasricha S, Sridhar M, Batterham P, Daborn P J (2009). Characterization of Drosophila melanogaster cytochrome P450 genes. Proc Natl Acad Sci USA, 106(14): 5731–5736
https://doi.org/10.1073/pnas.0812141106
12 Chvatal A, Sykova E (2000). Glial influence on neuronal signaling. Prog Brain Res, 125: 199–216
https://doi.org/10.1016/S0079-6123(00)25011-5
13 Cressman J RJr, Ullah G, Ziburkus J, Schiff S J, Barreto E (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. single neuron dynamics. J Comput Neurosci, 26(2): 159–170
https://doi.org/10.1007/s10827-008-0132-4
14 D'Ambrosio R (2004). The role of glial membrane ion channels in seizures and epileptogenesis. Pharmacol Ther, 103(2): 95–108
https://doi.org/10.1016/j.pharmthera.2004.05.004
15 Devinsky O, Vezzani A, Najjar S, De Lanerolle N C, Rogawski M A (2013). Glia and epilepsy: excitability and inflammation. Trends Neurosci, 36(3): 174–184
https://doi.org/10.1016/j.tins.2012.11.008
16 DiMauro S, Hirano M, Kaufmann P, Tanji K, Sano M, Shungu D C, Bonilla E, DeVivo D C, (2002). Clinical features and genetics of myoclonic epilepsy with ragged red fibers. Adv Neurol, 89: 217–229
17 Dong K (2007). Insect sodium channels and insecticide resistance. Invert Neurosci, 7(1): 17–30
https://doi.org/10.1007/s10158-006-0036-9
18 Engel J E, Wu C F (1994). Altered mechanoreceptor response in Drosophila bang-sensitive mutants. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 175(3): 267–278
https://doi.org/10.1007/BF00192986
19 Fahmy O G, Fahmy M J (1960). Cytogenetic analysis of the action of carcinogens and tumor inhibitors in Drosophila melanogaster. Genetics, 45: 419–438
20 Feng G, Deak P, Chopra M, Hall L M (1995). Cloning and functional analysis of TipE, a novel membrane protein that enhances Drosophila para sodium channel function. Cell, 82(6): 1001–1011
https://doi.org/10.1016/0092-8674(95)90279-1
21 Fergestad T, Bostwick B, Ganetzky B (2006). Metabolic disruption in Drosophila bang-sensitive seizure mutants. Genetics, 173(3): 1357–1364
https://doi.org/10.1534/genetics.106.057463
22 Fertziger A P, Ranck J BJr (1970). Potassium accumulation in interstitial space during epileptiform seizures. Exp Neurol, 26(3): 571–585
https://doi.org/10.1016/0014-4886(70)90150-0
23 Florence G, Dahlem M A, Almeida A C G, Bassani J W M, Kurths J (2009). The role of extracellular potassium dynamics in the different stages of ictal bursting and spreading depression: a computational study. J Theor Biol, 258(2): 219–228
https://doi.org/10.1016/j.jtbi.2009.01.032
24 Freeman A A, Syed S, Sanyal S (2013). Modeling the genetic basis for human sleep disorders in Drosophila. Commun Integr Biol, 6(1): e22733
https://doi.org/10.4161/cib.22733
25 Ganetzky B (1984). Genetic studies of membrane excitability in Drosophila: lethal interaction between two temperature-sensitive paralytic mutations. Genetics, 108: 897–911
26 Ganetzky B, Wu C F (1982a). Indirect suppression involving behavioral mutants with altered nerve excitability in Drosophila melanogaster. Genetics, 100: 597–614
27 Ganetzky B, Wu C F (1982b). Drosophila mutants with opposing effects on nerve excitability: genetic and spatial interactions in repetitive firing. J Neurophysiol, 47: 501–514
28 Glasscock E, Singhania A, Tanouye M A (2005). The mei-p26 gene encodes an RBCC-NHL protein that regulates seizure susceptibility in Drosophila. Genetics, 170: 1677–1689
https://doi.org/10.1534/genetics.105.043174
29 Glasscock E, Tanouye M A (2005). Drosophila couch potato mutants exhibit complex neurological abnormalities including epilepsy phenotypes. Genetics, 169(4): 2137–2149
https://doi.org/10.1534/genetics.104.028357
30 Goldin A L (2001). Resurgence of sodium channel research. Annu Rev Physiol, 63(1): 871–894
https://doi.org/10.1146/annurev.physiol.63.1.871
31 Greenhill S D, Jones R S G (2010). Diverse antiepileptic drugs increase the ratio of background synaptic inhibition to excitation and decrease neuronal excitability in neurons of the rat entorhinal cortex in vitro. Neurosci, 167(2): 456–474
https://doi.org/10.1016/j.neuroscience.2010.02.021
32 Griesemer D A, Kellner C H, Beale M D, Smith G M (1997). Electroconvulsive therapy for treatment of intractable seizures: initial findings in two children. Neurology, 49(5): 1389–1392
https://doi.org/10.1212/WNL.49.5.1389
33 Grigliatti T A, Hall L, Rosenbluth R, Suzuki D T (1973). Temperature-sensitive mutations in Drosophila melanogaster. Mol Gen Genet, 120(2): 107–114
https://doi.org/10.1007/BF00267238
34 Guo M (2012). Drosophila as a model to study mitochondrial dysfunction in Parkinson’s disease. Cold Spring Harb Perspect Med, 2(11): a009944
https://doi.org/10.1101/cshperspect.a009944
35 Hariharan I K, Haber D A (2003). Yeast, flies, worms, and fish in the study of human disease. N Engl J Med, 348(24): 2457–2463
https://doi.org/10.1056/NEJMon023158
36 Hebert S C, Mount D B, Gamba G (2004). Molecular physiology of cation-coupled Cl– cotransport: the SLC12 family. Pflugers Arch, 447(5): 580–593
https://doi.org/10.1007/s00424-003-1066-3
37 Hekmat-Scafe D S, Lundy M Y, Ranga R, Tanouye M A (2006). Mutations in the K+/Cl– cotransporter gene kazachoc (kcc) increase seizure susceptibility in Drosophila. J Neurosci, 26(35): 8943–8954
https://doi.org/10.1523/JNEUROSCI.4998-05.2006
38 Hekmat-Scafe D S, Mercado A, Fajilan A A, Lee A W, Hsu R, Mount D B, Tanouye M A (2010). Seizure sensitivity is ameliorated by targeted expression of K+-Cl– cotransporter function in the mushroom body of the Drosophila brain. Genetics, 184(1): 171–183
https://doi.org/10.1534/genetics.109.109074
39 Hirth F (2010). Drosophila melanogaster in the study of human neurodegeneration. CNS Neurol Disord Drug Targets, 9(4): 504–523
https://doi.org/10.2174/187152710791556104
40 Howlett I C, Tanouye M A (2013). Seizure-sensitivity in Drosophila is ameliorated by dorsal vessel injection of the antiepileptic drug valproate. J Neurogenet, 27(4): 143–150
https://doi.org/10.3109/01677063.2013.817574
41 Hubner C A, Stein V, Hermans-Borgmeyer I, Meyer T, Ballanyi K, Jentsch T J (2001). Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition. Neuron, 30(2): 515–524
https://doi.org/10.1016/S0896-6273(01)00297-5
42 Imbrici P, Jaffe S L, Eunson L H, Davies N P, Herd C, Robertson R, Kullmann D M, Hanna M G (2004). Dysfunction of the brain calcium channel CaV2.1 in absence epilepsy and episodic ataxia. Brain, 127(12): 2682–2692
https://doi.org/10.1093/brain/awh301
43 Jacobs J, Dubeau F, Olivier A, Andermann F (2008). Pathways of seizure propagation from the temporal to the occipital lobe. Epileptic Disord, 10: 266–270
44a Kager H, Wadman W J, Somjen G G (2000). Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. J Neurophysiol, 84(1): 195–512
44 Kandel E R, Spencer W A (1961). The pyramidal cell during hippocampal seizure. Epilepsia, 2(1): 63–69
https://doi.org/10.1111/j.1528-1167.1961.tb06247.x
45 Kawasaki F, Felling R, Ordway R W (2000). A temperature-sensitive paralytic mutant defines a primary synaptic calcium channel in Drosophila. J Neurosci, 20: 4885–4889
46 Kitamoto T (2001). Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J Neurobiol, 47(2): 81–92
https://doi.org/10.1002/neu.1018
47 Koenig J H, Ikeda K (1989). Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J Neurosci, 9: 3844–3860
48 Kroll J R, Wong K G, Siddiqui F M, Tanouye M A (2015). Disruption of endocytosis with the dynamin mutant shibirets1 suppresses seizures in Drosophila. Genetics, 201(3): 1087–1102
https://doi.org/10.1534/genetics.115.177600
49 Kuebler D, Tanouye M A (2000). Modifications of seizure susceptibility in Drosophila. J Neurophysiol, 83: 998–1009
50 Kuebler D, Tanouye M A (2002). The anticonvulsant sodium valproate reduces seizure-susceptibility in mutant Drosophila. Brain Res, 958(1): 36–42
https://doi.org/10.1016/S0006-8993(02)03431-5
51 Kuebler D, Zhang H, Ren X, Tanouye M A (2001). Genetic suppression of seizure susceptibility in Drosophila. J Neurophysiol, 86: 1211–1225
52 Kuromi H, Honda A, Kidokoro Y (2004). Ca2<?A3B2 h=-0.3h?>+ influx through distinct routes controls exocytosis and endocytosis at Drosophila presynaptic terminals. Neuron, 41(1): 101–111
https://doi.org/10.1016/S0896-6273(03)00815-8
53 Kwan P, Brodie M J (2000). Early identification of refractory epilepsy. N Engl J Med, 342(5): 314–319
https://doi.org/10.1056/NEJM200002033420503
54 Landmark C J (2008). Targets for antiepileptic drugs in the synapse. Med Sci Monit, 13: RA1–RA7
55 Lee J, Wu C F (2002). Electroconvulsive seizure behavior in Drosophila: analysis of the physiological repertoire underlying a stereotyped action pattern in bang sensitive mutants. J Neurosci, 22: 11065–11079
56 Lee J, Wu C F (2006). Genetic modifications of seizure susceptibility and expression by altered excitability in Drosophila Na(+) and K(+) channel mutants. J Neurophysiol, 96(5): 2465–2478
https://doi.org/10.1152/jn.00499.2006
57 Lilly M, Carlson J (1990). smellblind: a gene required for Drosophila olfaction. Genetics, 124: 293–302
58 Lin W H, Baines R A (2014). Regulation of membrane excitability: a convergence on voltage-gated sodium conductance. Molec Neurobiol, 10.1007/s12035-014-8674-0 /fulltext.html
59 Lin W H, Wright D E, Muraro N I, Baines R A (2009). Alternative splicing in the voltage-gated sodium channel DmNav regulates activation, inactivation, and persistent current. J Neurophysiol, 102(3): 1994–2006
https://doi.org/10.1152/jn.00613.2009
60 Loscher W (2002). Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs, 16: 669–694
https://doi.org/10.2165/00023210-200216100-00003
61 Lossin C (2009). A catalog of SCN1A variants. Brain Dev, 31(2): 114–130
https://doi.org/10.1016/j.braindev.2008.07.011
62 Loughney K, Kreber R, Ganetzky B (1989). Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell, 58(6): 1143–1154
https://doi.org/10.1016/0092-8674(89)90512-6
63 Lunde M E, Lee E K, Rasmussen K G (2006). Electroconvulsive therapy in patients with epilepsy. Epilepsy Behav, 9(2): 355–359
https://doi.org/10.1016/j.yebeh.2006.06.013
64 Mayer F, Mayer N, Chinn L, Pinsonneault R L, Kroetz D, Bainton R J (2009). Evolutionary conservation of vertebrate blood-brain barrier chemoprotective mechanisms in Drosophila. J Neurosci, 29(11): 3538–3550
https://doi.org/10.1523/JNEUROSCI.5564-08.2009
65 McIntyre D C, Gilby K L (2008). Mapping seizure pathways in the temporal lobe. Epilepsia, 49(s3Suppl 3): 23–30
https://doi.org/10.1111/j.1528-1167.2008.01507.x
66 McNamara J O (1994). Cellular and molecular basis of epilepsy. J Neurosci, 14: 3413–3425
67 Mount D B, Delpire E, Gamba G, Hall A E, Poch E, Hoover R S, Herbert S C (1998). The electroneutral cation-chloride cotransporters. J Exp Biol, 201: 2091–2102
68 Mulley J C, Scheffer I E, Petrou S, Dibbens L M, Berkovic S F, Harkin L A (2005). SCN1A mutations and epilepsy. Hum Mutat, 25(6): 535–542
https://doi.org/10.1002/humu.20178
69 Noebels J L (1996). Targeting epilepsy genes. Neuron, 16(2): 241–244
https://doi.org/10.1016/S0896-6273(00)80042-2
70 O’Dowd D K, Gee J R, Smith M A (1995). Sodium current density correlates with expression of specific alternatively spliced sodium channel mRNAs in single neurons. J Neurosci, 15: 4005–4012
71 Oh C Y, Bainbridge J (2012). Lowering the seizure threshold associated with antidepressants, stimulants, antipsychotics, and others. Mental Health Clinician: November 2012-Epilepsy and seizure disorders and their treatment, Vol. 2, No. 5, pp. 127–128
72 Olson R O, Liu Z, Nomura Y, Song W, Dong K (2008). Molecular and functional characterization of voltage-gated sodium channel variants from Drosophila melanogaster. Insect Biochem Mol Biol, 38(5): 604–610
https://doi.org/10.1016/j.ibmb.2008.01.003
73 Paemka L, Mahajan V B, Ehaideb S N, Skeie J M, Tan M C, Wu S, Cox A J, Sowers L P, Gecz J, Jolly L, Ferguson P J, Darbro B, Schneider A, Scheffer I E, Carvill G L, Mefford H C, El-Shanti H, Wood S A, Manak J R, Bassuk A G (2015). Seizures are regulated by ubiquitin-specific peptidase 9 X-linked (USP9X), a de-ubiquitinase. PLoS Genet, 11(3): e1005022
https://doi.org/10.1371/journal.pgen.1005022
74 Parker L, Padilla M, Du Y, Dong K, Tanouye M A (2011). Drosophila as a model for epilepsy: bss is a gain-of-function mutation in the Para sodium channel gene that leads to seizures. Genetics, 187(2): 523–534
https://doi.org/10.1534/genetics.110.123299
75 Pavlidis P, Ramaswami M, Tanouye M A (1994). The Drosophila easily shocked gene: a mutation in a phospholipid synthetic pathway causes seizure, neuronal failure, and paralysis. Cell, 79(1): 23–33
https://doi.org/10.1016/0092-8674(94)90397-2
76 Pavlidis P, Tanouye M A (1995). Seizures and failures in the giant fiber pathway of Drosophila bang-sensitive paralytic mutants. J Neurosci, 15: 5810–5819
77 Pfeiffer B D, Truman J W, Rubin G M (2012). Using translational enhancers to increase transgene expression in Drosophila. Proc Natl Acad Sci USA, 109(17): 6626–6631
https://doi.org/10.1073/pnas.1204520109
78 Phelan P, Nakagawa M, Wilkin M B, Moffat K G, O’Kane C J, Davies J A, Bacon J P (1996). Mutations in shaking-B prevent electrical synapse formation in the Drosophila giant fiber system. J Neurosci, 16: 1101–1113
79 Phelan P, Starich T A (2001). Innexins get into the gap. BioEssays, 23(5): 388–396
https://doi.org/10.1002/bies.1057
80 Phelan P, Stebbings L A, Baines R A, Bacon J P, Davies J A, Ford C (1998). Drosophila shaking-B protein forms gap junctions in paired Xenopus oocytes. Nature, 391(6663): 181–184
https://doi.org/10.1038/34426
81 Pisani F, Oteri G, Costa C, Di Raimando G, Di Perri R (2002). Effects of psychotropic drugs on seizure threshold. Drug Saf, 25(2): 91–110
https://doi.org/10.2165/00002018-200225020-00004
82 Pittendrigh B, Reenan R, ffrench-Constant R H, Ganetzky B (1997). Point mutations in the Drosophila sodium channel gene para associated with resistance to DDT and pyrethroid insecticides. Mol Gen Genet, 356(6): 602–610
https://doi.org/10.1007/s004380050608
83 Ramaswami M, Tanouye M A (1989). Two sodium channel genes in Drosophila: implications for channel diversity. Proc Natl Acad Sci USA, 86(6): 2079–2082
https://doi.org/10.1073/pnas.86.6.2079
84 Read R (2011). Drosophila melanogaster as a model system for human brain cancers. Glia, 59(9): 1364–1376
https://doi.org/10.1002/glia.21148
85 Regenold W T, Weintraub D, Taller A (1998). Electroconvulsive therapy for epilepsy and major depression. Am J Geriatr Psychiatry, 6(2): 180–183(Top of Form)
https://doi.org/10.1097/00019442-199805000-00012
86 Rein K, Zöckler M, Mader M T, Grübel C, Heisenberg M (2002). The Drosophila standard brain. Curr Biol, 12(3): 227–231
https://doi.org/10.1016/S0960-9822(02)00656-5
87 Reiter L T, Bier E (2001). Using Drosophila melanogaster to uncover human disease gene function and potential drug target proteins. Expert Opin Ther Targets, 6: 387–399
88 Reynolds E R, Stauffer E A, Feeney L, Rojahn E, Jacobs B, McKeever C (2003). Treatment with the antiepileptic drugs phenytoin and gabapentin ameliorates seizure and paralysis of Drosophila bang-sensitive mutants. J Neurobiol, 58(4): 503–513
https://doi.org/10.1002/neu.10297
89 Rieckhof G E, Yoshihara M, Guan Z, Littleton J T (2003). Presynaptic N-type calcium channels regulate synaptic growth. J Biol Chem, 278(42): 41099–41108
https://doi.org/10.1074/jbc.M306417200
90 Royden C S, Pirrotta V, Jan L Y (1987). The tko locus, site of a behavioral mutation in D. melanogaster, codes for a protein homologous to prokaryotic ribosomal protein S12. Cell, 51(2): 165–173
https://doi.org/10.1016/0092-8674(87)90144-9
91 Rusan Z M, Kingsford O A, Tanouye M A (2014). Modeling glial contributions to seizures and epileptogenesis: cation-chloride cotransporters in Drosophila melanogaster. PLoS ONE, 9(6): e101117
https://doi.org/10.1371/journal.pone.0101117
92 Sackeim H A, Decina P, Prohovnik I, Malitz S S R, Resor S R (1987). Anticonvulsant and antidepressant properties of electroconvulsive therapy: a proposed mechanism of action. Biol Psychiatry, 18: 1301–1310
93 Salkoff L, Kelly L (1978). Temperature-induced seizure and frequency-dependent neuromuscular block in a ts mutant of Drosophila. Nature, 273(5658): 156–158
https://doi.org/10.1038/273156a0
94 Saras A, Tanouye M A (2016). Mutations of the calcium channel gene cacophony suppress seizures in Drosophila. PLoS Genet, 12(1): e1005784
https://doi.org/10.1371/journal.pgen.1005784
95 Schutte R J, Schutte S S, Algara J, Barragan E V, Gilligan J, Staber C, Savva Y A, Smith M A, Reenan R, O’Dowd D K (2014). Knock-in model of Dravet syndrome reveals a constitutive and conditional reduction in sodium current. J Neurophysiol, 112(4): 903–912
https://doi.org/10.1152/jn.00135.2014
96 Schwarz N, Hahn A, Bast T, Müller S, Löffler H, Maljevic S, Gaily E, Prehl I, Biskup S, Joensuu T, Lehesjoki A E, Neubauer B A, Lerche H, Hedrich U B (2016). Mutations in the sodium channel gene SCN2A cause neonatal epilepsy with late-onset episodic ataxia. J Neurol, 263(2): 334–343
https://doi.org/10.1007/s00415-015-7984-0
97 Sehgal A, Mignot E (2011). Genetics of sleep and sleep disorders. Cell, 146(2): 194–207
https://doi.org/10.1016/j.cell.2011.07.004
98 Seifert G, Carmignoto G, Steinhäuser C (2010). Astrocyte dysfunction in epilepsy. Brain Res Brain Res Rev, 63(1-2): 212–221
https://doi.org/10.1016/j.brainresrev.2009.10.004
99 Shneker B F, Fountain N B (2003). Epilepsy. Dis Mon, 49(7): 426–478
https://doi.org/10.1016/S0011-5029(03)00065-8
100 Siddiqi O, Benzer S (1976). Neurophysiological defects in temperature-sensitive paralytic mutants of Drosophila melanogaster. Proc Natl Acad Sci USA, 73(9): 3253–3257
https://doi.org/10.1073/pnas.73.9.3253
101 Smith L A, Wang X, Peixoto A A, Neumann E K, Hall L M, Hall J C (1996). A Drosophila calcium channel alpha1 subunit gene maps to a genetic locus associated with behavioral and visual defects. J Neurosci, 16: 7868–7879
102 Somjen G G (2004). “Ions in the Brain : Normal Function, Seizures, and Stroke: Normal Function, Seizures, and Stroke”. Oxford University Press, USA. At<>
103 Song J, Hu J, Tanouye M A (2007). Seizure suppression by top1 mutations in Drosophila. J Neurosci, 27(11): 2927–2937
https://doi.org/10.1523/JNEUROSCI.3944-06.2007
104 Song J, Parker L, Hormozi L, Tanouye M A (2008). DNA topoisomerase I inhibitors ameliorate seizure-like behaviors and paralysis in a Drosophila model of epilepsy. Neuroscience, 156(3): 722–728
https://doi.org/10.1016/j.neuroscience.2008.07.024
105 Song J, Tanouye M A (2006). Seizure suppression by shakB2, a gap junction mutation in Drosophila. J Neurophysiol, 95(2): 627–635
https://doi.org/10.1152/jn.01059.2004
106 Song J, Tanouye M A (2007). Role for para sodium channel gene 3′ UTR in the modification of Drosophila seizure susceptibility. Dev Neurobiol, 67(14): 1944–1956
https://doi.org/10.1002/dneu.20519
107 Stefan H, Lopes da Silva F H (2013). Epileptic neuronal networks: methods of identification and clinical relevance. Front Neurol, 4: 8
https://doi.org/10.3389/fneur.2013.00008
108 Steinhoff B, Hirsch E, Mutani R, Nakken K (2003). The ideal characteristics of antiepileptic therapy: an overview of old and new AEDs. Acta Neurol Scand, 107(2): 87–95
https://doi.org/10.1034/j.1600-0404.2003.01311.x
109 Stilwell G E, Saraswati S, Littleton J T, Chouinard S W (2006). Development of a Drosophila seizure model for in vivo high-throughput drug screening. Eur J Neurosci, 24(8): 2211–2222
https://doi.org/10.1111/j.1460-9568.2006.05075.x
110 Stödberg T, McTague A, Ruiz A J, Hirata H, Zhen J, Long P, Farabella I, Meyer E, Kawahara A, Vassallo G, Stivaros S M, Bjursell M K, Stranneheim H, Tigerschiöld S, Persson B, Bangash I, Das K, Hughes D, Lesko N, Lundeberg J, Scott R C, Poduri A, Scheffer I E, Smith H, Gissen P, Schorge S, Reith M E, Topf M, Kullmann D M, Harvey R J, Wedell A, Kurian M A (2015). Mutations in SLC12A5 in epilepsy of infancy with migrating focal seizures. Nat Commun, 6: 8038
https://doi.org/10.1038/ncomms9038
111 Stork T, Engelen D, Krudewig A, Silies M, Bainton R J, Klambt C (2008). Organization and function of the blood-brain barrier in Drosophila. J Neurosci, 28(3): 587–597
https://doi.org/10.1523/JNEUROSCI.4367-07.2008
112 Sun L, Gilligan J, Staber C, Schutte R J, Nguyen V, O’Dowd D K, Reenan R (2012). A knock-in model of human epilepsy in Drosophila reveals a novel cellular mechanism associated with heat-induced seizure. J Neurosci, 32(41): 14145–14155
https://doi.org/10.1523/JNEUROSCI.2932-12.2012
113 Suzuki D, Grigliatti T, Williamson R (1971). Temperature-sensitive mutations in Drosophila melanogaster, VII. A mutation (parats) causing reversible adult paralysis. Proc Natl Acad Sci USA, 68(5): 890–893
https://doi.org/10.1073/pnas.68.5.890
114 Tan J S, Lin F, Tanouye M A (2004). Potassium bromide, an anticonvulsant, is effective at alleviating seizures in the Drosophila bang-sensitive mutant bang senseless. Brain Res, 1020(1-2): 45–52
https://doi.org/10.1016/j.brainres.2004.05.111
115 Tanouye M A, Ferrus A, Fujita S C (1981). Abnormal action potentials associated with the Shaker complex locus of Drosophila. Proc Natl Acad Sci USA, 78(10): 6548–6552
https://doi.org/10.1073/pnas.78.10.6548
116 Tao H, Manak J R, Sowers L, Mei X, Kiyonari H, Abe T, Dahdaleh N S, Yang T, Wu S, Chen S, Fox M H, Gurnett C, Montine T, Bird T, Shaffer L G, Rosenfeld J A, McConnell J, Madan-Khetarpal S, Berry-Kravis E, Griesbach H, Saneto R P, Scott M P, Antic D, Reed J, Boland R, Ehaideb S N, El-Shanti H, Mahajan V B, Ferguson P J, Axelrod J D, Lehesjoki A E, Fritzsch B, Slusarski D C, Wemmie J, Ueno N, Bassuk A G (2011). Mutations in Prickle orthologs cause seizures in flies, mice, and humans. Am J Hum Genet, 88(2): 138–149
https://doi.org/10.1016/j.ajhg.2010.12.012
117 Thackeray J R, Ganetzky B (1994). Developmentally regulated alternative splicing generates a complex array of Drosophila para sodium channel isoforms. J Neurosci, 14: 2569–2578
118 Thackeray J R, Ganetzky B (1995). Conserved alternative splicing patterns and splicing signals in the Drosophila sodium channel gene para. Genetics, 141: 203–214
119 Tornberg J, Voikar V, Savilahti H, Rauvala H, Airaksinen M S (2005). Behavioural phenotypes of hypomorphic KCC2-deficient mice. Eur J Neurosci, 21(5): 1327–1337
https://doi.org/10.1111/j.1460-9568.2005.03959.x
120 Ueda A, Grabbe C, Lee J, Lee J, Palmer R H, Wu C F (2008). Mutation of Drosophila focal adhesion kinase induces bang-sensitive behavior and disrupts glial function, axonal conduction and synaptic transmission. Eur J Neurosci, 27(11): 2860–2870
https://doi.org/10.1111/j.1460-9568.2008.06252.x
121 van der Bliek A M, Meyerowitz E M (1991). Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature, 351(6325): 411–414
https://doi.org/10.1038/351411a0
122 Warmke J W, Reenan R A G, Wang P, Qian S, Arena J P, Wang J, Wunderler D, Liu K, Kaczorowski G J, Ploeg L H T V, Ganetzky B, Cohen C J (1997). Functional expression of Drosophila para sodium channels: modulation by the membrane protein tipE and toxin pharmacology. J Gen Physiol, 110(2): 119–133
https://doi.org/10.1085/jgp.110.2.119
123 Watanabe T K, Yamazaki T (1976). Evidence for coadaptation: negative correlation between lethal genes and polymorphic inversions in Drosophila melanogaster. Genetics, 82: 697–702
124 White H S, Smith M D, Wilcox K S (2007). Mechanisms of action of antiepileptic drugs. Int Rev Neurobiol, 81: 85–110
https://doi.org/10.1016/S0074-7742(06)81006-8
125 Willoughby L, Chang H, Lumb C, Robin C, Batterham P, Daborn P J (2006). A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and Phenobarbital. Insect Biochem Mol Biol, 36(12): 934–942
https://doi.org/10.1016/j.ibmb.2006.09.004
126 Woo N S, Lu J, England R, McClellan R, Dufour S, Mount D B, Deutch A Y, Lovinger D M, Delpire E (2002). Hyperexcitability and epilepsy associated with disruption of the mouse neuronal-specific K-Cl cotransporter gene. Hippocampus, 12(2): 258–268
https://doi.org/10.1002/hipo.10014
127 Wu C F, Ganetzky B (1980). Genetic alteration of nerve membrane excitability in temperature-sensitive paralytic mutants of Drosophila melanogaster. Nature, 286(5775): 814–816
https://doi.org/10.1038/286814a0
128 Zhang H, Tan J, Reynolds E, Kuebler D, Faulhaber S, Tanouye M A (2002). The Drosophila slamdance gene: a mutation in an aminopeptidase can cause seizure, paralysis and neuronal failure. Genetics, 162: 1283–1299
129 Zhang Y Q, Roote J, Brogna S, Davis A W, Barbash D A, Nash D, Ashburner M (1999). Stress sensitive B encodes an adenine nucleotide translocase in Drosophila melanogaster. Genetics, 153: 891–903
130 Zuckermann E C, Glaser G H (1970). Activation of experimental epileptogenic foci. Action of increased K+ in extracellular spaces of the brain. Arch Neurol, 23(4): 358–364
https://doi.org/10.1001/archneur.1970.00480280072008
[1] Volodymyr Padalko, Viktoriya Dzyuba, Olena Kozlova, Hanna Sheremet, Olena Protsenko. Zingiber officinale extends Drosophila melanogaster life span in xenobiotic-induced oxidative stress conditions[J]. Front. Biol., 2018, 13(2): 130-136.
[2] Clare H. Scott Chialvo, Thomas Werner. Drosophila, destroying angels, and deathcaps! Oh my! A review of mycotoxin tolerance in the genus Drosophila[J]. Front. Biol., 2018, 13(2): 91-102.
[3] Ailing Zhou,Song Han,Zhaolan Joe Zhou. Molecular and genetic insights into an infantile epileptic encephalopathy – CDKL5 disorder[J]. Front. Biol., 2017, 12(1): 1-6.
[4] Nina K. Latcheva,Rupa Ghosh,Daniel R. Marenda. The epigenetics of CHARGE syndrome[J]. Front. Biol., 2016, 11(2): 85-95.
[5] Gary R. HIME,Nicole SIDDALL,Katja HORVAY,Helen E. ABUD. Analyzing stem cell dynamics: use of cutting edge genetic approaches in model organisms[J]. Front. Biol., 2015, 10(1): 1-10.
[6] Hee Jung CHUNG. Role of calmodulin in neuronal Kv7/KCNQ potassium channels and epilepsy[J]. Front. Biol., 2014, 9(3): 205-215.
[7] Dengke K. MA, Niels RINGSTAD. The neurobiology of sensing respiratory gases for the control of animal behavior[J]. Front Biol, 2012, 7(3): 246-253.
[8] Aparna SHERLEKAR, Richa RIKHY. Drosophila embryo syncytial blastoderm cellular architecture and morphogen gradient dynamics: Is there a correlation?[J]. Front Biol, 2012, 7(1): 73-82.
[9] Awoyemi A. AWOFALA. Application of microarray technology in Drosophila ethanol behavioral research[J]. Front Biol, 2012, 7(1): 65-72.
[10] Xuan YE, Aimin LIU. Hedgehog signaling: mechanisms and evolution[J]. Front Biol, 2011, 6(6): 504-521.
[11] Awoyemi A. AWOFALA. Drosophila highwire gene modulates acute ethanol sensitivity in the nervous system[J]. Front Biol, 2011, 6(5): 414-421.
[12] Zhongsheng YU, Renjie JIAO. Advances in Drosophila gene targeting and related techniques[J]. Front Biol, 2010, 5(3): 238-245.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed